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THE RING SPECTRUM P (n) FOR THE PRIME 2

J. MICHAEL BOARDMAN

(communicated by Haynes R. Miller)

Abstract
This paper is a companion to the Boardman–Wilson paper on

the ring spectrum P (n). When the prime is 2, this spectrum is
not commutative, which introduces several complications. Here,
we supply the necessary details of the relevant Hopf algebroids
and Hopf ring for this case.

1. Introduction

It is well known that the ring spectrum P (n) for the prime 2 is not commutative.
The purpose of this paper is to deal with the resulting complications by supplying
the details that were deferred from [BW07]. While some results carry over from the
odd prime case (though sometimes non-obviously), other results require extensive
modification. We adopt much notation from [ibid.].

We recall that the Brown–Peterson spectrum BP for the prime 2 has the coefficient
ring BP∗ = Z(2)[v1, v2, v3, . . . ], a polynomial ring over Z(2) (the integers localized at 2)
on generators vi in degree 2(2i − 1). The ring spectrum P (n) is constructed [BW07,
§2] from BP to have the coefficient ring

P (n)∗ = BP∗/In = F2[vn, vn+1, vn+2, . . . ],

where In denotes the ideal (2, v1, v2, . . . , vn−1) and 0 < n <∞. (We are not concerned
with the commutative ring spectra P (0) = BP and P (∞) = H(F2).) We work in
characteristic 2. Tensor products are taken over P (n)∗. Because it occurs frequently,
we find it useful to write N = 2n − 1.

As most of the work is in homology, we use homology degrees throughout (unlike
[BJW95]): elements of the coefficient group P (n)i and homology classes in P (n)i(X)
have degree i, which forces cohomology classes in P (n)i(X) to have degree −i.

In §2, we verify, following Nassau [Na02], that there are exactly two good multi-
plications on P (n) and discuss their properties. In §3, we examine what happens to
the Künneth formula and universal coefficient theorem in some generality. In §4, we
specialize to P (n); most standard results survive unchanged, but not all.

In §5, we recall from [BW07] the Hopf algebroid Γ that encodes the stable opera-
tions in P (n)-cohomology, the bigraded Hopf algebroid A∗∗ that encodes the additive
operations, and the Hopf ring that encodes the unstable operations. This Hopf ring
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is not commutative, which makes it necessary in §6 to be more precise about its
structure. In §7, we prove the theorems stated in §6.

In §8, we develop a nonadditive idempotent cohomology operation to complete a
proof in [BW07]. To establish its existence, in §9 we develop a concrete description
of the Hopf ring.

The author thanks the referee for suggestions on improving the presentation.

2. The spectrum P (n)

Here, we work in the graded stable homotopy category Stab∗. The construction
[BW07, §2] of P (n) makes it canonically a BP -module, equipped with an action of
the exterior algebra E(Q0, Q1, . . . , Qn−1) over P (n)∗, where Qi : P (n)→ P (n) is a
map of BP -modules of degree −(2i+1 − 1). The most important of these, Qn−1, has
degree −N = −(2n − 1) and is easily described [Na02] in terms of the exact triangle

P (n− 1) vn−1−−−−→ P (n− 1) ρ−−→ P (n) δ−−→ P (n− 1)

as the composite Qn−1 = ρ ◦ δ. Given a multi-index I = (i0, i1, . . . in−1), where each
ir is 0 or 1, we write QI for the composite Qi00 ◦Qi11 ◦ · · · ◦Qin−1

n−1 . If we put |I| =
−degQI , we see that

|I| =
n−1∑
r=0

ir(2r+1 − 1) 6 2n+1 − 2− n = 2N − n < 2N = deg vn. (1)

We have the canonical unit η : S → BP → P (n), where S denotes the sphere spec-
trum. As in [BW07], we choose a fixed multiplication φ : P (n) ∧ P (n)→ P (n) that
satisfies all the axioms 2.1 of [ibid.] except commutativity; this includes the derivation
formula

Qi ◦ φ = φ ◦ (Qi ∧ id + id ∧Qi) : P (n) ∧ P (n) −−→ P (n). (2)

Since φ is associative, the iterated multiplication φk : P (n) ∧ P (n) ∧ · · · ∧ P (n)→
P (n) is well defined for k > 3.

We need the opposite ring spectrum P (n), which is the same spectrum P (n) but
equipped with the opposite multiplication

φ : P (n) ∧ P (n) T−−→ P (n) ∧ P (n) φ−−→ P (n),

where T denotes the switch map. Mironov [Mi78, Thm. 4.7] computed it explicitly
as

φ = φ ◦ T = φ+ vn φ ◦ (Qn−1 ∧Qn−1) : P (n) ∧ P (n) −−→ P (n). (3)

Consequently, whenever two factors P (n) are interchanged, this equation introduces
an extra term. From now on, we write Q = Qn−1, as the other Qi’s are of lesser
interest. It follows immediately from equation (2) that Qi is also a derivation for φ,

Qi ◦ φ = φ ◦ (Qi ∧ id + id ∧Qi) : P (n) ∧ P (n) −−→ P (n). (4)
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We next verify that there are exactly two good multiplications on P (n), of which
neither appears to be preferred. For n > 3, there are many uninteresting nonassocia-
tive multiplications on P (n), such as

φ+ v3 φ ◦ (Q1,1,0 ∧Q0,1,1) : P (3) ∧ P (3) −−→ P (3).

Proposition 2.1. There are exactly two associative BP -bilinear multiplications on
P (n) that have η as unit, namely φ and φ.

Proof. By [BW07, Lemma 2.2(ii)], any BP -bilinear multiplication on P (n) that has
η as unit has the form

φ′ = φ+
∑

I,J

cI,J φ ◦ (QI ∧QJ) : P (n) ∧ P (n) −−→ P (n)

with cI,J ∈ P (n)∗, where all multi-indices I etc. are understood to be nonzero. (The
term φ must be present to make η a unit, as Qi ◦ η = 0 trivially. By (1), there are no
terms with cI,0 or c0,J ; further, each cI,J must be vn or zero.)

With the help of (2), we expand the iterated product of φ′ in the standard form
[BW07, (2.4)] as

φ′ ◦ (φ′ ∧ id) = φ3 +
∑

I,J

cI,J φ3 ◦ (QI ∧QJ ∧ id +QI ∧ id ∧QJ

+ id ∧QI ∧QJ)

+
∑

I,J,K

cI+J,K φ3 ◦ (QI ∧QJ ∧QK) (I and J disjoint)

+ terms with v2
n,

(5)

where we call I and J disjoint if QI and QJ have no common factor. Similarly,
φ′ ◦ (id ∧ φ′) has the same form, except that the second sum is replaced by

∑

I,J,K

cI,J+K φ3 ◦ (QI ∧QJ ∧QK) (J and K disjoint). (6)

For φ′ to be associative, we must have cI+J,K = cI,J+K for all I, J,K.
Suppose cL,M = vn. Then L and M cannot be disjoint, because if they were, (1)

would imply |L|+ |M | = |L+M | < deg vn. Suppose QL and QM have the common
factor Qk. We claim that QL = Qk; otherwise, QL = Qk ◦QP with P 6= 0, and the
term vn φ3 ◦ (QP ∧Qk ∧QM ) would appear in (5) but not in (6). Similarly,QM = Qk.
Finally, to make |L|+ |M | = deg vn, we need k = n− 1, which forces φ′ = φ.

Complex conjugation
There is an alternate explanation for why P (n) should behave differently when

p = 2.
Given any complex-oriented ring spectrum E with a natural first Chern class x(ξ) ∈

E2(−) for complex line bundles, one can define the complex conjugate Chern class
x(ξ) = −x(ξ), where ξ denotes the complex conjugate line bundle (with a sign to
make x a strict Chern class, if we are not in characteristic 2). Since ξ ⊗ ξ is a trivial
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line bundle, we have the formula

x(ξ) = −[−1](x(ξ)),

where the series [−1](x) is defined in terms of the formal group law F (x, y) of x(−)
by F (x, [−1](x)) = 0.

For BP , taking formal logarithms, we have log x+ log([−1](x)) = 0. If p is odd, we
have simply [−1](x) = −x, because all the exponents in the series log x are odd; then
x(ξ) = x(ξ), leaving nothing to discuss. But for p = 2, the series [−1](x) is highly
nontrivial. Now P (n) inherits its complex orientation and Chern classes from BP ,
and [−1](x) remains nontrivial for P (n).

Nassau proved [Na02, Thm. 3] that the two good multiplications on P (n) are
abstractly isomorphic.

Theorem 2.2 (Nassau). There is a canonical antiautomorphism Ξ of the ring spec-
trum P (n), i.e. isomorphism Ξ: P (n) ∼= P (n) of ring spectra, which is characterized
by Ξx(ξ) = x(ξ) in cohomology for any complex line bundle ξ.

In words, as a complex-oriented ring spectrum, P (n) is isomorphic to P (n) equip-
ped with the multiplication φ and the conjugate complex orientation.

More generally, we determine all automorphisms and antiautomorphisms. We recall
from [BW07, Thm. 6.4(ii)] that when p = 2, the Hopf algebroid for P (n) is the
polynomial ring

Γ = P (n)∗(P (n)) = P (n)∗[a(0), a(1), . . . , a(n−1), b(n+1), b(n+2), . . . ],

where the missing elements b(j) are given by

a2
(i) = b(i+1) (for 0 6 i 6 n− 1). (7)

As an abelian group, P (n)∗(P (n)) is identical to P (n)∗(P (n)) (and even has the same
P (n)∗-module structure, as we see in §4). The novelty here is that the multiplication
is given by cd = φ∗(c× d), where c× d denotes the cross product in P (n)-homology.

As in [Bo95, (11.1)], we identify a stable operation r : P (n)→ P (n) with its asso-
ciated P (n)∗-linear functional 〈r,−〉 : Γ→ P (n)∗. (We check in Proposition 4.5 that
it still is linear.) The homomorphism r∗ : Γ→ Γ induced by r on P (n)-homology is
also of interest. equation (11.33) of [ibid.] uses the coalgebra structure (ψS , εS) on Γ
to express r∗ in terms of 〈r,−〉 as

r∗ : Γ ψS−−−→ Γ⊗ Γ id⊗〈r,−〉−−−−−−→ Γ⊗ P (n)∗ ∼= Γ, (8)

where we use the right action of P (n)∗ on Γ. Conversely, we recover 〈r,−〉 from r∗
by equation (11.30) of [ibid.] as

〈r,−〉 : Γ r∗−−→ Γ εS−−→ P (n)∗. (9)

Theorem 2.3. An automorphism or antiautomorphism r of the ring spectrum P (n)
is uniquely determined by the values 〈r, b(j)〉 ∈ P (n)2(2j−1) for j > n and the value
〈r, b(n)〉 = 0 (for an automorphism) or 〈r, b(n)〉 = vn (for an antiautomorphism). The
values may be chosen arbitrarily.
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Proof of Theorem 2.2. Since x is a 2-typical Chern class on BP , there is a unique map
of ring spectra Ξ: BP → BP that induces Ξx = x. For BP , we have [−1](x) ≡ x+
vnx

2n

+ . . . mod In; this follows from the standard fact [RW77, Thm. 3.11(b)] that
[2](x) ≡ vnx2n

+ . . . mod In and the formal group law identity F ([2](x), [−1](x)) =
[1](x) = x. From [Bo95, (13.3)] we have Ξx =

∑
j〈Ξ, bj〉xj . We compare this with

x = [−1](x) to deduce 〈Ξ, b(n)〉 = vn; then Theorem 2.3 shows that Ξ: BP → BP
descends to an antiautomorphism of P (n).

Theorem 2.3 will follow immediately from Lemma 2.4, below. For this, we need
information on the induced homomorphism r∗ : P (n)∗ → P (n)∗ of homotopy groups.
The discussion in [BW07, §6.6] shows that for each k > n, the stable main rela-
tion (Rk) reduces to wk ≡ vk1 mod IkΓ, where wk = ηRvk and Ik denotes the ideal
(vn, vn+1, . . . , vk−1) in P (n)∗. Then by [Bo95, Prop. 11.22(c)], on homotopy groups

r∗vk = 〈r, wk〉 ≡ 〈r, vk1〉 = vk〈r, 1〉 mod Ik. (10)

Lemma 2.4. Suppose that r : P (n)→ P (n) is a map of spectra (or operation) of
degree zero whose linear functional 〈r,−〉 : Γ→ P (n)∗ satisfies:

(i) 〈r, 1〉 = 1;
(ii) 〈r, bJ+K〉 = 〈r, bJ〉〈r, bK〉 for all multi-indices J and K;
(iii) 〈r, aIbJ〉 = 0 whenever I is nonzero.

(a) If 〈r, b(n)〉 = 0, r is an automorphism of the ring spectrum P (n), and every
automorphism has this form;

(b) If 〈r, b(n)〉 = vn, r is an antiautomorphism of the ring spectrum P (n), and every
antiautomorphism has this form.

Proof. It is clear from diagrams (8) and (9) that r is multiplicative if and only if 〈r,−〉
is. Because a(i) has odd degree, 〈r, a(i)〉 = 0 for all i. For dimensional reasons, 〈r,−〉
automatically preserves the relation (7) for i 6 n− 2, leaving only the case i = n− 1
to check. If 〈r, b(n)〉 = 0, 〈r,−〉 is multiplicative. Then (10) is enough to guarantee
that r is invertible, and we have (a).

For r to be an antiautomorphism, we require the diagram

P (n) ∧ P (n) r∧r //

φ

²²

P (n) ∧ P (n)

φ

²²

P (n) r // P (n)

to commute. We apply P (n)-homology to obtain the commutative diagram

Γ⊗ Γ
r∗⊗r∗ //

×
²²

Γ⊗ Γ
εS⊗εS //

×
²²

P (n)∗ ⊗ P (n)∗

∼=

²²

P (n)∗(P (n) ∧ P (n))
(r∧r)∗

//

φ∗
²²

P (n)∗(P (n) ∧ P (n))

φ∗

²²

Γ
r∗ // Γ

εS // P (n)∗
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in which we recognize εS ◦ r∗ as 〈r,−〉 by (9). We evaluate on c⊗ d ∈ Γ⊗ Γ. The left
side of the diagram is not the multiplication on Γ; instead, it sends c⊗ d to φ∗(c×
d) = cd+ vn(Q∗c)(Q∗d), by (3). We deduce that 〈r,−〉 must satisfy the identity

〈r, cd〉+ vn〈r, (Q∗c)(Q∗d)〉 = 〈r, c〉〈r, d〉
for all c and d. We take c = d = a(n−1); since Q∗a(n−1) = 1 (see Proposition 5.1), we
must have 〈r, b(n)〉 = vn. Then (10) shows that r is invertible, to complete (b).

3. Noncommutative ring spectra

In the following section, we consider what effects the noncommutativity of P (n)
for p = 2 has on standard results. As preparation, in this section we find it useful
for clarity to be vastly more general. We assume that E is a ring spectrum with
characteristic 2, associative multiplication φ : E ∧ E → E, and two-sided unit η : S →
E, without any commutation rules. (The restriction to characteristic 2 is merely
for convenience, as it covers our current examples. It can be removed by inserting
appropriate signs, of which a few are less than obvious.) The biggest change is that
E-(co)homology must now be treated as an E∗-bimodule.

We continue to work in the graded stable homotopy category Stab∗, and under-
stand all (co)homology in the reduced sense. Tensor products are now taken over E∗.
We suppress the associativity equivalences for the smash product ∧, but not those for
commutativity X ∧ Y ' Y ∧X or unit S ∧X ' X ' X ∧ S equivalences. However,
we do identify

Ei = πSi (E) = E−i(S) = Stabi(S,E) ∼= Stabi(S,E ∧ S) = Ei(S).

We economize by recycling the proofs in [Bo95], as most of the necessary commutative
diagrams are unchanged. (Many of them can also be found in Adams [Ad69].) All
we have to do is determine which actions are actually used in the old proofs, in the
absence of commutativity.

Labeled (co)homology
Because E is not commutative, we must keep track of how the various copies of

E are shuffled. To accomplish this, we adopt the Mattaponi1 naming convention, by
decorating each copy of E with a character string to indicate its provenance.

In detail, a given cohomology class x ∈ E∗(X) becomes a map x : X → Ex, a
homology class a ∈ E∗(X) becomes a map a : S → Ea ∧X, and an element v ∈ E∗
becomes a map v : S → Ev. Further copies of E are introduced (recursively) by mul-
tiplications φ : EA ∧ EB → EAB or the opposite multiplications φ : EA ∧ EB → EBA,
where A and B may be any character strings. For example, φ3 : Ea ∧ Eb ∧ Ec → Eabc
is well defined, and generally φk. (One could be even more general and replace selected
copies of E by a left or right E-module, with no extra work.)

1In Virginia [US69], the Po and Ni Rivers join to form the Poni River, which in turn merges with
the Matta River to form the Mattaponi River (pronounced Mattapon-EYE); the south-to-north
order is respected throughout.
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Cross products
Given cohomology classes x ∈ E∗(X) and y ∈ E∗(Y ), their cross product x× y ∈

E∗(X ∧ Y ) is

x× y : X ∧ Y x∧y−−−→ Ex ∧ Ey φ−−→ Exy.

It is clearly associative and natural in X and Y .
Similarly, given homology classes a ∈ E∗(X) and b ∈ E∗(Y ), their cross product

a× b ∈ E∗(X ∧ Y ) is

a× b : S ' S ∧ S a∧b−−−→ Ea ∧X ∧ Eb ∧ Y
' Ea ∧ Eb ∧X ∧ Y φ∧X∧Y−−−−−−→ Eab ∧X ∧ Y.

It, too, is associative and natural.

Bimodule structure
We next make E∗(X) and E∗(X) into E∗-bimodules.
We define the left action of E∗ on E∗(X) as usual: given x ∈ E∗(X) and v ∈ E∗,

the element vx ∈ E∗(X) corresponds to v × x ∈ E∗(S ∧X) under the isomorphism
E∗(X) ∼= E∗(S ∧X). We similarly define the right action of E∗ by making xv ∈
E∗(X) correspond to x× v ∈ E∗(X ∧ S). In particular, 1x = x = x1, as 1 ∈ E∗ is
η : S → E. By associativity of E, (vx)v′ = v(xv′), and the two actions make E∗(X)
an E∗-bimodule; further,

× : E∗(X)⊗ E∗(Y ) −−→ E∗(X ∧ Y ) (11)

becomes a homomorphism of E∗-bimodules (in the usual sense). Moreover, it remains
continuous in the profinite topology on cohomology (see [Bo95, Defn. 4.9]) defined
by filtering E∗(X) by the subbimodules

FαE∗(X) = Ker[i∗α : E∗(X) −−→ E∗(Xα)],

where Xα runs over the finite subspectra of X, included by iα : Xα ⊂ X.
Similarly, we make E∗(X) an E∗-bimodule and

× : E∗(X)⊗ E∗(Y ) −−→ E∗(X ∧ Y ) (12)

a homomorphism of E∗-bimodules (except that homology is always discrete).

The Künneth Theorem
The proof of Theorem 4.2 in [Bo95] extends without change to this general context

in the following form.

Theorem 3.1. Suppose that E∗(X) is free or flat as a right E∗-module or that E∗(Y )
is free or flat as a left E∗-module. Then diagram (12) is an isomorphism of E∗-
bimodules.
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Twisted cross products
Unfortunately, cross products are not enough. As we already saw in [BW07] and

§2, we need also the twisted cross product a× b ∈ E∗(X ∧ Y ), defined as

a× b : S ' S ∧ S a∧b−−−→ Ea ∧X ∧ Eb ∧ Y
' Ea ∧ Eb ∧X ∧ Y φ∧X∧Y−−−−−−→ Eba ∧X ∧ Y.

It is no longer a homomorphism of E∗-bimodules; instead, given v ∈ E∗, we find that

(i) (va)× b = a× (bv) : S −−→ Ebva ∧X ∧ Y ;

(ii) (av)× b = (a× b)v : S −−→ Ebav ∧X ∧ Y ;

(iii) a× (vb) = v(a× b) : S −−→ Evba ∧X ∧ Y .

(There are also twisted cross products in cohomology that we do not need here.)

Scalar products
Given x ∈ E∗(X) and a ∈ E∗(X), Adams [Ad69, p. 72] in effect defined their

scalar (or Kronecker) product 〈x, a〉 ∈ E∗ as

〈x, a〉 : S a−−→ Ea ∧X id∧x−−−−→ Ea ∧ Ex φ−−→ Exa,

being careful to end up in Exa in order to preserve the lexical order of x and a. In
our context, this ensures that, given v ∈ E∗,

(i) 〈vx, a〉 = v〈x, a〉 : S −−→ Evxa;

(ii) 〈xv, a〉 = 〈x, va〉 : S −−→ Exva;

(iii) 〈x, av〉 = 〈x, a〉v : S −−→ Exav.

Equivalently,

〈−,−〉 : E∗(X)⊗ E∗(X) −−→ E∗ (13)

is another homomorphism of E∗-bimodules. In particular, taking X = S, we have
〈v, w〉 = vw for v, w ∈ E∗.

There is one surprise, caused by the shuffling of factors E. Given also y ∈ E∗(Y )
and b ∈ E∗(Y ), it is essential for our purposes in [BW07, Lemma 6.1] to expand 〈x×
y, a× b〉. However, 〈x× y, a× b〉 : S −−→ Exyab does not simplify in this generality,
and is not the same as 〈x, a〉〈y, b〉 : S −−→ Exayb. But if we mix the cross products,
we can show that

〈x× y, a× b〉 = 〈x, 〈y, b〉a〉 : S −−→ Exyba. (14)

Both sides easily reduce to the same map

S ' S ∧ S a∧b−−−→ Ea ∧X ∧ Eb ∧ Y id∧x∧id∧y−−−−−−−−→
Ea ∧ Ex ∧ Eb ∧ Ey ' Ex ∧ Ey ∧ Eb ∧ Ea φ4−−→ Exyba.

There is also the twisted scalar product 〈x, a〉 ∈ E∗, defined as

〈x, a〉 : S a−−→ Ea ∧X id∧x−−−−→ Ea ∧ Ex φ−−→ Eax,
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with φ instead of φ. Its linearity properties are:

(i) 〈vx, a〉 = 〈x, av〉 : S −−→ Eavx;
(ii) 〈xv, a〉 = 〈x, a〉v : S −−→ Eaxv;
(iii) 〈x, va〉 = v〈x, a〉 : S −−→ Evax;

(15)

and for w ∈ E∗, 〈v, w〉 = wv.

Duality
The advantage of the twisted scalar product is that given x ∈ E∗(X), (iii) shows

that 〈x,−〉 : E∗(X)→ E∗ is a homomorphism of left E∗-modules, whereas 〈x,−〉 is
not. Denote by Mod∗ the graded category of left E∗-modules; we define the duality
homomorphism

d = dX : E∗(X) −−→ DE∗(X) = Mod∗(E∗(X), E∗) (16)

by dx = dXx = 〈x,−〉 : E∗(X)→ E∗.
Equations (15) actually show more, that d is a homomorphism of E∗-bimodules,

provided we make the dual DM = Mod∗(M,E∗) of any E∗-bimodule M into an E∗-
bimodule by endowing it with the non-obvious actions defined on f ∈ DM by

(vf)m = f(mv), (fv)m = (fm)v, (17)

for any v ∈ E∗ and m ∈M .
As in [Bo95, Defn. 4.8], we define the dual-finite topology on the dual DM of any

(discrete) left E∗-module M by filtering DM by the submodules

FKDM = Ker[−|K : DM −−→ DK],

where K runs over all finitely generated left submodules of M . This topology is useful
mainly when M is a free module, in which case DM may be viewed as a cartesian
product of copies of E∗ (with degree shifts), equipped with the product topology.

Note that the definition of dX is asymmetric, and that in this context, equation (17)
makes DM a right E∗-module, filtered by right submodules. Even if M is a bimodule,
FKDM will in general not be a subbimodule; in fact, we do not use the right E∗-
action on E∗(X) at all.

Theorem 3.2. Suppose E∗(X) is a free left E∗-module. Then the homomorphism
dX in (16) is a homeomorphism of filtered right E∗-modules. In particular, E∗(X) is
complete Hausdorff.

Proof. We apply the proof of Theorem 9.25 in [Bo95], specifically the commutative
diagram

E∗(X) ∼=
// E-Mod∗(E ∧X,E)

πS
∗ (−)

//

∼= Mor(g,E)

²²

DE∗(X)

∼= Dg∗
²²

E∗(W )
∼= // E-Mod∗(E ∧W,E)

πS
∗ (−)

// DE∗(W )

where E-Mod∗ denotes the graded category of left E-module spectra, W is a wedge
of spheres, the rows are dX and dW , and the vertical arrows are induced by an
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isomorphism g : E ∧W → E ∧X of left E-module spectra constructed from a suitable
map f : W → Ef ∧X of spectra. The proof given there still delivers a diagram of
homeomorphisms.

All the horizontal arrows are isomorphisms of E∗-bimodules, using the E∗-actions
onDE∗(X) supplied by (17) and on E-Mod∗(E ∧X,E) by transferring in the obvious
way from E∗(X). However, the resulting bijection g∗ : E∗(X) ∼= E∗(W ) is not an
isomorphism of E∗-bimodules, and neither is Dg∗. Given x ∈ E∗(X), or map x : X →
Ex, g∗x is the composite

g∗x : W f−−→ Ef ∧X id∧x−−−−→ Ef ∧ Ex φ−−→ Efx.

Given also v ∈ E∗, or map v : S → Ev, we compute that g∗(xv) = (g∗x)v : W → Efxv,
showing that g∗ preserves the right E∗-action. In contrast, v(g∗x) is the composite

v(g∗x) : W ' S ∧W id∧f−−−−→ S ∧ Ef ∧X v∧id∧x−−−−−→ Ev ∧ Ef ∧ Ex φ3−−→ Evfx,

while g∗(vx) reduces to the same, but with φ3 replaced by

Ev ∧ Ef ∧ Ex φ∧id−−−−→ Efv ∧ Ex φ−−→ Efvx,

which is different in general. Equations (17) show the same for Dg∗, where the homo-
morphism g∗ : E∗(W )→ E∗(X) of left E∗-modules fails to preserve the right E∗-
action.

4. Products in P (n)-(co)homology

In this section, we specialize the results of the previous section by taking E = P (n).
From now on, we work mainly in the homotopy category Ho of unbased spaces and
use absolute homology P (n)∗(X) and cohomology P (n)∗(X) (which may be viewed
stably as the relative (co)homology of the pair (X+, o), where X+ denotes the disjoint
union of X and a (new) basepoint o).

As before, we identify the stable map Q : P (n)→ P (n) with the stable operation
Q on P (n)-cohomology. Unstably, the space P (n)

s
represents the cohomology the-

ory P (n)s(−) on Ho, so that the operation Q is represented by maps Q : P (n)
s
→

P (n)
s+N

.
The companion homology operation Q is defined (stably) on a ∈ P (n)∗(X) as

Qa : S a−−→ P (n) ∧X Q∧id−−−−→ P (n) ∧X.
For the twisted cross product, equation (3) immediately yields

T∗(a× b) = b× a = b× a+ vnQb×Qa (in P (n)∗(Y ×X)) (18)

for any a ∈ P (n)∗(X) and b ∈ P (n)∗(Y ), or equivalently,

T∗(b× a) = a× b = a× b+ vnQa×Qb. (19)

For the cup product in P (n)∗(X), we have the commutation rule

yx = xy + vn (Qx)(Qy). (20)
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Modules
As the ring P (n)∗ is commutative, there is no algebraic distinction between left

P (n)∗-modules and right P (n)∗-modules. What we actually need is a stronger state-
ment.

Proposition 4.1. The right action of P (n)∗ on P (n)∗(X) and P (n)∗(X) coincides
with the left action: xv = vx and av = va for v ∈ P (n)∗, x ∈ P (n)∗(X) and a ∈
P (n)∗(X). Moreover, the action of P (n)∗ is independent of the choice of the mul-
tiplication φ or φ on P (n).

Proof. If we take Y to be a point in (18), we see that

T∗(a× v) = v × a+ vnQv ×Qa = v × a,
as Qv = 0 trivially in P (n)∗(point) = P (n)∗. Hence av = va. The analogous formula
for cohomology (see [BW07, §2.2]) yields xv = vx.

By (18), changing φ to φ adds the zero term vn(Qv)(Qa) to va, and similarly for
cohomology.

Products
Proposition 4.1 allows us to dispense with the right action of P (n)∗. The bimodule

homomorphisms (11) and (12) simply reduce to the usual P (n)∗-bilinear homomor-
phisms in cohomology,

× : P (n)∗(X)⊗ P (n)∗(Y ) −−→ P (n)∗(X × Y ),

and homology,
× : P (n)∗(X)⊗ P (n)∗(Y ) −−→ P (n)∗(X × Y ).

Thus the Künneth formula, Theorem 3.1, reverts to its traditional form, as stated in
[Bo95, Thm. 4.2].

Theorem 4.2. If P (n)∗(X) or P (n)∗(Y ) is a free or flat P (n)∗-module, the cross
product induces an isomorphism

× : P (n)∗(X)⊗ P (n)∗(Y )
∼=−−→ P (n)∗(X × Y )

of P (n)∗-modules, even for p = 2.

Proposition 4.3. The (co)homology operation Q behaves as expected on products:
(a) Given a ∈ P (n)∗(X) and b ∈ P (n)∗(Y ), we have

Q(a× b) = Qa× b+ a×Qb. (21)

We may replace × throughout by the twisted cross product ×.
(b) Given x ∈ P (n)∗(X) and y ∈ P (n)∗(Y ), we have

Q(x× y) = Qx× y + x×Qy.
Again, we may replace × throughout by ×.

Proof. Both parts follow directly from (2) and (4).

The stable operation Q is automatically additive. More is true.
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Corollary 4.4. The homology operation Q : P (n)∗(Y )→ P (n)∗(Y ) and cohomology
operation Q : P (n)∗(Y )→ P (n)∗(Y ) are P (n)∗-linear homomorphisms.

Proof. We take X as a point in Proposition 4.3 and a = v ∈ P (n)∗(point) = P (n)∗.
Since Qv = 0 trivially, (21) reduces to Q(v × b) = v ×Qb and hence Q(vb) = vQb.

The proof for cohomology is algebraically the same.

Scalar products also simplify in the same way.

Proposition 4.5. For p = 2, given x ∈ P (n)∗(X) and a ∈ P (n)∗(X):
(a) The scalar product 〈x, a〉 is P (n)∗-bilinear;
(b) The scalar product 〈x, a〉 is independent of the choice of multiplication φ or φ

on P (n), and coincides with the twisted scalar product 〈x, a〉 defined in §3;
(c) The operation Q is self-adjoint, in the sense that 〈Qx, a〉 = 〈x,Qa〉.

Proof. For (a), Proposition 4.1 allows us to treat (13) as being bilinear in the ordi-
nary sense. Because Q acts trivially on P (n)∗, (4) yields 0 = Q〈x, a〉 = 〈Qx, a〉+
〈x,Qa〉, which gives (c). Then in (b), by (3), the two candidates for 〈x, a〉 differ by
vn〈Qx,Qa〉 = vn〈x,QQa〉 = 0.

We can now deduce the following result, which is Proposition 2.4 in [BW07].

Proposition 4.6. Given elements x ∈ P (n)∗(X), y ∈ P (n)∗(Y ), a ∈ P (n)∗(X) and
b ∈ P (n)∗(Y ), we have

〈x× y, a× b〉 = 〈x, a〉〈y, b〉+ vn〈x,Qa〉〈Qy, b〉. (22)

If instead we mix the products, we find

〈x× y, a× b〉 = 〈x, a〉〈y, b〉. (23)

Proof. Proposition 4.1 allows us to extricate 〈y, b〉 from its enclosing scalar product
in (14) and rewrite that equation as (23). If we replace a× b by a× b, (19) provides
the extra term vn〈x,Qa〉〈y,Qb〉. Then Proposition 4.5(c) allows us to replace 〈y,Qb〉
by 〈Qy, b〉 in order to obtain the more natural-looking (22).

Duality
In view of Propositions 4.5 and 4.1, Theorem 3.2 for P (n) also reverts to its

standard form, as stated in [Bo95, Thm. 4.14].

Theorem 4.7. Even for p = 2, if P (n)∗(X) is a free P (n)∗-module,

dX : P (n)∗(X) ∼= DP (n)∗(X) = Mod∗(P (n)∗(X), P (n)∗)

is a homeomorphism of filtered P (n)∗-modules.

The Künneth formula in cohomology is a direct consequence of Theorems 4.7
and 4.2, just as in [Bo95, Thm. 4.19].

Theorem 4.8. Even for p = 2, if P (n)∗(X) and P (n)∗(Y ) are free P (n)∗-modules,
the completed cross product

× : P (n)∗(X) ⊗̂P (n)∗(Y )
∼=−−→ P (n)∗(X × Y )

is a homeomorphism of filtered P (n)∗-modules.
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5. Three environments

Three flavors of operations in P (n)-cohomology were encoded in [BW07] as the
P (n)∗-duals of the three algebraic objects in the diagram of homomorphisms of left
P (n)∗-modules (among other structures),

P (n)∗
(
P (n) ∗

)
q−−→ A∗∗ = QP (n)∗

(
P (n) ∗

)
σ−−→ Γ = P (n)∗(P (n)). (24)

Stable operations are dual to the Hopf algebroid Γ, which has P (n)∗-generators
a(i) and b(j), described in detail in [ibid., Thm. 6.4]. Part of the structure is the right
unit ring homomorphism ηR : P (n)∗ → Γ, which makes Γ a right P (n)∗-module.

Additive unstable operations are dual to the bigraded Hopf algebroid A∗∗, where
Asi denotes the indecomposables in degree i of the Hopf algebra P (n)∗

(
P (n)

s

)
and

is assigned the total degree i− s. (It was named Q∗∗ in [BW07], but we wish to avoid
any confusion with the homology homomorphisms Q∗ induced by the maps Q in Ho.
Worse, the notation QP (n)∗

(
P (n)

s

)
is ambiguous; here, Q denotes the indecom-

posables in the Hopf algebra, not the homology operation Q.) It has generators e,
a(i), b(j) and wk = ηRvk, described in detail in [ibid., Thm. 7.2]. The stabilization
σ : Asi → Γi−s has (total) degree zero and maps a(i) and b(j) to their namesakes, also
σe = 1 and σwk = wk = ηRvk ∈ Γ.

Unstable operations are dual to the Hopf ring P (n)∗
(
P (n) ∗

)
(not a Hopf ring in

quite the ordinary sense; see §6). It has generators e, a(i), b(j) and [vk], described in
detail in [ibid., Thms. 11.1 and 11.3]; there are also useful elements fi (see [BW07,
(10.9)]), bj , and [v] for any v ∈ P (n)∗. The map qs : P (n)∗

(
P (n)

s

)
→ As∗ simply

quotients out by the ∗-decomposable elements and P (n)∗-multiples of 1s in the Hopf
algebra (with a degree shift of −s) and maps each generator to its namesake, except
that q[vk] = wk.

Because the homology operation Q and the homology homomorphisms Q∗ appear
in so many formulae in §6, we record how they act on all three objects in diagram (24).
It is also useful to include the linear functional 〈Q,−〉 that corresponds to the coho-
mology operation Q. As q and σ respect Q, Q∗ and 〈Q,−〉, we actually work mostly
in the Hopf ring. A few complicated proofs have to be deferred to §6.

The stable environment
By Proposition 4.1, Γ = P (n)∗(P (n)) is exactly the same set and P (n)∗-module

as P (n)∗(P (n)); only the multiplication is different. The homology homomorphism
Q∗ is automatically P (n)∗-linear. By Proposition 4.3(a), the homology operation Q
is a derivation.

Proposition 5.1. In the Hopf algebroid Γ = P (n)∗(P (n)):

(a) Q = Q∗ is the P (n)∗-linear derivation defined on the generators by Qa(i) = 0
for 0 6 i < n− 1, Qa(n−1) = 1, and Qb(j) = 0; also Qwk = 0.

(b) The linear functional 〈Q,−〉 is given on the generators by 〈Q, a(i)〉 = 0 for 0 6
i < n− 1, 〈Q, a(n−1)〉 = 1, and 〈Q, b(j)〉 = 0.
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(c) We have the relation

a2
(i) = b(i+1) (for 0 6 i 6 n− 1). (25)

(d) The multiplication on Γ is commutative and is independent of the choice of
multiplication φ or φ on P (n).

It is not obvious that the ring Γ is commutative when p = 2.

The additive environment
Here, Q remains a P (n)∗-linear derivation, but this is far less obvious for Q∗. Now

that Q : Asi → Asi−N and Q∗ have different bidegrees, they no longer coincide.

Lemma 5.2. The homology homomorphism Q∗ : Asi → As+Ni is a derivation.

The proof will follow immediately from Theorem 6.4 or Lemma 7.4, by neglecting
decomposables.

Proposition 5.3. In the bigraded Hopf algebroid A∗∗:
(a) Q is the P (n)∗-linear derivation defined on the generators by the equations Qe =

0, Qa(i) = 0 for 0 6 i < n− 1, Qa(n−1) = e, Qb(j) = 0, and Qwk = 0.
(b) Q∗ is the P (n)∗-linear derivation defined on the generators by the equations

Q∗e = 0, Q∗a(i) = 0 for 0 6 i < n− 1, Q∗a(n−1) = b2
n−1

(0) , Q∗b(j) = 0, and Q∗wk
= 0.

(c) The linear functional 〈Q,−〉 takes the following values: 〈Q, e〉 = 0, 〈Q, a(i)〉 = 0
for 0 6 i < n− 1, 〈Q, a(n−1)〉 = 1, 〈Q, b(j)〉 = 0, and 〈Q,wk〉 = 0.

(d) We have the relation

a2
(i) = b(i+1) (for 0 6 i 6 n− 1).

(e) The multiplication on A∗∗ is commutative and is independent of the choice of
multiplication φ or φ on P (n).

Proof of Proposition 5.1, assuming Proposition 5.3. We copy (c) from (7). For the
other parts, we simply apply the stabilization σ : A∗∗ → Γ to Proposition 5.3, noting
that σe = σb(0) = 1.

It is even less obvious that the ring A∗∗ is commutative for p = 2. Although Propo-
sition 5.3 bears a strong formal resemblance to Proposition 5.1, stable proofs do not
apply. Instead, we must use Hopf ring methods.

The unstable environment
The Hopf ring P (n)∗

(
P (n) ∗

)
has two multiplications, c ∗ d = µ∗(c× d) and c ◦

d = φ∗(c× d), where the maps µ : P (n)
s
× P (n)

s
→ P (n)

s
and φ : P (n)

s
× P (n)

m
→ P (n)

s+m
represent, in Ho, addition and multiplication in P (n)-cohomology. As

discussed in [BW07, §10.2], the two Cartan formulae (10.23) and (10.36) in [BJW95]
for r(x+ y) and r(xy) continue to hold in this context.

Here, Q remains a derivation, but Q∗ does not. It will be convenient to replace the
Hopf ring generator [vk] by [vk]− 1.
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Proposition 5.4. In the Hopf ring P (n)∗
(
P (n) ∗

)
:

(a) Q is a P (n)∗-linear derivation for both multiplications,

Q(c ∗ d) = Qc ∗ d+ c ∗Qd, Q(c ◦ d) = Qc ◦ d+ c ◦Qd,
and is given on the generators by Qe = 0, Qa(i) = 0 for 0 6 i < n− 1, Qa(n−1)

= e, Qb(j) = 0, and Q([vk]− 1) = 0; further, Qfi = 0 for i < 2n and Qbj = 0.

(b) Q∗ is a ∗-homomorphism,

Q∗(c ∗ d) = (Q∗c) ∗ (Q∗d), (26)

and is given on the generators by Q∗e = 0, Q∗a(i) = 0 for 0 6 i < n− 1,
Q∗a(n−1) = b◦2

n−1

(0) , Q∗b(j) = 0, and Q∗([vk]− 1) = 0; further, Q∗fi = 0 for 0 <
i < 2n, Q∗bj = 0 for j > 0, Q∗[v] = 1−s+N for any v ∈ P (n)s, and Q∗1s =
1s+N .

(c) The linear functional 〈Q,−〉 is given on generators by 〈Q, e〉 = 0, 〈Q, a(i)〉 = 0
for 0 6 i < n− 1, 〈Q, a(n−1)〉 = 1, 〈Q, b(j)〉 = 0, and 〈Q, [vk]− 1〉 = 0.

(d) We have the relation

a◦2(i) = b(i+1) (for 0 6 i 6 n− 1).

(e) The effect of changing the choice of multiplication on P (n) from φ to φ is to
reverse both multiplications: c ∗ d is replaced by d ∗ c and c ◦ d by d ◦ c.

(f) Denote by ψ the comultiplication on the Hopf ring defined using φ instead of φ
as the multiplication on P (n). Then the comultiplication is also reversed: if

ψc =
∑
α

c′α ⊗ c′′α, (27)

then ψc =
∑
α c

′′
α ⊗ c′α.

Theorem 6.9 and its accompanying examples will show that the Hopf ring is defi-
nitely not commutative or cocommutative.

Conspicuous by its absence is the formula for Q∗(c ◦ d), which is complicated; it
will be the subject of Theorem 6.4. The proof of (d) is also deferred to §6. Before we
prove the other parts, we need to review the coalgebra structure.

The unstable coalgebra structure
We recall the coalgebra structure (ψ, ε) on the Hopf ring (which we warn is unre-

lated to the coalgebra structures on Γ and A∗∗). We need to know how it relates to
Q, Q∗ and the two multiplications.

The counit ε : P (n)∗
(
P (n) ∗

)
→ P (n)∗ is simply induced by the maps ωs : P (n)

s
→

point. There are no surprises, ε(c ∗ d) = (εc)(εd) and ε(c ◦ d) = (εc)(εd). Further,
εQc = 0 and εQ∗c = εc. For the first of these, εQc = ωs∗Qc = Q(ωs∗c) = 0 by nat-
urality. The second follows from ωs+N ◦Q = ωs : P (n)

s
→ point.
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The comultiplication ψ is defined in terms of the diagonal map ∆: P (n)
s
→

P (n)
s
× P (n)

s
as

ψ : P (n)∗
(
P (n)

s

)
∆∗−−−→ P (n)∗

(
P (n)

s
× P (n)

s

)

∼=←−− P (n)∗
(
P (n)

s

)
⊗ P (n)∗

(
P (n)

s

)
,

using the Künneth isomorphism in P (n)-homology. Algebraically, equation (27) is
equivalent to

∆∗c =
∑
α

c′α × c′′α. (28)

To find ψQc, we apply Q to get, using naturality,

∆∗Qc = Q∆∗c =
∑
α

Q(c′α × c′′α) =
∑
α

Qc′α × c′′α +
∑
α

c′α ×Qc′′α.

The analogue of (28) for Qc now implies that

ψQc =
∑
α

Qc′α ⊗ c′′α +
∑
α

c′α ⊗Qc′′α.

For ψQ∗c, we use the trivial equation ∆ ◦Q = (Q×Q) ◦∆ to write

∆∗Q∗c = (Q×Q)∗∆∗c =
∑
α

(Q×Q)∗(c′α × c′′α) =
∑
α

Q∗c′α ×Q∗c′′α,

which we similarly convert to

ψQ∗c =
∑
α

Q∗c′α ⊗Q∗c′′α.

Preliminaries for Proposition 5.4
We begin with results on a(n−1) and fi.

Lemma 5.5. We have Qa(n−1) = e, Q∗a(n−1) = b◦2
n−1

(0) , and 〈Q, a(n−1)〉 = 1. Fur-
ther, Q∗fi = 0 for 0 < i < 2n.

Proof. We know from [BW07, (6.15)] that P (n)∗(RP 2N ) = P (n)∗[t]/(t2N+1). The
Atiyah–Hirzebruch spectral sequence in homology also collapses; P (n)∗(RP 2N ) is a
free P (n)∗-module with basis elements yi for 0 6 i 6 2N , where yi is dual to ti. We
may view the cohomology class t as a map t : RP 2N → P (n)

1
; in P (n)-homology, it

induces t∗yi = fi, and in particular, t∗y1 = f1 = e and t∗y2n = f2n = a(n−1). (Indeed,
this is how a(i) was originally defined in [Wi84], or compare [BJW95, Prop. 10.5].)

We start from the equation Qt = t2
n

in cohomology. (The only alternative is Qt =
0, which soon implies that Q is identically zero.) Then dually, by Proposition 4.5(c),
in homology we have Qy2n = y1, and by naturality, Qa(n−1) = e.
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For any cohomology operation r, we have, from [BW07, (10.9)],

r(t) = 〈r, 11〉1 + 〈r, e〉t+
2N∑

i=2

〈r, fi〉ti. (29)

If we take r = Q, we see that 〈Q, a(n−1)〉 = 1. If we replace r by r ◦Q, we get

r(t2
n

) = r(Qt) = (r ◦Q)(t) =
2N∑

i=0

〈r ◦Q, fi〉ti =
2N∑

i=0

〈r,Q∗fi〉ti,

using 〈r ◦Q, fi〉 = 〈Q∗r, fi〉 = 〈r,Q∗fi〉. Since 1 ◦ e = 0, the Cartan formula for r(t2
n

)
simplifies to

r(t2
n

) = 〈r, 1〉+ 〈r, e◦2n〉t2n

+ higher terms.

Since this holds for all r, comparison of the coefficients of ti yields Q∗fi = 0 for
0 < i < 2n and Q∗a(n−1) = Q∗f2n = e◦2

n

= b◦2
n−1

(0) .

The same techniques apply to bj and [v], with simplifications.

Lemma 5.6. We have Qbj = 0 for all j and Q∗bj = 0 for j > 0. In particular, for
b(j) = b2j we have Qb(j) = 0 and Q∗b(j) = 0.

Proof. In this case, P (n)∗(CP∞) is a free P (n)∗-module on basis elements zj ∈
P (n)2j(CP∞) for j > 0, and P (n)∗(CP∞) = P (n)∗[[x]], with xj dual to zj . The map
x : CP∞ → P (n)

2
induces x∗zj = bj . Trivially, Qzj = 0, hence Qbj = 0.

For any cohomology operation r, since Qx = 0 trivially, [BW07, (10.4)] gives

r(0) = r(Qx) = (r ◦Q)(x) =
∞∑

j=0

〈r ◦Q, bj〉xj =
∞∑

j=0

〈r,Q∗bj〉xj .

We compare with r(0) = 〈r, 1〉1, to deduce that Q∗bj = 0 for j > 0.

Lemma 5.7. For any v ∈ P (n)s, we have Q∗[v] = 1−s+N . In particular, Q∗1−s =
Q∗[0s] = 1−s+N and Q∗([vk]− 1) = 0.

Proof. Given v ∈ P (n)−s(point) = P (n)s, we have [v] ∈ P (n)0
(
P (n)−s

)
. Trivially,

Qv = 0 in P (n)−s+N (point). Then by [BW07, (10.2)],

r(0) = r(Qv) = (r ◦Q)(v) = 〈r ◦Q, [v]〉 = 〈r,Q∗[v]〉
for any r. Comparing with r(0) = 〈r, 1〉, we deduce that Q∗[v] = 1−s+N .

Proof of Proposition 5.4, except (d). For (a), from (21) we have

Q(c ∗ d) = Qµ∗(c× d) = µ∗Q(c× d)
= µ∗(Qc× d+ c×Qd) = Qc ∗ d+ c ∗Qd,

and similarly for Q(c ◦ d).



118 J. MICHAEL BOARDMAN

In (b), (26) depends on the fact that the cohomology operation Q is additive,
Q(x+ y) = Qx+Qy. For the representing mapQ : P (n)

s
→ P (n)

s+N
, it follows that

Q ◦ µ = µ ◦ (Q×Q); then

Q∗(c ∗ d) = Q∗µ∗(c× d) = µ∗(Q×Q)∗(c× d) = µ∗(Q∗c×Q∗d) = Q∗c ∗Q∗d.
Lemmas 5.5, 5.6 and 5.7 take care of many of the statements. For Qe, we may

write Qe = QQa(n−1) = 0 (which is trivial except when n = 1). The remaining values
are trivial, as they lie in groups that are zero.

Part (e) was proved in [BW07, §10.1].
For (f), we use T ◦∆ = ∆: P (n)

k
→ P (n)

k
× P (n)

k
. Equation (28) yields

∆∗c = T∗∆∗c =
∑
α

T∗(c′α × c′′α) =
∑
α

c′′α × c′α, (30)

with the help of (19). The analogue of (28) for ψ translates this into ψc =
∑
α c

′′
α ⊗ c′α,

as required.

Proof of Proposition 5.3 except (e), assuming Lemma 5.2. We apply the quotient
map q : P (n)∗

(
P (n) ∗

)
→ A∗∗ to Proposition 5.4 and use q([vk]− 1) = wk.

The two missing items will be proved in §6. The proofs of Propositions 5.3(e) and
5.4(d) will be applications following Proposition 7.2.

6. Structure of the Hopf Ring

Here, we explain in detail what kind of object the Hopf ring P (n)∗
(
P (n) ∗

)
is when

p = 2. Because the multiplication on P (n) is noncommutative, several of the Hopf
ring axioms require modification. Whenever two spaces are shuffled, equation (19)
introduces extra terms. We exhibit only the four affected axioms and the three rules
for (co)commutation. All the other axioms listed in [BJW95, §10] survive unaltered.
Several of the more complicated proofs are deferred to the next section.

From now on, as we are almost exclusively concerned with the Hopf ring, we
simplify the notation. We write H(s) for the Hopf algebra P (n)∗

(
P (n)

s

)
, H(s)i

for the group of elements of degree i in H(s), and H(∗) for the whole Hopf ring
P (n)∗

(
P (n) ∗

)
.

In this section, we need only limited information from [BW07, §11] on the Hopf
ring. As noted earlier, we replace each generator [vk] by [vk]− 1, to make all our
◦-generators lie in the augmentation ideal Ker ε.

(i) We start with the ◦-generators e, a(i), b(j) and [vk]− 1;
(ii) A ◦-monomial is any ◦-product of ◦-generators (including the

empty product [1]− 10 ∈ H(0));
(iii) A ∗◦-monomial is any ∗-product of ◦-monomials (including the

empty product 1s ∈ H(s) for each s).

(31)

To stay inside Ker ε, we follow the convention of [RW77], that for any element
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d ∈ Ker ε, we define d◦0 = [1]− 10, with the result that d◦0 ◦ d = d still holds. Corol-
lary 6.8 will verify that the ∗◦-monomials do indeed span the Hopf ring H(∗) as a
P (n)∗-module.

The coalgebra structure

Theorem 6.1. For any elements c, d ∈ H(s) = P (n)∗
(
P (n)

s

)
, where ψc is given by

equation (27) and similarly ψd =
∑
β d

′
β ⊗ d′′β, we have

ψ(c ∗ d) =
∑
α

∑

β

c′α ∗ d′β ⊗ c′′α ∗ d′′β +
∑
α

∑

β

vn c
′
α ∗Qd′β ⊗Qc′′α ∗ d′′β . (32)

Remark 6.2. We could arrange the formula to read simply ψ(c ∗ d) = (ψc) ∗ (ψd),
which states that ψ preserves ∗-products, by endowing the tensor product H(s)⊗
H(s) with the nonstandard ∗-multiplication suggested by [BW07, (2.6)],

(c⊗ c′) ∗ (d⊗ d′) = c ∗ d⊗ c′ ∗ d′ + vnc ∗Qd⊗Qc′ ∗ d′.
It will be useful to note that we do not need formulae involving the elements 1j ,

because for any c ∈ H(s) we have, as usual,

1s ∗ c = c = c ∗ 1s, 1m ◦ c = (εc)1s+m = c ◦ 1m, ψ1s = 1s ⊗ 1s, ε1s = 1.

We therefore concentrate attention on elements of the augmentation ideal Ker ε.
Because ε is the counit, we may rewrite ψc for c ∈ Ker ε in the more useful form

ψc = c⊗ 1 +
∑

i

c′i ⊗ c′′i + 1⊗ c, (33)

breaking out the two end terms, where εc′i = 0 and εc′′i = 0 for all i, and similarly

ψd = d⊗ 1 +
∑

j

d′j ⊗ d′′j + 1⊗ d. (34)

Then equation (28) is replaced by

∆∗c = c× 1 +
∑

i

c′i × c′′i + 1× c. (35)

Theorem 6.3. Given elements c and d of the Hopf ring that satisfy εc = 0 and εd =
0, with ψc and ψd given by (33) and and (34), we have

ψ(c ◦ d) = c ◦ d⊗ 1 +
∑

i

∑

j

c′i ◦ d′j ⊗ c′′i ◦ d′′j + 1⊗ c ◦ d

+
∑

i

∑

j

vn c
′
i ◦Qd′j ⊗Qc′′i ◦ d′′j .

(36)

The previous remark applies equally well here.
Now we can state the formula for Q∗(c ◦ d), deferred from §5.

Theorem 6.4. Given elements c and d of the Hopf ring that satisfy εc = 0 and εd =
0, with ψc and ψd given by (33) and (34), the action of Q∗ on ◦-products is given by

Q∗(c ◦ d) = Q∗c ◦ d+
∑

i

∑

j

(c′i ◦Q∗d′j) ∗ (Q∗c′′i ◦ d′′j ) + c ◦Q∗d. (37)
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The distributive laws
Because the distributive laws involve some shuffling of factors, they have to be

modified.

Theorem 6.5. For any elements a, b, c in P (n)∗
(
P (n) ∗

)
that satisfy εa = 0, εb = 0

and εc = 0, with ψc given by (33), the distributive laws are

(a ∗ b) ◦ c =
∑

i

(a ◦ c′i) ∗ (b ◦ c′′i ) +
∑

i

vn (a ◦Qc′i) ∗ (Qb ◦ c′′i ) (38)

and

c ◦ (a ∗ b) =
∑

i

(c′i ◦ a) ∗ (c′′i ◦ b) +
∑

i

vn (c′i ◦Qa) ∗ (Qc′′i ◦ b). (39)

It is clear that the Hopf ring element a(n−1) causes most of our difficulties.

Definition 6.6. Let us call a ◦-monomial or other expression in our ◦-generators wild
if it explicitly contains the element a(n−1), or tame if it does not.

Proposition 6.7. Let c and d be ∗◦-monomials as in in (31)(iii).

(a) c ◦ d is a P (n)∗-linear combination of ∗◦-monomials. If c and d are tame, so is
c ◦ d.

(b) If c 6= 1, ψc has the form (33), where every c′i and c′′i is a P (n)∗-linear combi-
nation of ∗◦-monomials. If c is tame, so are every c′i and c′′i .

(c) Qc is a sum of ∗◦-monomials, and is zero if c is tame.

(d) Q∗c is a P (n)∗-linear combination of ∗◦-monomials, and is zero if c is tame
and c 6= 1.

By (a), the set of linear combinations of ∗◦-monomials is closed under ◦-multi-
plication as well as ∗-multiplication. We know from [BW07] that the ◦-generators
generate H(∗) as a Hopf ring over P (n)∗.

Corollary 6.8. The ∗◦-monomials (31)(iii) span the Hopf ring H(∗) as a P (n)∗-
module.

Proof of Proposition 6.7. We assume the previous four theorems (of which none is
yet proved). None of the formulae we use introduces an a(n−1) where there was not
one before, so tameness is preserved. Part (c) follows directly from Proposition 5.4(a)
by induction.

We prove the other three parts together, by induction on degree. In degree zero,
we have only the ◦-generators [vk]− 1, which are easily handled by the standard
formulae [v] ∗ [v′] = [v + v′] and [v] ◦ [v′] = [vv′] for v, v′ ∈ P (n)∗, and the formula
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for ψ([v]− 1), below. For (b), we start from the formulae in [BW07],

ψe = e⊗ 1 + 1⊗ e,
ψa(i) =

∑

j+k=2i+1

fj ⊗ fk,

ψb(i) =
∑

j+k=2i

bj ⊗ bk,

ψ([v]− 1) = ([v]− 1)⊗ 1 + ([v]− 1)⊗ ([v]− 1)
+ 1⊗ ([v]− 1) (for any v ∈ P (n)∗),

(40)

where fj is a ∗-product of selected generators a(k), also (if j is odd) e, and bj is a
(complicated) linear combination of ∗◦-monomials in the generators b(k) and [vk]− 1.
Then we use Theorem 6.3 for ψ(c ◦ d) and Theorem 6.1 for ψ(c ∗ d). For (a), we use
the distributive laws in Theorem 6.5 to expand (z ∗ c) ◦ d and c ◦ (z ∗ d), where z is
a ◦-monomial. For (d), we use Theorem 6.4 and Proposition 5.4(b).

The commutation rules
Neither multiplication is commutative in this Hopf ring environment, nor is the

comultiplication cocommutative.

Theorem 6.9. Given elements of the Hopf ring c, d ∈ P (n)∗
(
P (n) ∗

)
that satisfy

εc = 0 and εd = 0, with ψc and ψd given by (33) and (34), we have the following
(co)commutation rules:
(a) For the comultiplication ψ,

∑

i

c′i ⊗ c′′i =
∑

i

c′′i ⊗ c′i +
∑

i

vnQc
′′
i ⊗Qc′i;

(b) For the ∗-multiplication,

d ∗ c = c ∗ d+ vnQc ∗Qd; (41)

(c) For the ◦-multiplication,

d ◦ c = c ◦ d+ vnQc ◦Qd+Q∗c ◦Q∗d ◦ [vn]

+
∑

i

∑

j

(c′i ◦ d′j) ∗ (Q∗c′′i ◦Q∗d′′j ◦ [vn])

+
∑

i

∑

j

vn(Qc′i ◦Qd′j) ∗ (Q∗c′′i ◦Q∗d′′j ◦ [vn]).

(42)

Nevertheless, we shall see in Proposition 7.2 that all tame elements in the Hopf
ring are ◦-central.

Remark 6.10. Of course a(n−1) commutes with itself, but equation (42) yields

a(n−1) ◦ a(n−1) = a(n−1) ◦ a(n−1) + vn e ◦ e+ b◦2
n−1

(0) ◦ b◦2n−1

(0) ◦ [vn].

This is consistent, because by [BW07, §10.5], the main relation (Rn) is vnb(0) =
b◦2

n

(0) ◦ [vn] and e ◦ e = b(0).
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Remark 6.11. We present concrete examples of non(co)commutativity.
It is easy to see that ∗ is not commutative in general. If we take c = a(n−1) ◦ b(0)

and d = a(n−1) ◦ b(1), equation (41) shows directly that

d ∗ c = c ∗ d+ vn (e ◦ b(0)) ∗ (e ◦ b(1)).
It is less obvious that ◦-multiplication is not commutative. If we set c = (e ◦

a(n−1)) ∗ b(0) and d = (e ◦ a(n−1)) ∗ b(1), equation (42) reduces to

d ◦ c = c ◦ d+ vn(b(0) ◦ b(1)) ∗ b◦2(0).

Alternatively, we may reduce c ◦ d and d ◦ c to standard form as in [BW07, §11.3].
Since e ◦ a(n−1) and b(0) = e ◦ e are both suspensions and therefore primitive, equa-
tion (32) yields

ψc = c⊗ 1 + e ◦ a(n−1) ⊗ b(0) + b(0) ⊗ e ◦ a(n−1) + 1⊗ c.
Then the distributive law (38) yields, after some simplification,

d ◦ c = (b(0) ◦ b(n)) ∗ (b(0) ◦ b(1)) + (e ◦ a(n−1) ◦ b(0)) ∗ (e ◦ a(n−1) ◦ b(1)),
with no extra term, while for c ◦ d, (39) yields the same, plus the extra term vn b

◦2
(0) ∗

(b(0) ◦ b(1)).
Neither is the comultiplication cocommutative. If we take (as above) c = (e ◦

a(n−1)) ∗ b(0) and d = (e ◦ a(n−1)) ∗ b(1) and use equation (32) to compute ψ(c ∗ d)
and ψ(d ∗ c), we find that both contain all the same terms one would normally
expect, which are symmetric. In addition, ψ(c ∗ d) has two extra terms vn b∗3(0) ⊗
b∗2(0) + vn b

∗2
(0) ⊗ b(0) ∗ b(1) that are not symmetric, whereas ψ(d ∗ c) has vn b(0) ∗ b(1) ⊗

b∗2(0) + vn b
∗2
(0) ⊗ b∗3(0).

7. Proofs of the Hopf ring structure

We establish the remaining theorems in §6. All our proofs follow the same pattern
(already seen in §5): we represent some relation in P (n)-cohomology in the category
Ho, apply P (n)-homology, and evaluate on a generic twisted cross product.

A diagonal map ∆ introduces the comultiplication by way of equation (35). When-
ever two factors are switched, equation (19) adds extra terms involving Q. (Some of
these extra terms will in due course go away, but we do not know which in advance.)

Proof of Theorems 6.1 and 6.3. To abbreviate, we write W = P (n)
s
. The maps

W ×W µ−−→W
∆−−→W ×W

and
W ×W ∆×∆−−−−→W ×W ×W ×W

id×T×id−−−−−−→W ×W ×W ×W µ×µ−−−−→W ×W
trivially coincide. We apply P (n)-homology and evaluate on the element c× d ∈
P (n)∗

(
P (n)

s
× P (n)

s

)
, using (35) and (19) to obtain (32).

The proof of (36) is completely analogous, with φ replacing µ.
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Proof of Theorem 6.5. We represent the distributive law (x+ y)z = xz + yz in P (n)-
cohomology by the equality of the maps

P (n)
s
× P (n)

s
× P (n)

m

µ×id−−−−→ P (n)
s
× P (n)

m

φ−−→ P (n)
s+m

and

P (n)
s
× P (n)

s
× P (n)

m

id×id×∆−−−−−−→ P (n)
s
× P (n)

s
× P (n)

m
× P (n)

m

id×T×id−−−−−−→ P (n)
s
× P (n)

m
× P (n)

s
× P (n)

m

φ×φ−−−−→ P (n)
s+m
× P (n)

s+m

µ−−→ P (n)
s+m

We apply P (n)-homology to a× b× c ∈ P (n)∗
(
P (n)

s
× P (n)

s
× P (n)

m

)
to obtain

the distributive law (38). The other distributive law is analogous.

We next establish a commutation rule for d ◦ c that will in due course reduce to
equation (42).

Lemma 7.1. Assuming that εc = 0 and εd = 0, with ψc and ψd given by equations
(33) and (34), we have

d ◦ c = c ◦ d+ vnQc ◦Qd+Q∗c ◦Q∗d ◦ [vn] + vnQ∗Qc ◦Q∗Qd ◦ [vn]

+
∑

i,j

(c′i ◦ d′j) ∗ (Q∗c′′i ◦Q∗d′′j ◦ [vn])

+
∑

i,j

vn (Qc′i ◦Qd′j) ∗ (Q∗c′′i ◦Q∗d′′j ◦ [vn])

+
∑

i,j

vn (c′i ◦ d′j) ∗ (Q∗Qc′′i ◦Q∗Qd′′j ◦ [vn])

+
∑

i,j

v2
n (Qc′i ◦Qd′j) ∗ (Q∗Qc′′i ◦Q∗Qd′′j ◦ [vn])

+
∑

i,j

vn (Qc′i ◦ d′j) ∗ (Q∗c′′i ◦Q∗Qd′′j ◦ [vn]).

(43)

Proof. We rewrite (20) as yx = xy + (Qx)(Qy)vn, and represent it in Ho by the maps
φ : P (n)

m
× P (n)

s
→ P (n)

s+m
and

P (n)
m
× P (n)

s

∆×∆−−−−→ P (n)
m
× P (n)

m
× P (n)

s
× P (n)

s

id×T×id−−−−−−→ P (n)
m
× P (n)

s
× P (n)

m
× P (n)

s

T×T−−−−→ P (n)
s
× P (n)

m
× P (n)

s
× P (n)

m

= P (n)
s
× P (n)

m
× P (n)

s
× P (n)

m
× point

id×id×Q×Q×vn−−−−−−−−−−−→
P (n)

s
× P (n)

m
× P (n)

s+N
× P (n)

m+N
× P (n)−2N

φ×φ3−−−−→ P (n)
s+m
× P (n)

s+m

µ−−→ P (n)
s+m

.
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We apply P (n)-homology and evaluate on d× c ∈ P (n)∗
(
P (n)

m
× P (n)

s

)
, using

Q ◦Q = 0, Q∗1 = 1, εQc = 0 and εQ∗c = εc. The result is (43).

Proposition 7.2. Every tame element of the Hopf ring H(∗) is ◦-central.

Proof. We take d in (43) to be any of our ◦-generators other than a(n−1). By (40)
and Proposition 5.4, Qd, Q∗d and each Q∗d′′j all vanish, so that (43) simplifies to
d ◦ c = c ◦ d.

If c1 and c2 are both tame and ◦-central, so is c1 ◦ c2, trivially. To see that c1 ∗ c2
is also ◦-central, we compare the two distributive laws (39) and (38) (which have now
been proved) for any d ∈ Ker ε, with ψd expressed as in (34),

d ◦ (c1 ∗ c2) =
∑

j

(d′j ◦ c1) ∗ (d′′j ◦ c2) =
∑

j

(c1 ◦ d′j) ∗ (c2 ◦ d′′j ) = (c1 ∗ c2) ◦ d.

It follows that any tame expression is ◦-central.

Proof of Proposition 5.3(e). All our ◦-generators (31)(i) commute with each other,
as a(n−1) is the only wild one. When we pass to the indecomposables A∗∗ of the Hopf
ring, the ◦-generators map to e, a(i), b(j) and wk, which therefore still commute and
generate the P (n)∗-algebra A∗∗.

From Proposition 5.4(e), switching the multiplication on P (n) from φ to φ reverses
the ◦-multiplication, which has no effect on A∗∗.

Remark 7.3. As another example of noncommutativity, we note that Proposition 7.2
does not extend to the elements fi for i > 2n, which are wild. Take c = f2n+1 =
e ∗ a(n−1) and d = f2n+2 = a(0) ∗ a(n−1), where n > 2. (If n = 1, a(0) ∗ a(n−1) = 0 and
f4 does not exist.) We compute as before that

f2n+2 ◦ f2n+1 = f2n+1 ◦ f2n+2 + vn b(0) ∗ (e ◦ a(0)).

Proof of Proposition 5.4(d). This is similar to the stable proof of (25) in [BW07,
(6.17)], and in fact relies on it.

We apply the Cartan formula to (29) to obtain

r(t2) =
2N∑

i=0

2N∑

j=0

〈r, fi ◦ fj〉ti+j

for all operations r. Now t2 is the Chern class of the complexified real Hopf line bundle
over RP 2N , so [BW07, (10.4)] gives

r(t2) =
N∑

k=0

〈r, bk〉t2k.

Comparing coefficients of t2k, we deduce that bk =
∑
i+j=2k fi ◦ fj . As the elements fi

for i < 2n are tame and so ◦-commute by Proposition 7.2, this simplifies to bk = f◦2k ,
provided 2k 6 2n; in particular, a◦2(i) = b(i+1) for 0 6 i 6 n− 2.

This proof is not available for a◦2(n−1) in P (n)∗
(
P (n) ∗

)
, as t2

n+1
= 0, but it does

show that a◦2(n−1) = b(n) in P (n+ 1)∗
(
P (n+ 1)

2

)
. The homomorphism of Hopf rings
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H(∗)→ P (n+ 1)∗
(
P (n+ 1) ∗

)
induced by the canonical map ρ : P (n)→ P (n+ 1)

carries each generator of H(∗) to its namesake in P (n+ 1)∗
(
P (n+ 1) ∗

)
. It also adds

one new generator, a(n), and kills the ideal (vn) in P (n)∗. The only nonzero element
of H(2)2n+1 that lies in Ker ρ∗ is vnb(0). We must have a◦2(n−1) = b(n) in H(2), as the
only other candidate, a◦2(n−1) = b(n) + vnb(0), does not stabilize correctly to (25).

We next prove a similarly extended version of (37).

Lemma 7.4. Given c, d ∈ H(∗) that satisfy εc = 0 and εd = 0, with ψc and ψd given
by (33) and (34), we have

Q∗(c ◦ d) = Q∗c ◦ d+ c ◦Q∗d
+

∑

i,j

(c′i ◦Q∗d′j) ∗ (Q∗c′′i ◦ d′′j )

+
∑

i,j

vn (c′i ◦Q∗Qd′j) ∗ (Q∗Qc′′i ◦ d′′j )
(44)

Proof. We represent the derivation formula Q(xy) = x(Qy) + (Qx)y in P (n)-cohom-
ology unstably by equality of the two maps

P (n)
s
× P (n)

m

φ−−→ P (n)
s+m

Q−−→ P (n)
s+m+N

and

P (n)
s
× P (n)

m

∆×∆−−−−→ P (n)
s
× P (n)

s
× P (n)

m
× P (n)

m

id×T×id−−−−−−→ P (n)
s
× P (n)

m
× P (n)

s
× P (n)

m

id×Q×Q×id−−−−−−−−−→ P (n)
s
× P (n)

m+N
× P (n)

s+N
× P (n)

m

φ×φ−−−−→ P (n)
s+m+N

× P (n)
s+m+N

µ−−→ P (n)
s+m+N

.

Again, we apply P (n)-homology and evaluate on c× d ∈ P (n)∗
(
P (n)

s
× P (n)

m

)
,

to obtain (44).

Lemma 7.5. Take any element c in the Hopf ring.

(a) If g is any of our ◦-generators (31)(i) other than a(n−1), we have Q∗(c ◦ g) =
(Q∗c) ◦ g.

(b) For g = a(n−1), we have

Q∗(c ◦ a(n−1)) = (Q∗c) ◦ a(n−1) + c ◦ b◦2n−1

(0) .

Proof. We may assume c ∈ Ker ε, as everything is zero if c = 1. We put d = g in (44).
Since all the Q∗d′j and Qd′j vanish by (40) and Proposition 5.4, also Q∗d in case (a),
equation (44) simplifies as stated.

Corollary 7.6. Let z be a ◦-monomial as in (31)(ii). Then Q∗z is tame if z is wild,
and Q∗z = 0 if z is tame.
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Proof. If z is tame, Q∗z = 0 from Lemma 7.5(a), by induction on the number of
◦-factors in z. If z is wild, now that we know from Proposition 7.2 that all our ◦-
generators ◦-commute (a(n−1) is the only wild generator), we may shuffle all factors
a(n−1) to the end. We use the relation (now proved) a◦2(n−1) = b(n) to reduce the
number of factors a(n−1) until we have at most one. If now z = z′ ◦ a(n−1), with z′

tame, Lemma 7.5(b) shows that Q∗z = z′ ◦ b◦2n−1

(0) , which is tame.

Lemma 7.7. For all ∗◦-monomials c we have Q∗Qc = QQ∗c = 0.

Proof. By naturality of the homology operation Q, we have Q∗Qc = QQ∗c. We show
that QQ∗c = 0.

The result is trivial for c = 1. Otherwise, we may write c = z1 ∗ z2 ∗ · · · ∗ zr, where
each zi is a ◦-monomial and r > 0. By Corollary 7.6, each Q∗zi is tame (if not zero).
Then Proposition 5.4 shows that (i) each QQ∗zi = 0, (ii) Q∗c = Q∗z1 ∗Q∗z2 ∗ · · · ∗
Q∗zr, and hence (iii) QQ∗c = 0.

Proof of Theorem 6.4. Lemma 7.7 allows us to omit the unwanted terms in (44) to
obtain (37).

Proof of Theorem 6.9. For (a), we deduce from (30) that

∆∗c = 1× c+
∑

i

c′′i × c′i + c× 1,

after replacing (27) by (33). By (18), we can rewrite c′′i × c′i as c′′i × c′i + vnQc
′′
i ×Qc′i.

(For the end terms we have simply 1× c = 1× c and c× 1 = c× 1.) We compare with
(35).

For (b), we represent the relation y + x = x+ y in P (n)-cohomology by the equal-
ity of maps µ = µ ◦ T : P (n)

s
× P (n)

s
→ P (n)

s
. We apply P (n)-homology to these

maps and evaluate on d× c ∈ P (n)∗
(
P (n)

s
× P (n)

s

)
to obtain (41), with the help

of (19).
For (c), Lemma 7.7 allows us to omit all the unwanted terms in Lemma 7.1 to

obtain (42).

8. A nonadditive splitting

To complete the proof of Lemma 5.1 in [BW07], given m > n, we need a non-
additive idempotent operation θ(m) on the ungraded cohomology theory P (n)M (−),
where M = g(n,m) is the numerical function given by

g(n,m) = 2(2n + 2n+1 + · · ·+ 2m). (45)

(We know there is no relevant additive idempotent in this dimension.) We shall use
θ(m) to produce what we actually want, a natural splitting θ(m) : P (n,m)M (−)→
P (n)M (−) of the canonical projection ρ(m) : P (n)∗(−)→ P (n,m)∗(−); we recall
from [BW07] that P (n,m) is the spectrum constructed from P (n) to have the homo-
topy groups P (n,m)∗ = P (n)∗/Jm, where Jm denotes the ideal (vm+1, vm+2, . . . ) ⊂
P (n)∗.



THE RING SPECTRUM P (n) FOR THE PRIME 2 127

We shall define θ(m) by its linear functional 〈θ(m),−〉 : H(M)→ P (n)∗ on the
Hopf algebra H(M) = P (n)∗

(
P (n)

M

)
. In this section, we give axioms for 〈θ(m),−〉

that ensure that θ(m) has the desired properties; in the following section, Corollary 9.4
actually constructs the linear functional.

A Hopf ring ideal

Definition 8.1. Denote by Jm the ∗-ideal in the Hopf ring H(∗) generated by all
elements of the form c ◦ ([vk]− 1) with c ∈ H(∗) and k > m.

As in [BW07, Lemma 19.35], this is a Hopf ring ideal. It is closely related to the
ideal Jm. Following [BJW95, (23.6)], the axioms we need on 〈θ(m),−〉 are:

(i) 〈θ(m), c〉 = 0 for all c ∈ Jm ∩H(M);
(ii) 〈θ(m), c〉 ≡ εAqMc mod Jm for all c ∈ H(M);

(46)

where we recall the projection qM : P (n)i
(
P (n)

M

)
→ AMi and the additive counit

εA : AMi → P (n)i−M . These axioms imply that θ(m) has the desired properties.
First, θ(m) behaves correctly on the homotopy groups π∗

(
P (n)

M

)
= ΣMP (n)∗.

Lemma 8.2. If θ(m) satisfies the axioms (46), then on the homotopy groups we have
(i) θ(m)∗ΣMv = 0 for all v ∈ Jm;
(ii) θ(m)∗ΣMv ≡ ΣMv mod Jm for all v ∈ P (n)∗.

Proof. By [BW07, (12.1)], given v ∈ P (n)s,

θ(m)∗ΣMv = ΣM 〈θ(m), e◦M+s ◦ ([v]− 1)〉,
where we make use of e ◦ 1 = 0. As v ∈ Jm implies that [v]− 1 lies in Jm, we can read
off the results from (46).

Next, we study the homology homomorphism θ(m)∗ : H(M)→ H(M) induced by
θ(m) : P (n)

M
→ P (n)

M
.

Lemma 8.3. If θ(m) satisfies the axioms (46), then on the P (n)-homology groups
H(M) = P (n)∗

(
P (n)

M

)
we have

(i) θ(m)∗c = 0 for all c ∈ Jm ∩H(M);
(ii) θ(m)∗c ≡ c mod Jm for all c ∈ H(M).

Proof. The proof of the similar result Lemma 23.4 in [BJW95] applies, with one
minor modification. An additional case is needed to handle the extra generators a(i).
Proposition 10.3(vii) of [BW07] allows us to treat these generators the same way as
the others.

It is now easy to deduce that θ(m)∗ and hence θ(m) are idempotent. However, in
the nonadditive context, this is not enough; a more sophisticated relation is needed,
from Lemma 3.10 in [Bo95].

Lemma 8.4. If θ = θ(m) satisfies the axioms (46), it satisfies the identity

θ(x+ y − θ(y)) = θ(x) (in P (n)M (−)). (47)
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Proof. We repeat a technique from §6, but in reverse: we use a Hopf algebra calcu-
lation to establish the relation (47) in cohomology. The right side, considered as a
function of (x, y), is represented by the map

W ×W id×ωM−−−−−→W × point = W
θ−−→W,

where we abbreviate by writing W = P (n)
M

. We apply P (n)-homology and evaluate
on c× d to get the result θ∗((εd)c).

The left side is represented by the composite

W ×W id×∆−−−−→W ×W ×W id×id×θ−−−−−−→W ×W ×W
id×id×ν−−−−−−→W ×W ×W µ3−−→W

θ−−→W

where ν represents the operation “−” and induces the conjugation ν∗ = χ on H(M).
Again, we apply P (n)-homology and evaluate on c× d. If we omit the final θ, we find

∑

β

c ∗ d′β ∗ χθ∗d′′β ≡ c ∗
∑

β

d′β ∗ χd′′β = c ∗ (εd)1 = (εd)c mod Jm,

using Lemma 8.3(ii). When we apply θ∗, which kills Jm ∩H(M) by Lemma 8.3(i),
we get θ∗((εd)c).

The other needed relation, θ(0) = 0, is automatic here, as P (n)M (point) = 0. As
in [Bo95], the two relations have several immediate consequences:

(i) θ(θ(y)) = θ(y);
(ii) θ(x+ y) = θ(x) if θ(y) = 0;
(iii) θ(y − θ(y)) = 0;
(iv) Ker θ = {x : θ(x) = 0} is a subgroup of P (n)M (−).

(48)

For (i), we put x = θ(y) in (47), to show that θ is idempotent in the ordinary sense.
If θ(y) = 0, (47) simplifies to (ii). For (iii) we put x = 0. For (iv), we have 0 ∈ Ker θ
by assumption. If x and y lie in Ker θ, so does x+ y by (ii). Given θ(y) = 0, we put
x = −y in (47) to see that θ(−y) = 0, to finish (iv).

By (iv), we can legitimately form the quotient group Coim θ = P (n)M (−)/Ker θ
(not to be confused with the image of θ, which is not a subgroup of P (n)M (−)); its
elements are cosets x+ Ker θ. It is easy to show as in [Bo95, §3], using equations
(48), that Ker θ and Coim θ are ungraded cohomology theories (in the sense of [Bo95,
Lemma 3.10]), representable in Ho by H-spaces. We build the commutative diagram
of ungraded cohomology theories and natural transformations

0 // Ker θ
⊂

// P (n)M (−)
q

//

θ

²²

Coim θ //

=

²²

θ′

wwoooooooooooo
0

P (n)M (−)
q

//

ρ(m)

''OOOOOOOOOOOO Coim θ

P (n,m)M (−).
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It features a short exact sequence. The non-additive operation θ′ is defined by θ′(x+
Ker θ) = θ(x) to make the upper triangle commute; by (48)(ii), it is well defined. The
lower triangle commutes because θ(x) + Ker θ = x+ Ker θ by (iii).

We really want a splitting of ρ(m), not q. By Lemma 8.2, the natural transforma-
tion ρ(m) ◦ θ′ induces an isomorphism on spheres and hence generally. (Equivalently,
the map that represents ρ(m) ◦ θ′ induces an isomorphism of homotopy groups and
is therefore a homotopy equivalence.) We define

θ(m) = θ′ ◦ (ρ(m) ◦ θ′)−1 : P (n,m)M (−) −−→ P (n)M (−).

Trivially, we have ρ(m) ◦ θ(m) = id and θ(m) ◦ ρ(m) is an idempotent operation on
P (n)M (−). (Lemma 8.2 strongly suggests that ρ(m) ◦ θ = ρ(m), which readily implies
that θ(m) ◦ ρ(m) = θ; however, we do not need this, and a complete proof appears
to require properties of the spectrum P (n,m) beyond the scope of this paper.)

9. Reduction to standard form

Before we produce the linear functional 〈θ(m),−〉 for §8 in Corollary 9.4, we need
much more information on the Hopf ring H(∗). Specifically, we need a precise descrip-
tion of how the ideal Jm sits inside H(∗). Our strategy is quite different and signifi-
cantly simpler than the proof of the analogous result for BP given in [BJW95, §23],
and more closely resembles the proof of the additive case [BW07, Lemma 9.3].

We first need to refine Corollary 6.8. As all our ◦-generators ◦-commute by Propo-
sition 7.2 and we have the relations e◦2 = b(0) and a◦2(i) = b(i+1), any ◦-monomial may
be written

z = e◦h ◦ a◦I ◦ b◦J ◦ ([vK ]− 1)

= e◦h ◦ a◦i0(0) ◦ a◦i1(1) ◦ · · · ◦ a
◦in−1

(n−1) ◦ b◦j0(0) ◦ b◦j1(1) ◦ b◦j2(2) ◦ . . .
◦ ([vn]− 1)◦kn ◦ ([vn+1]− 1)◦kn+1 ◦ ([vn+2]− 1)◦kn+2 ◦ . . . ,

(49)

as in [BW07, (11.1)], with multi-indices I = (i0, i1, . . . , in−1), J = (j0, j1, j2, . . . ) and
K = (kn, kn+1, kn+2, . . . ), where h and every ir is 0 or 1. (We used the identity
([v]− 1) ◦ ([v′]− 1) = [vv′]− 1 to make the notation less cumbersome. Of course, we
could also replace [vK ]− 1 by simply [vK ], as long as e or some a(i) or b(j) is present,
but we prefer to stay within the augmentation ideal Ker ε as much as possible.) We
need to know how Q acts; by Proposition 5.4,

Q(e◦h ◦ a◦I,0 ◦ b◦J ◦ ([vK ]− 1)) = 0,

Q(e◦h ◦ a◦I,1 ◦ b◦J ◦ ([vK ]− 1)) = e ◦ e◦h ◦ a◦I,0 ◦ b◦J ◦ ([vK ]− 1),
(50)

where I = (i0, i1, . . . , in−2) and a◦I,s denotes a◦i0(0) ◦ a◦i1(1) ◦ · · · ◦ a
◦in−2

(n−2) ◦ a◦s(n−1).
We note that each of our ◦-generators lies in a group H(s)i for which 2i− s > 0;

it follows that each H(s)i contains only finitely many ◦-monomials, and hence only
finitely many ∗◦-monomials.

In [BW07, Defn. 8.1], we defined certain ◦-monomials as being allowable; the
others are not (in the end) needed. (The empty ◦-monomial e◦0 ◦ a◦0 ◦ b◦0 ◦ ([1]−
1) = [1]− 10 ∈ H(0) is allowable.) Given s, we choose a total ordering of all the
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allowable ◦-monomials that lie in H(s); then we call the ∗◦-monomial (in H(s))

c = z1 ∗ z2 ∗ · · · ∗ zr (51)

an ordered ∗◦-monomial if each zi is allowable and z1 < z2 < · · · < zr. This allows us
to rephrase Theorem 11.3 of [BW07] in the following form.

Theorem 9.1. For each s, the Hopf algebra H(s) = P (n)∗
(
P (n)

s

)
is a free P (n)∗-

module, with a basis consisting of all the ordered ∗◦-monomials (51) that lie in H(s)
(including the empty ∗-product 1s).

The rest of the section will be concerned with reducing a general ∗◦-monomial to
this standard form. (This is not as straightforward as [BW07] suggests.) Our proofs
will make it clear that the choice of ordering is not significant.

We show that the ideal Jm reduces to what one would like, but only in a certain
range. Let us call the ◦-monomial (49) a Jm-monomial if it visibly lies in Jm, i.e.
vK ∈ Jm (has a factor vk with k > m).

Theorem 9.2. If s 6 M = g(n,m), the ∗-ideal Jm ∩H(s) is the free P (n)∗-submod-
ule of H(s) with a basis consisting of all the ordered ∗◦-monomials (51) in which at
least one ∗-factor zi is a Jm-monomial.

Remark 9.3. What distinguishes this from [BW07, Lemma 9.3] when p = 2 is that
if s = M , some allowable Jm-monomials fail to be Q-allowable and so do not appear
there, namely those of the form

b◦N(0) ◦ b◦2
n+1

(0) ◦ b◦2n+2

(dn+1)
◦ d◦2n+3

(dn+2)
◦ · · · ◦ b◦2m+1

(dm) ◦ [vm+1],

where 0 6 dn+1 6 dn+2 6 · · · 6 dm.

Corollary 9.4. There exists a P (n)∗-linear functional 〈θ(m),−〉 : H(M)→ P (n)∗
that satisfies the axioms (46).

Proof. We simply choose 〈θ(m), c〉 ∈ P (n)∗ for each ordered ∗◦-monomial c in the
form (51). If some zi is a Jm-monomial, we must take 〈θ(m), c〉 = 0 to satisfy (46)(i);
then (ii) is automatic, because εAqMc lies in Jm if r = 1, or is zero if r > 1. Otherwise,
we simply choose 〈θ(m), c〉 to satisfy axiom (ii).

Reduction of ◦-monomials
We show how to reduce a general ◦-monomial (49) to allowable ◦-monomials.

Our starting point is [BW07, Thm. 8.2], except that we temporarily exclude the
◦-generators a(i). We adapt it to the Hopf ring environment by including the decom-
posables.

Lemma 9.5. Any ◦-monomial z = e◦h ◦ b◦J ◦ ([vK ]− 1) can be expressed as a P (n)∗-
linear combination of:

(i) Allowable ◦-monomials z′;
(ii) Decomposable ∗-products of two or more ◦-monomials.

None of the resulting expressions contains an a(i).
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Proof. This result is actually inherited from BP . It uses only the main relations (Rk)
and (R′n) in [BW07], so does not introduce any a(i). We do not need to include 1 in
(ii), as z ∈ Ker ε.

In (i), we could restrict z′ to be Q-allowable, but this would not be compatible
with Theorem 9.1. We next reinstate the a◦I . We note that the definition of allowable
(unlikeQ-allowable) makes no reference to the factor a◦I . We recall from Definition 6.6
that a Hopf ring expression in our ◦-generators is wild if it contains a(n−1) or tame
if it does not. For tame elements, Proposition 6.7 simplifies as follows.

Lemma 9.6. Suppose c and d are tame ∗◦-monomials, where c 6= 1. Then:
(a) Q∗c = 0;
(b) c ◦ d is a P (n)∗-linear combination of tame ∗◦-monomials;
(c) ψc = c⊗ 1 +

∑
i c
′
i ⊗ c′′i + 1⊗ c, where every c′i and c′′i is a P (n)∗-linear com-

bination of tame ∗◦-monomials.

Lemma 9.7. Any ◦-monomial z = e◦h ◦ a◦I ◦ b◦J ◦ ([vK ]− 1) can be expressed as a
P (n)∗-linear combination of:

(i) Allowable ◦-monomials z′, which are wild if and only if z is wild;
(ii) ∗-products of two or more tame ◦-monomials.

We can recursively apply the lemma to the monomials appearing in (ii).

Corollary 9.8. Any tame ◦-monomial can be expressed as a P (n)∗-linear combina-
tion of ∗-products of one or more tame allowable ◦-monomials.

Proof of Lemma 9.7. We apply Lemma 9.5 to e◦h ◦ b◦J ◦ ([vK ]− 1) and then ◦-multi-
ply by a◦I . For (i), this is obvious, as the extra ◦-factor a◦I does not affect allowability.
For (ii), we put back the ◦-factors a(i) one at a time, using the distributive law

a(i) ◦ (c1 ∗ c2) =
2i+1−1∑

j=1

(fj ◦ c1) ∗ (f2i+1−j ◦ c2).

We observe that f2n = a(n−1) never appears, even if i = n− 1. We apply Lemma 9.6
to both ∗-factors on the right.

Reduction of Jm-monomials
We particularly need to know what happens when we reduce a Jm-monomial.
As in [BW07], we define the b-length of the ◦-monomial (49) as

∑
r jr, the total

number of ◦-factors of the form b(j) (including repetitions). We note that in Defi-
nition 8.1 of [BW07], the disallowed monomials of type (i) have b-length at least
1
2g(n, q), while those of type (ii) have b-length at least 1

2g(n, q)− 1, with g(n, q) given
by equation (45). Because we are dealing with allowable rather than Q-allowable
monomials, the other three types are irrelevant. This prepares us for the main lemma.

Lemma 9.9. Provided s 6 g(n,m), any Jm-monomial z ∈ H(s) can be expressed as
a P (n)∗-linear combination of:

(i) Allowable Jm-monomials z′, which are wild if and only if z is wild;
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(ii) ∗-products of two or more tame ◦-monomials, of which at least one is
a Jm-monomial.

Just as we did for Corollary 9.8, we can recursively apply Corollary 9.8 and
Lemma 9.9 to the ◦-monomials appearing in (ii).

Corollary 9.10. If s 6 g(n,m), any tame Jm-monomial in H(s) can be expressed as
a P (n)∗-linear combination of:

(i) Tame allowable Jm-monomials;

(ii) ∗-products of two or more tame allowable ◦-monomials, of which at least
one is a Jm-monomial.

Proof of Lemma 9.9. We do not apply Lemma 9.7 directly. Any Jm-monomial has
the form z = y ◦ ([vq]− 1) for some q > m and we apply that lemma to y instead,
replacing y by an allowable ◦-monomial y′ or a ∗-product c = z1 ∗ z2 ∗ · · · ∗ zr of tame
◦-monomials zi.

In the second case, we write c = d ∗ zr, where d = z1 ∗ z2 ∗ · · · ∗ zr−1. Then by
equations (38) and (40),

c ◦ ([vq]− 1) = (d ◦ ([vq]− 1)) ∗ zr + (d ◦ ([vq]− 1)) ∗ (zr ◦ ([vq]− 1))
+ d ∗ (zr ◦ ([vq]− 1)),

(52)

which shows by induction on r that c ◦ ([vq]− 1) has the required form.
In the first case, we fix s and an arbitrarily large degree ceiling i0, and show

by downward induction on h that the lemma holds for all z′ = y′ ◦ ([vh]− 1) with
y′ allowable that lie in H(s) and have degree at most i0. This statement is true
vacuously for large enough h (depending on s and i0), as there are only finitely many
◦-monomials in each H(s)i. We assume it holds for all h > q and prove it holds for
h = q, assuming that q > m.

Case 1: y′ has no factor e or [vk]− 1.
Since y′ ∈ H(s+ 2(2q − 1)), the b-length of z′ is at most

1
2 (s+ 2(2q − 1)) 6 1

2g(n,m) + 2q − 1 6 1
2g(n, q)− 1,

allowing for possible factors a(i). Thus z′ is not a disallowed monomial of type (i);
nor is it of type (ii), as it has no factor e. Therefore z′ is allowable.

Case 2: y′ has a factor e, but no factor [vk]− 1.
This time, the b-length of z′ is at most

1
2 (s− 1 + 2(2q − 1)) < 1

2g(n, q)− 1

and is therefore allowable.

Case 3: y′ = u ◦ ([vk]− 1), where k 6 q.
Since y′ is allowable, z′ = u ◦ ([vk]− 1) ◦ ([vq]− 1) remains allowable, by the form of
[BW07, Defn. 8.1].
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Case 4: y′ = u ◦ ([vk]− 1), where k > q.
Then z′ = (u ◦ ([vq]− 1)) ◦ ([vk]− 1), to which we apply the induction hypothesis.

Lemma 9.11. If s 6 g(n,m), the ∗-ideal Jm ∩H(s) in H(s) is generated by the
allowable Jm-monomials that lie in H(s).

Proof. Take a typical generator c ◦ ([vq]− 1) of Jm. Since 1 ◦ ([vq]− 1) = 0, we may
assume c ∈ Ker ε. By Theorem 9.1, it is enough to consider the case c = z1 ∗ z2 ∗
· · · ∗ zr, with r > 0 and each zi a ◦-monomial. By (52) and induction on r, the ideal
Jm ∩H(s) is generated by elements of the form z ◦ ([vq]− 1) with z a ◦-monomial
and q > m. We apply Lemma 9.9 and Corollary 9.10 to z ◦ ([vq]− 1).

Reduction of ∗◦-monomials
We assume from now on that s 6 g(n,m). We take any ∗-product c of wild allow-

able ◦-monomials and tame ◦-monomials (whether allowable or not) that lie in H(s);
by Theorem 9.1 and Lemma 9.7, these generate H(s) as a P (n)∗-module. Since any
tame element is ∗-central by Proposition 6.7(c) and Theorem 6.9(b), we may write

c = z1 ∗ z2 ∗ · · · ∗ zr ∗ T, (53)

where each zi is a wild allowable ◦-monomial and T is a P (n)∗-linear combination of
tame ∗◦-monomials.

Our object is to reduce such c to the basis in Theorem 9.1. There are three steps:
we must shuffle the factors zi into their chosen order, deal with repeated wild factors,
and finally expand T (which does not affect anything else).

Lemma 9.12. Given c as in equation (53), suppose zi > zi+1. Then

c = z1 ∗ . . . zi−1 ∗ zi+1 ∗ zi ∗ zi+2 ∗ · · · ∗ zr ∗ T
+ z1 ∗ · · · ∗ zi−1 ∗ zi+2 ∗ · · · ∗ zr ∗ T ′,

where T ′ = vnQzi+1 ∗Qzi ∗ T is tame.
If zi (or zi+1) is a Jm-monomial, so is Qzi (or Qzi+1).

Proof. We plug in (41), zi ∗ zi+1 = zi+1 ∗ zi + vnQzi+1 ∗Qzi. By (50), Qzi and Qzi+1

are always tame ◦-monomials (though the extra e could disallow them). Moreover, if
z is a Jm-monomial, so is Qz.

Lemma 9.13. Given c as in equation (53), suppose that zi = zi+1 = e◦h ◦ a◦I,1 ◦
b◦J ◦ ([vK ]− 1) as in (49). Then:
(a) If in−2 = 0, c = z1 ∗ · · · ∗ zi−1 ∗ zi+2 · · · ∗ zr ∗ T ′, where T ′ has the form (z′ +

vnz
′′) ∗ T and is tame. If zi is a Jm-monomial, so are z′ and z′′.

(b) If in−2 = 1, c is a P (n)∗-linear combination of terms of the forms

z1 ∗ · · · ∗ zi−1 ∗ z′i ∗ zi+2 ∗ · · · ∗ zr ∗ T,
z1 ∗ · · · ∗ zi−1 ∗ zi+2 ∗ · · · ∗ zr ∗ T ′,
z1 ∗ · · · ∗ zi−1 ∗ z′′ ∗ zi+2 ∗ · · · ∗ zr ∗ T,

where z′i and z′′ are wild allowable and T ′ = t ∗ T is tame. If zi is a Jm-
monomial, so are z′i, z

′′ and t.
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Proof. We plug in the formula (11.6) or (11.7) from [BW07] for Fzi = zi ∗ zi, which
(in either case) has the form Fzi = z′ + vnz

′′, where z′′ happens to be allowable. If
zi is a Jm-monomial, so are z′ and z′′.

If in−2 = 0, z′ and z′′ are both tame, and we have (a).
If in−2 = 1, z′ and z′′ are both wild. By Lemma 9.7, z′ is a linear combination of

wild allowable ◦-monomials z′i and a linear combination t of tame ∗◦-monomials. By
Lemma 9.9, if z′ is a Jm-monomial, so are z′i and each term of t. This completes (b).

We apply Lemmas 9.12 and 9.13 to (53) as often as possible; the process must
terminate after a finite number of steps, as each application reduces the count r of
wild ∗-factors zi or improves the ordering of the wild ∗-factors (without changing r).
The result is a linear combination of terms of the form (53) in which z1 ∗ z2 ∗ · · · ∗ zr
is an ordered ∗◦-monomial.

The final step is to expand the tame factor T by Corollary 9.8 as a linear combina-
tion of ∗-products T ′ = t1 ∗ t2 ∗ · · · ∗ tk of tame allowable ◦-monomials. As each ti is
∗-central, we can shuffle the factors ti in the product z1 ∗ z2 ∗ · · · ∗ zr ∗ T ′ anywhere, to
place all the ∗-factors in non-decreasing order, without introducing any extra terms.
If any ti is repeated in a term, [BW07, §11.4] shows that Fti = ti ∗ ti = 0, which
kills that term.

Proof of Theorem 9.2. By Lemma 9.11 and Theorem 9.1, every element of Jm ∩
H(s) is a linear combination of ∗-products (53) in which at least one ∗-factor is
a Jm-monomial. This property is preserved by each application of Lemma 9.12 or
Lemma 9.13; thus each c is transformed into a linear combination of ordered ∗◦-
monomials c′ having the same property, as required.
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