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W. STEPHEN WILSON’S CONTRIBUTIONS TO
HOMOTOPY THEORY

MARTIN BENDERSKY

(communicated by Donald M. Davis)

Abstract
This paper is a survey of Steve’s work on BP and periodic

cohomology theories. It was presented as a talk given in March
2007 at a conference celebrating Steve’s 60th birthday.

1. Cohomology of Ω-spectra and Hopf rings

Steve Wilson’s thesis, directed in 1972 by Frank Peterson, started unstable BP
theory as we know it. Part 1 of his thesis appeared as [13], where he shows that the
spaces in the Ω-spectrum for BP are as nice as one may expect.

Theorem 1.1. Z(p)-cohomology of BP k, the k-th space in the Ω spectrum for BP ,
is torsion free. As a Hopf algebra it is a bi-free algebra; i.e., the homology and coho-
mology are free algebras.

The original proof in his thesis goes back to Brown and Peterson’s definition of BP
as the inverse limit of spaces inductively defined by a series of fibrations. Steve uses
the Eilenberg-Moore spectral sequence of these Brown-Peterson fibrations to prove
the theorem.

This is not the way we now understand the homology of the spaces in the BP Ω-
spectrum, or for that matter the generalized homology of the spaces in the Ω-spectrum
of any multiplicative homology theory. The relevant technology is the language of
Hopf rings developed by Ravenel and Wilson in [10].

The idea here is to exploit the structure one has after packaging all of the spaces
in the BP Ω-spectrum together. Milgram used this structure when he computed the
homology of BG. The homology of the individual spaces are obviously H-spaces. But
now we can mix the different factors together using the ring structure. This gives us
two products, the ∗(loop space)-product and a ◦ product

◦ : BP∗(BPn)⊗BP∗(BP k) → BP∗(BPn+k).

A Hopf ring is a graded Hopf algebra with an additional product satisfying a list of
relations which makes it a ring object in the category of coalgebras. The collection
{BP∗(BPn)} is an example.
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Now add a geometric relation coming from the natural map

CP∞ × CP∞ → CP∞.

Stably this induces the formal group law. Unstably this induces relations between the
◦ and ∗ products. Their main theorem is that BP∗(BP ∗) is completely determined
by the Hopf ring structure and this relation. As a corollary this reproves the results
in Steve’s thesis. They also give a basis for the indecomposables and the primitives.
In other words they give us what we need to start applying unstable BP to problems
in homotopy theory.

Since Hopf rings play such an important role in Steve’s work, I would like to say a
few words about the structure in the case of complex cobordism. Milnor gave a very
nice description of the stable image of the dual of the unstable Steenrod algebra. For
p > 2 let’s write a class in the polynomial algebra part of the dual Steenrod algebra
as

ξa1
1 ξa2

2 · · · ξak

k ⊗ xn.

(Here ξi is a generator in dimension 2(pi − 1) that comes from CP∞, and xn is an
n-dimensional class.) The excess condition in the Steenrod algebra dualizes to

2Σai 6 n.

That is to say, classes that satisfy this condition lift to the homology of the n-th
Eilenberg-MacLane space. The same thing happens for BP . For all primes, there
are classes bi ∈ BP2(pi−1)(BP ) such that ba1

1 b
a2
2 · · · bak

k ⊗ xn, with the same excess
condition on the ai’s, generate the stable image of QBP∗(BPn). Since the suspension
is an injection on the indecomposables, this tells us what the indecomposables look
like back in the Hopf ring. Of course the situation is more complicated for BP . First
of all, the suspension is a rational isomorphism. If you play around with the right
action, you start to see how torsion appears in the cokernel of the map

QBP∗(BPn) → BP∗BP,

and you see how classes in the cokernel vanish after some suspensions. For example,
it is easy to check that the class b21 is an element of order p in the cokernel of the
suspension from BP∗(BP 2) which is obviously in the image of BP∗(BP 4). Steve and
Doug, using the bar spectral sequence and some fancy algebra, exploit the right action
to come up with a basis for the indecomposables and the primitives (the Ravenel-
Wilson basis. There are at least three others).

With this tool in hand, Steve, often with Doug, went on to compute the generalized
cohomology of the spaces for numerous Ω-spectra. One particularly important exam-
ple is the Morava K-theory of the mod pj Eilenberg-MacLane spaces that appeared
in a paper with Doug Ravenel, [11]. Let K∗ be the product of the mod pj Eilenberg-
MacLane space. They prove

Theorem 1.2. The Hopf ring for K(n)∗(K∗) is the free Hopf ring over K(n)∗(K0)
generated by K(n)∗(K1).

The fact that the K(n)-homology of all of the Eilenberg-MacLane spaces is gen-
erated as a Hopf ring by the first space in the Ω-spectrum is one of the beauties of
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Hopf ring technology. In particular, a simple Gysin sequence calculation shows that
K(n)∗(K1) is concentrated in even degree. From this it follows that the Morava K-
theory of all of the Eilenberg-MacLane spaces is concentrated in even degrees. Other
examples where the Hopf ring is generated by few classes is the Hopf ring for BP (gen-
erated by BP∗(BP 2), a suspension operator and the lifts of the right action) and the
mod p homology of the mod p Eilenberg-MacLane spaces (a well-known calculation)
generated as a Hopf ring by H∗(Ki;Zp), i = 0, 1, 2.

The Morava’s “little” structure theorem allows Steve and Doug to glue together
all the information they have for K(n)∗(K∗) to compute the annihilator ideal for the
canonical element ιn ∈ BPn(K(Z/(p), n)) (p is odd).

Theorem 1.3.

Ann(ιn) = (p, v1, · · · , vn−1) ⊂ BP∗.

This has geometric consequences, the so-called Conner-Floyd conjecture. In their
book on differentiable periodic maps, Conner and Floyd were interested in the bordism
element γn= (Tn → BZ/(p)n×). They conjectured that

Ann(γn) = (p,M2(p−1), · · · ,M2(pn−1−1)) ⊂MSO∗,

whereM2(pj−1) are the Milnor manifolds. They were able to prove that the annihilator
ideal contained this ideal. Steve and Doug’s computation implies the other inclusion.

The obvious question to ask is why not calculate Ann(γn) by simply computing
BP∗(BZ/(p)× · · · ×BZ/(p))? This computation is very hard and was not available
in 1980.
BP∗ was not known for many spaces in the early 80’s. This situation had to be

rectified in order to justify the developing technology. BP∗(BZ/(p)× · · · ×BZ/(p))
was an important test case. Conner, Floyd and Landweber and Stong computed the
n = 2, 3 cases. The breakthrough calculation was the work of Steve and Dave Johnson
published in [5].

Here they compute the associated graded group of a BP∗-module filtration of
BP∗(BZ/(p)× · · · ×BZ/(p)). The filtration was unraveled in a paper by Steve, Dave
Johnson and Dung Yan [6].

Interestingly, their work does not provide a new proof of the Conner-Floyd conjec-
ture In fact one uses the validity of the Conner-Floyd conjecture as input to compute
BP∗(BZ/(p)× · · · ×BZ/(p)).

Unstable BP cohomology operations are much more subtle than the unstable
Steenrod algebra. First of all, one has to give a precise definition of the ring of unsta-
ble operations. Once that is done, one needs the notion of the category of unstable
module over the ring of unstable operations. This has been worked out in all the
detail one would ever want for general cohomology theories in Steve’s paper, [1] with
Mike Boardman and Dave Johnson.

I actually like Steve’s approach in his BP Introduction and Sampler [15]. If one
just wants to just understand BP operations, I prefer reading 40 or so pages to 150!
(not factorial).

The point I want to emphasize is that there are additive unstable operations that
do not come from stable operations. Briefly, for n > 0 BP k−n

Q BP ' PBP k
Q(BPn).

(A bit of a warning here. BP ∗QBP is the cohomology theory, BP ∗Q of BP . This is not
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the same as BP ∗BP ⊗Q.) If we restrict to k-dimensional complexes, the coker in the
sequence

BP ∗−nBP → PBP ∗(BP )n → coker

is torsion. This is the whole story for k-dimensional complexes. One may think of
an unstable operation as a sum of stable operations with some powers of p in the
denominators. To see which powers give an actual unstable cohomology operation,
one “simply” dualizes the homology calculation in the Hopf rings paper. However
if we wish to understand unstable cohomology operations for arbitrarily large k, the
situation is a bit more bizarre. Steve defines a truly unstable operation to be an
additive unstable operation (i.e. an element of PBP ∗(BPn)) which is not a stable
operation. In cohomology we can take infinite sums. So it is reasonable to think of a
truly unstable operation as an unstable operation which is an infinite sum of stable
operations with arbitrarily large powers of p in the denominators. Steve shows that
this does indeed describe all truly unstable operations and proves the disturbing fact:

“no multiple of a truly unstable operation is ever stable; although ratio-
nally, unstable and stable operations are the same.”

If you crave an example of a truly unstable operation, there is the example of the
generalized Adams operations defined using the bracket series

ψk(x) =
[k](x)
k

.

2. Spectra related to BP and the Wilson Yk’s

Here is a (redundant) list of some of the BP -related theories:

• BP 〈n〉 = BP∗/(vi|i > n).

• E(n)∗ = v−1
n BP 〈n〉∗.

• P (k, n)∗ = BP 〈n〉/(p, v1, · · · , vk−1), 0 6 k 6 n 6 ∞ (P (k) = P (k,∞)).

• E(k, n)∗ = v−1
n P (k, n)∗.

This list includes Johnson-Wilson theory, connective and periodic Morava K-theory
and BP (= P (0)). (Actually for technical reasons P (0) is often the p-adic completion
of BP . I will ignore this bit of subtlety here.) Steve and his coauthors use the obvious
interlocking exact sequences between these theories for varying k and n to compute
the BP homology and cohomology of interesting spaces.
BP 〈n〉 is important in Part II of Steve’s thesis, [14]. In this paper, he finds the

indecomposable factors in a product decomposition of the spaces in the Ω-spectrum
for BP . The factors, {Yk}, are not only the building blocks for the BPn; they are the
building blocks for any H-space with torsion-free homotopy and torsion-free Z(p)-
homology. I would like to mention two applications of this result. The fact that
H-spaces with torsion-free homotopy and homology, e.g., SU and BPn, split up into
the same spaces implies that the unstable Adams-Novikov spectral sequence for such
spaces collapses to the 0-line. This is the only way I know how to prove this. It is the
starting point for my work with Don Davis on the v1-periodic homotopy groups of
SU(n).
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The spaces {Yk} do not quite form an Ω-spectrum. Indeed,

ΩY2 pr−1
p−1 +1 ≈ Y2 pr−1

p−1
× Y2p pr−1

p−1
,

but they are close enough for Alex Zabrodsky to construct Adams resolutions
using Yk. There are applications of these resolutions in Alex’s beautiful book, Hopf
Spaces ([20]).

A few words about where the Yk’s come from. Steve uses Baas and Sullivan’s
theory of manifolds with singularities to construct the Yk’s. First he constructs the
homology theories BP 〈n〉. Then he shows that for 2pn−1

p−1 < k 6 2pn+1−1
p−1 the spaces

in the Ω-spectrum, BP 〈n〉
k
, are particularly nice. Yk is defined to be BP 〈n〉

k
for k

in this range.
The Hopf algebra H∗(BP 〈n〉

2k
) is bipolynomial for 0 < k < 2pn+1−1

p−1 . Bipolyno-
mial Hopf algebras over Z(p) are classified in a neat paper with Doug Ravenel, [9]. In
particular, the Hopf algebra structure for H∗(Yk) is completely determined.

As n increases, the cohomology theories BP 〈n〉 interpolate from mod p homology
to BP . In [4] Dave Johnson and Steve use this and the results of part II of Steve’s
thesis to give seven criteria equivalent to the homological dimension over MU∗ for
MU∗(X) being 6 n+ 1, generalizing results of Conner-Smith and Johnson-Smith.
Specifically, Johnson and Smith prove that the homological dimension over MU∗ of
MU∗(X) is 6 1 if and only if multiplication by t in k∗(X) is monic (k∗(X) is connec-
tive K-theory). Dave and Steve replace k∗ with the theories BP 〈n〉∗ Steve introduced
in his thesis. Multiplication by t naturally gets replaced with multiplication with vn.
In Section 3 of this paper they prove one step by localizing BP 〈n〉(X)∗. We now
denote the resulting Johnson-Wilson theory by E(n) (E(n)∗ = v−1

n BP 〈n〉∗). Using
the methods of the proof, they also show in a remark that E(n)∗(X) = BP∗(X)⊗BP∗
E(n)∗. This formula may look familiar. This says that E(n) is an example of a
Landweber exact homology theory. In fact Peter wrote his celebrated paper to reprove
results in this paper.

3. BP homology and cohomology of interesting spaces

A test for an exotic homology theory is whether one can compute it for interesting
spaces. Steve has made as much progress as anyone has making such computations
for the homology theories derived from BP .

I already mentioned his work with Johnson and Yan computing BP∗ of the ele-
mentary p-groups. The result is that the hard work computing BP∗ of the classifying
space of an elementary abelian p-group of rank n involves the first n coefficients. The
rest get carried along for the ride.

Theorem 3.1 ([6]). If G is an elementary abelian p-group of rank n, then there is
an isomorphism of abelian groups

BP∗(BG) = BP 〈n〉∗(BG)⊗Z(p) Z(p)[vn+1, · · · ].

Tony Bahri, Don Davis, Peter Gilkey and I proved this for the rank-one case and
stated the higher-rank case as a conjecture.
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Steve makes the case that computing BP ∗(X) is often easier than computing
BP∗(X). Peter Landweber’s computation of BP ∗(BG) for an abelian G is much eas-
ier. There is a family of spaces for which Steve and his coauthors tell us a lot about
their BP cohomology. These are spaces which have their Morava K-theory concen-
trated in even degree. Now except for K(Z, 1), the Morava K-theory of Eilenberg-
MacLane spaces has this property. Furthermore since

K(n)∗X ' homK(n)∗(K(n)∗X,K(n)∗),

the same is true for K(n)-cohomology. This has implications for the BP -cohomology
of the loops on an H-space with finite Postnikov tower.

These spaces are studied in a paper that Steve wrote with Mike Hopkins and Doug
Ravenel. They prove in [3]:

Theorem 3.2. For X an H-space with finitely many nonzero homotopy groups,

K(n)∗(ΩX) '
⊗

06m6n+1

K(n)∗(K(πm(ΩX),m)).

The condition n+ 1 > m is not a surprise since K(n)∗ thinks a large Eilenberg-
MacLane space is a point.

So, in particular if X has a finite Postnikov tower, then K(n)∗(Ω2X) has the same
K(n)-homology as a product of Eilenberg-MacLane spaces. These were computed in
the Conner-Floyd paper mentioned above.

There is another family of spaces whose Morava K-theory is the same as for
Eilenberg-MacLane spaces. These appear as the spaces in the Ω-spectrum of strongly
K(n)∗-acyclic spectra.

Theorem 3.3. Let X={Xi} be a connective Ω-spectrum with K(n)∗(Xm) ' K(n)∗
for some m. Then for all k

K(n)∗(Xk) '
⊗

n+1>i>0

K(n)∗(K(πi(Xk), i)).

Notice all it took was K(n)∗ of one space in the Ω-spectrum to look like a point
to force all of them to look like Eilenberg-MacLane spaces. This forces the spectrum,
X, to be K(n)-acyclic (called strongly acyclic). It is not the case that a K(n)-acyclic
spectrum must have a K(n)-acyclic space in its Ω-spectrum.

The results of Hopkins, Ravenel and Wilson are input to [12] written with Doug
and Nobuaki Yagita. This paper establishes once and for all that it is easier to compute
BP cohomology than homology, at least for spaces with even Morava K-theory, the
very spaces studied in [3]. There are a lot of nice theorems in this paper. I will mention
a few. The standing hypothesis is that X is a space with even Morava K-theory.

Theorem 3.4. For E = E(k, n) or P (k), E∗(X) is concentrated in even dimensions
and is flat and finitely presented as an E∗-module.

As a consequence, this says that there is no vk-torsion in P (k)∗(X).
So, for example, this applies to the loops on spaces with finite Postnikov tower. We

cannot say the same for the spaces that appear in the Ω-spectrum of a strongly acyclic
spectrum. Namely, being strongly acyclic for K(n) does not imply even acyclic for
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K(n+ 1). However the classifying spaces of most finite groups, QS2n, BO(n), MO(n)
and many other spaces have even K(n) cohomology.

Theorem 3.5. There is a Künneth isomorphism

E∗(X × Y ) ' E∗(X)⊗̂E∗E
∗(Y ).

In particular, if we know P (0)∗ (which is essentially BP ) for K(Z(p)) and for
K(Z/(pi)), we know it for the Eilenberg-MacLane spaces of any finitely generated
abelian group. The computation of the P (0)-cohomology of the factors is Theorem
1.14 in their paper. Interestingly, the answer involves the spaces in the Ω-spectrum
for BP 〈q〉, which goes back to part II of Steve’s thesis. So we now know BP ∗ for the
double loops of all spaces with finite Postnikov tower.

As mentioned, BO(n) has even K(n) cohomology. I think Steve was hoping
that there might be an exotic characteristic class in BP ∗(BO(n)), just what one
would want to get new obstructions to geometric dimensions. Unfortunately, while
BP ∗(BO(n)) is hard to compute, it is easy to describe. There are the Conner-Floyd
classes, Ck, of the complexification of the canonical bundle, and there is the relation
which says that Ck = C∗k , (C∗k is the Conner-Floyd class of the complex conjugate
bundle). Steve’s theorem says that there are no other classes nor other relations. This
computation appears in [17].

There are real versions of Johnson-Wilson spectra, ER(n), constructed by Hu and
Kriz. For example, ER(2) is a 48-periodic theory which Steve used in a recent paper
with Nitu Kitchloo to obtain nonimmersions of real projective spaces, [7].

The crux of the paper is to use a Bockstein spectral sequence to compute the ring
ER(2)∗(RP 2n). Before I give an example of a new nonimmersion, I would like to give a
bit of history. I think Steve has been interested in the nonimmersion problem from the
beginning of his career. In his book, A BP Introduction and Sampler, ([15]), he used
unstable BP to obtain a nondesuspension for RP 26

16 . This particular nondesuspension
result does not give a nonimmersion. Don Davis and I were able to extend Steve’s
idea to formulate a conjecture

RP 2(m+α(m)−1) * R2(m−α(m)),

which we were able to prove for small α(m). In [16] Steve was able to extend the result
to more values of m after showing that the conjecture followed if a particular element
was of order two, and Don proved it for all m in his Annals paper using a BP 〈2〉
Euler class. I would like to emphasize the point that the conjecture jumps out at you
when you hit the nonimmersion problem with unstable BP , but the computations
are too difficult in that context. With the conjecture provided by the unstable theory,
it became provable using stable methods. Steve’s work with Nitu improves on Don’s
theorem by two dimensions in some special cases. At this time, with all of the work
of Don Davis, Mark Mahowald and others, new low-dimensional nonimmersions are
hard to obtain. For example, the first new immersion claimed in a difficult paper of
Bruner, Davis, and Mahowald ([2]) using tmf shows that

RP 1536 * R3036.

Compare this with Steve and Nitu’s lowest new nonimmersion:

RP 48 * R84.
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(I should mention that late in 2006 Davis and his coauthors realized that they had
overlooked some low-dimensional cases in [2] that overlap with Steve and Nitu’s
results.)

It has taken 20 years to have a new nonimmersion for a low-dimensional projective
space.

4. The periodic phenomena paper

One of the most important papers in Steve’s oeuvre is his paper with Haynes Miller
and Doug Ravenel, [8]. Here the ideas of Jack Morava on periodicity in the stable
homotopy groups of spheres were exploited to give insight into the structure of the
Adams-Novikov spectral sequence that still resonates throughout homotopy.

A bit more history: Adams, Smith and Toda started the program of constructing
periodic families of elements, αt, βt, γt in π∗(S0). The γ family was the most delicate
to detect. In fact γ1 was a point of contention in the early 70’s. Thomas and Zahler,
using BP , claimed to have shown that γ1 6= 0, while the Toda school claimed it was 0.
There was even an article in the New York Times with the headline “A Contradiction
in Mathematics.” The outcome was that Thomas and Zahler were correct. They
went on to detect infinitely many, but not all, of the gamma family. One of the main
achievements of the periodic phenomena paper was to detect all of the gammas. They
did this by completely computing the 2-line of the Adams-Novikov spectral sequence.
Using v1, v2 and v3, they construct classes, βspn/i,j+1 ∈ E2,2(p2−1)spn−2(p−1)j

2 . The
class is pi+1- and vj

1-torsion. They determine the constraints on i, j, s and n so the
resulting subcollection of βspn/i,j+1’s generates a direct sum of cyclic groups.

One of the applications of this computation is obtained by mapping to the classical
Adams spectral sequence. The result is that most of the elements in the Adams 2-line
do not survive. Steve thinks this is the result that got people’s attention.

It was Adams who made the case that homology was more tractable than coho-
mology. Steve’s papers do show that computing BP ∗ may be easier than BP∗ for
important spaces. But when it comes to setting up the Adams spectral sequence, I
think this work makes it clear that Adams was right. Zahler made some significant
progress using the cohomology approach to the Novikov spectral sequence. But his
methods were stymied by the complex computations and gave no hint of the periodic
behavior of the spectral sequence.

5. Steve’s work on Mathematics Education

As hard as it is to believe, most people actually think our work as teachers is more
important than computing the homotopy groups of spheres. Steve is a mathematician
who wears both hats. While working on his paper with Nitu, he was commuting to
Washington D.C. to advise the Department of Education on mathematics education
issues (perhaps he should mention the commuter rail, MARC, in the acknowledg-
ments).

I particularly like [19] where Steve uses Johns Hopkins students to demonstrate
that those who became dependent on calculators did worse in their college mathe-
matics classes. (I would like to add a minor observation: I’ve noticed that students
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who do arithmetic with a calculator often think the sequence

1.0, 1.1, 1.2, 1.10, 1.11

is increasing.)
There was, as expected, a reaction from the mathematics education community to

which Steve responded in [18]. I can’t improve on Steve’s words, so here they are:

Now I get into touchy territory. I am well aware of how the so-called
standard algorithms for arithmetic have fallen on hard times. Educators
frequently dismiss them as obsolete and unnecessary. On the contrary,
from the point of view of the teacher who gets your students next, I cannot
emphasize enough how important these basic algorithms (or their equiva-
lent) are. There are many reasons for this and properly dealing with them
would require a paper in itself. Briefly,

1. the standard algorithms are the only collection of beautiful, seri-
ous, mathematical theorems you can teach to a child in K-6. They are
amazingly powerful. They take the ad hoc out of arithmetic. They extend
observed patterns and give the operations structure. These theorems solve
the age-old problem of how to do basic computations without having to
use different strategies for different numbers. The mystery is gone.

2. Students will be confronted with new algorithms constantly as they
progress in their study of mathematics. Ignoring the most basic and most
important of all algorithms is not good preparation.

3. In high school and college mathematics, these very same algorithms
will be slightly modified and generalized and used in different settings.
This happens many times over and a mastery of the original algorithms
makes this process an incremental one rather than an overwhelming one.

Given the thrilling description of the standard algorithms I have just
relayed, I found Tunis’s final comment disheartening: “How can we give
them the idea that mathematics is more than the rote learning of algo-
rithms?” Again, I would turn this around and ask “How could anyone
get the idea that mathematics is just the rote learning of algorithms?” If
the standard algorithms are taught with understanding, enthusiasm and
admiration, then a student should find them exciting and appreciate the
awesome power they give.

Steve is still thinking about these issues. He recently included a link on Don’s
discussion group proving that our students are getting worse. Steve is the only person
studying mathematics education who has the data! He traces the deterioration to the
NCTM standards.

“Nineteen eighty-nine is, in mathematics education, indelibly tied to the
National Council of Teachers of Mathematics’ publication, Curriculum and
Evaluation Standards for School Mathematics (1989), which downplayed
pencil and paper computations and strongly suggested that calculators
play an important role in K-12 mathematics education. My 2006 students
would have been about two years old at the time of this very influential
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publication, and it could easily have affected the mathematical educa-
tion many of them received. Certainly, one possibility is that mathematics
preparation is down across the country, thus limiting the pool of well pre-
pared college applicants.”

The foundational work of Steve and his coauthors has described the beautiful
stable and unstable structure of BP and related periodic theories. His work has had
enormous application. It is a pleasure to thank Steve for his contribution to homotopy
theory and wish him a happy birthday.
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