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INVOLUTIONS ON 3-MANIFOLDS AND
SELF-DUAL, BINARY CODES

MATTHIAS KRECK anp VOLKER PUPPE

(communicated by Gunnar Carlsson)

Abstract
We study a correspondence between orientation-reversing
involutions on compact 3-manifolds with only isolated fixed
points and self-dual, binary codes. We show in particular that
every such code can be obtained from such an involution. We
further relate doubly even codes to Pin™ -structures and Spin-
manifolds.

1. Introduction

A self-dual, binary code C of length k is a linear subspace of the k-dimensional
vector space (Z/9)¥ over the field Z/2, which coincides with its orthogonal com-
plement with respect to the standard “Euclidean” form (z,y) := Y. z;y; € Z/4, for
r=(x1,...,21),y = (Y1,...,Y) € (Z/2)*. The weight, wt(z), of a code word x € C
is defined as the number of non-zero coordinates in x = (z1,...,2zx). It is immediate
that all code words in a self-dual, binary code C' have even weights, and it is also
easy to see, that the vector A :=(1,...,1) always belongs to C.

Self-dual, binary codes play an important role in coding theory and its applica-
tions, and have been studied extensively; see [5] for a comprehensive survey and
literature. They have interesting relations to many different mathematical areas. A
connection to involutions on 3-manifolds was made in [4]. It is shown there that
an involution 7: M — M on a 3-dimensional, closed manifold M with the “maxi-
mal number” of isolated fixed points (i.e. with only isolated fixed points, such that
the number of fixed points k := [M7| equals dimg,, (®;H*(M;Z/>))) determines a
self-dual, binary code of length k. In turn this code determines the cohomology alge-
bra H*(M;Z/2) and the equivariant cohomology H(MZ/2), where the action of
G =17/ is given by the involution. In fact, the code corresponds to the inclusion
HYA(MZ/9) — HE(MC;Z/2) =2 (Z/5[t])*, and an equivalence of codes, given by per-
muting the coordinates corresponds to an equivalence of inclusions, given by an auto-
morphism of the algebra (Z/5[t])".

At the moment we have no constructions of 3-manifolds with involution having
finitely many fixed points leading to new codes, but we hope that our work motivates
the search for such examples. In turn self-dual and in particular doubly even codes,

Received June 3, 2007, revised April 15, 2008, June 5, 2008; published on September 4, 2008.
2000 Mathematics Subject Classification: 57M60, 94B05, 57M50, 57R91.

Key words and phrases: involution, 3-manifold, code, cohomology.

This article is available at http://intlpress.com/HHA/v10/n2/a7

Copyright (© 2008, International Press. Permission to copy for private use granted.



140 MATTHIAS KRECK aNnp VOLKER PUPPE

i.e. self-dual, binary codes for which all code words have weights zero mod 4 are very
rare, indicating that 3-manifolds with a symmetry given by such an involution are
hard to find. The fact that self-dual codes are rare is indicated by their interesting
relation to positive definite unimodular intergral bilinear forms, which are very hard
to find and by no means understood. Namely if C' C (Z/2)* is a self-dual code, then
L:={z/V2 € R¥ | z(mod 2) € C} is a unimodular lattice and an even lattice if C is
doubly even (cf. [5]).

In Section 2 we generalize results from [4] by considering involutions on 3-manifolds
which have a finite number of fixed points which need not be maximal. The code
corresponding to such an involution is described in two ways: firstly using equivariant
cohomology as in [4], secondly using the ordinary homology (with Z /4 coefficients) of
the complement (of a neighbourhood) of the fixed points in the orbit space.

In Section 3 we show that every binary, self-dual code can be obtained from an
involution on a 3-manifold with a finite number of fixed points; in fact, using surgery
we get that the manifold can be chosen so that the number of fixed points is maximal.
If the latter holds, then the code determines the (equivariant) cohomology algebra of
the manifold, as already mentioned above.

In Section 4 we relate doubly even codes to Spin-manifolds. We define the concept
of a Spin-involution and show that Spin-involutions give doubly even codes. Finally
we show that each doubly even code comes from a 3-manifold with Spin-involution.

2. Self-dual codes from involutions on 3-manifolds

Let 7: M — M be an involution on a closed 3-manifold M with finitely many
fixed points 21,..., 2. By Smith theory, k < dimy,(&;H"(M;Z/3)); we say that
the number of fixed points is maximal, if equality holds. The Localization Theorem
for equivariant cohomology (cf. e.g. [1]) in this context reads as follows (here and in
the following we always take coefficients in Z/5):

The map

HE(M) S BE(MC) = (2/5]t])*

induced by the inclusion ME —— M becomes an isomorphism after inverting the pow-
ers of t € Z/5[t] = H*(BG). (Here H: (M) 22 (Z/2[t])* is the canonical isomorphism
of Z/|t]-algebras, given by the inclusion of the single fixed points into M¢.)

By the Localization Theorem, the kernel of iy, is the torsion submodule
T C Hi(M), and 4 is injective if and only if Hj (M) is a free Z/4[t]-module. We
show that, as in the “maximal number of fixed points” case (see [4]), the inclusion

Hy(M)/T 25, (Z/5]t])* determines a self-dual code C'(M, 1), and in turn iy, is deter-
mined by this code.

In more detail: Let C(M,7) be the image of &} (HL (M) in (Z/2)* under the
evaluation map, putting ¢ = 1 (cf. [4]). This is the same as (i), the image of HL (M)
in HY (M) =2 (Z/2)*. We claim that C(M, 1) C (Z/2)* is self-dual, binary code. This
is shown in [4] for the “maximal case” (i.e. T' = 0), and the only additional information
we need here, in order to apply the same arguments as in the “maximal case”, is that
(H&(M)/T) ®z/,14 /2 fulfills Poincaré duality with respect to the induced product.
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This can be seen as follows (cf. [1, Exercise (1.15)]):

Let p: H5(M) — H*(M) be the restriction to the fibre in the Borel construction
M — M xg EG — BG. The map p fits into the long exact Gysin sequence of the
covering M ~ M x EG — M xg EG; i.e.,

s — HG (M) = HE(M) L HY(M)—HG(M) = HGH (M) — -+
is exact and hence so is
0 — HE(M) @z, /2 — H* (M) — Tor® (HE (M), Z/5) — 0.

Splitting H: (M) =T & F into a direct sum of the torsion submodule T" and a free
complement F', one sees that dimg,, (T ®z/, Z/2) = dimg,, To1rZ/2[t](HE§(M)7 Z/3).
We claim that with respect to the Poincaré duality pairing in H*(M), the orthog-
onal complement of p(HE(M)) is p(T). Because of the dimension equality above it
suffices to show that (z,y) =c(xUy) =0 for x € p(H:(M)) and y € p(T), where
o: H*(M) — Z/5 is the orientation of M. If & and ¢ are liftings of z and y with
respect to p, then T U g € T. Therefore £ U 5 is mapped to zero under the equivariant
orientation ¢: H (M) — Z/5[t] (cf. e.g. [1, Chap. 5]). Hence 6(Z U g) =0 and thus
o(xUy) = 0. We get that the graded algebra p(H¢(M))/p(T) = (HE(M)/T) @741
Z/4 is a subquotient of H*(M), which fulfills Poincaré duality, and H%(M)/T as a
Z/»[t]-module is isomorphic to (p(H¢(M))/p(T)) @z, Z/2[t].
We therefore have, analogous to the case T' = 0 (cf. [4]), that

HE(M)/T 255 (2/51)"

determines a self-dual, binary code; namely, C(M,7) = S(i&) = S(if) and, in turn,
is determined by this code. Note, though, that we only get the quotient algebra
HE(M)/T (and p(HE(M))/p(T) = (HE(M)/T) ®z/,14 Z/2) from the code, which
means that in case T' # 0 the algebras H} (M) and H*(M) are not completely deter-
mined by the code. Hence the case T' = 0 (i.e. the maximal number of fixed points) is
of particular interest, since then the cohomology algebra H*(M) and the equivariant
cohomology algebra H (M) are completely given by the code C(M, T).

In view of the construction below, we describe the code coming from an involution
7: M — M on a closed 3-manifold M with isolated fixed points z1, ...,z in a second
way.

o
Let W := (M \ 4+ D?)/7, where D3 are equivariant discs around z;. We consider

the Mayer-Vietoris sequence for M = (M \ +;, D?) U (+,D3?):

c = Hg(+187) = HG(M) — Hg(M \ +y D?) & Hg(+1D°) — Hg(+£8%) — -+

Since the equivariant cohomology of a free G-space is the non-equivariant coho-
mology of the orbit space, one gets the exact sequence

c = HY(+4RP?) — Hg(M) — H'(W) & (Hg(+5D%) — H' (+5RP?) — -+

It is easy to see that the map (HE (4, D?) — H'(+4,RP?) is an isomorphism. (For one
disk D3, one has that S2 (@9 52 x §® Gid) D3 x §°° 2 § s the canonical inclu-
sion, and hence H}(D?) = HY(RP*)—H(RP?) = H}(S?). It therefore follows from
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the Mayer-Vietoris sequence that C(M,7) := S(HL(M) — HL(M)) can be identi-
fied with S(H*(W) — H'(+xRP?)). Dually to taking S(H' (W) — H!(+;RP?)), we
can take Ker(Hy(+xRP?) — Hy(W)). The cup product in cohomology corresponds
to the intersection form in homology. Since the kernel of the map on the middle
homology of the boundary of a compact manifold to the interior is a self-annihilating
subspace (with respect to the intersection form) of half rank, and the intersection
form on Hi(+,RP?) = (Z/2) is the standard “Euclidean” form, one gets in another
way that the code is self-dual.
We summarize the above considerations as

Theorem 2.1. Fvery involution T with only isolated fixed points on a compact
3-manifold M determines a self-dual, binary code C(M,T).

3. All self-dual codes come from 3-manifolds

Proposition 3.1. Every self-dual, binary code can be obtained from an involution on
an orientable 3-manifold.

Proof. Let k = 2r and let C C (Z/2)* be a self-dual, binary code. We choose a map
f: 41 RP? — (RP>)" such that the sequence (with Zy coefficients)

0— C — Hy(+:RP?) &5 H, (RP®)") — 0

is exact.

Next we note that the first Stiefel-Whitney class wy (+4RP?) is in the image f*.
The reason is that the diagonal element A is in the code (A is dual to w;(+,RP?))
and so (w; (+4RP?),2) = (A, z) = 0 for all z € C. This implies that there is a real
line bundle L over (RP*)" pulling back to the non-trivial line bundle over each copy
of RP?. Thus (+,RP?, f) is an orientable singular manifold, where the orientation
is twisted by the line bundle L. This means that the bundle v(+,RP?) — f*(L) is
orientable.

After choosing an orientation the pair, (+,RP?, f) represents an element in the
bordism group (22((RP>)"; L) of singular manifold with orientation (twisted by L).
We claim that this element is trivial.

The Atiyah-Hirzebruch spectral sequence implies that

Qo((RP™)"; L) > Hy((RP™); Zy),
[F,h] — h.([F)).

Here, Z; stands for twisted homology, where the coefficient system is given by the
representation

T (RP®)" — mp (RP®) — (1) = Aut(Z),
and the map is induced by the classifying map of L. We note that
Hy(RPY)"; Zs) — Ha((RP™)"; Z/2)

is injective. The reason is that Hs((RP*)";Z;) consists only of elements of order 2
(and 0).
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Thus it is enough to control the image of the fundamental class in
Hy((RP™)"Z/2).
The vanishing is equivalent to
h*xUh*y =0
for all z, y € H((RP™)";Z/5). This follows since, by construction, the intersection

form vanishes on Ker(H;(+1RP?%; Z/5) — Hy((RP*)";Z/5), which under the isome-
try between Hi(+,RP? Z/5) = H'(+,RP?;7Z/5) corresponds to the image of

HY((RP®)";Z/3) — H'(+,RP*% Z/5).
Summarizing the information so far, we have shown that
[+1RP?, f] = 0 € Qo((RP™)"; L).

Let h: W — (RP*)" be a zero bordism. We claim that the kernel of the map
induced by the inclusion

Hy(+xRP* Z/5) — Hi(W;Z/2)
is our code C. Since h|, gp2 = f, we conclude that
Ker(Hy (+xRP* Z/5) — H(W;Z/2)

is contained in C; but this kernel has dimension r = dim C implying the statement.
Finally we consider the classifying map g of L and the composition

gh: W — RP*,

to construct the induced 2-fold covering W over W. Since W is oriented (twisted by
L), W is an orientable manifold. The boundary of W is 4152 and the restriction of
the deck transformation to the boundary is —id on each summand. Thus we obtain
an involution 7 on

M =W U+,D?,

which on W is the deck transformation and on each D3 is —id. By construction, the
code associated to this 3-manifold M and 7 is the given code, finishing the argument.
O

The above construction depends on the choice of the zero cobordism
h: W — (RP)", and it is not clear whether one obtains a manifold M with involu-
tion, which has the maximal number of isolated fixed points. We will show that one
can change W by surgery to reduce the cohomology of M, and obtain a pair (M, 7)
with the maximal number of isolated fixed points. By Smith theory, the maximality
condition is equivalent to the injectivity of HX(M;Zs) — HE (MY Zs) = (Za[t])*,
resp. the surjectivity of HE(MC;Zy) — HS(M;Z3). In our case M = W U (44,D3).
The equivariant Mayer-Vietoris sequence (with Zy coefficients) gives:

= HE (+18%) — HE (W) & HE (+xD®) — HE (M) — HE | (+,5%) — -

One has HY (+1,5%) = (H.(+xRP?) and HE (W) = H,(W) since the actions on +52
and W are free, and HE(+,D3) = HE(M®). The inclusion S? C D? induces the
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inclusion H,(RP?) — H,(RP>). Hence the map HE (M%) — HE (M) is surjective if
and only if H;(+,RP?) = H;(0W) — H;(W) is surjective for i = 1,2. But the long
exact sequence of the Poincaré pair (W, 9W) shows that surjectivity for ¢ = 1 already
implies surjectivity for ¢ = 2. To verify the maximality condition it therefore suffices
to show that Hy(OW) — Hy(W) is surjective. We want to arrive at this condition
by applying surgery to W (if necessary). Assume that H;(0W) — Hy(W) is not
surjective. We consider the following diagram:

— H (W) Hy (W) —— H, (W, W)

N A

Hi(RP>)").

We already know that ¢; and f; have the same kernel, namely the code C, and
f1 is surjective by construction. Hence i1 is surjective if and only if hy is injective.
Assume that there exists an a € H1(W),a # 0, with hi(a) = 0. Then a maps non-
trivially to Hy(W,0W) which follows since i; and f; have the same kernel. Thus
by Poincaré-Lefschetz duality there is an element b € Ho(W) dual to a. Since W is
orientable (twisted by L), the normal bundle of an embedded circle representing a
is trivial. Performing surgery with respect to an embedding S' x D? representing a
kills the class a and its dual b with respect to the intersection pairing. This follows by
an argument using the long exact homology sequence of the pair (W, W \ St x D?)
and the corresponding sequence for the manifold resulting from surgery on S* x D2.
The map hy: Hi (W) — H;((RP>)") factors through the quotient H;(W)/ 4. Hence
we can find a map h': W — (RP°)" of our new manifold W’ which restricts to f
on the boundary W’ = W = +,RP?. Tterating the process (if necessary) gives the
following result.

Theorem 3.2. Fvery self-dual, binary code can be obtained from an involution on
an orientable 3-manifold with the mazimal number of isolated fixed points.

We say that a cohomology type of a 3-manifold admits an involution with the
maximal number of fixed points, if such an involution exists on some 3-manifold with
the given cohomology algebra. The above theorems then give the following corollary.

Corollary 3.3. A cohomology type of a 3-manifold admits an involution with the
mazimal number of isolated fized points if and only if the cohomology algebra can be
given by a self-dual, binary code.

In principle this corollary allows us to translate results about self-dual, binary
codes into results about involution on a 3-manifold and vice versa. Self-dual, binary
codes have been classified up to length 32 (see [2]), which is far beyond the range
where there exists a reasonable classification of Poincaré duality algebras of formal
dimension 3. But the code classification describes precisely those cohomology types of
3-manifolds which admit an involution with the maximal number of fixed points. As
pointed out in [4], one gets as a consequence, that “most” 3-manifolds do not admit
an involution with the maximal number of isolated fixed points.
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4. Spin-structures and doubly even codes

Doubly even codes, i.e. those for which all code words have weights zero mod 4
form a very interesting class of self-dual, binary codes. Among all self-dual, binary
codes, doubly-even codes are rare, though they are very important in particular for
applications (cf. [5]). It is a challenge in coding theory to find codes of moderate
length, such that any non-zero code word has a rather high weight, since this would
give good error-correcting properties for the code; e.g., it is a long-standing open
question whether there exist a doubly even self-dual, binary code of length 72, such
that any non-zero code word has length at least 16. We do not claim that the trans-
lation to involutions will help to answer such a question, but the relation between the
two areas might exhibit interesting properties on both sides.

In view of the above corollary, the properties of codes correspond to (perhaps
geometric) properties of 3-manifolds with involution. We show in this section that
indeed doubly even codes correspond in a sense to Spin-structures.

Let M be an oriented closed 3-manifold with involution 7 having exactly k isolated
fixed points. From these data we will construct a 4-manifold by starting with M x S*
and dividing by the involution, which on M is 7 and on S! is complex conjugation.
This is a manifold with 2k isolated singularities, where k is the number of fixed
points of 7. All fixed point singularities are cones over RP?, which are the links of the
singularities. Since the involution on M x S! is orientation-preserving, the orientation
on M x S' induces an orientation on the quotient (after removing the fixed points),
which in turn gives an orientation on each link RP?. Now we remove open cones
around the singularities and replace them by the disc bundle of the complex line
bundle over CP' with Chern class —2. The reason for choosing this sign of the Chern
class (and not +2) is that the induced orientation on RP® above is the opposite
of this orientation (we will discuss this in more detail in the proof of the following
result). This implies that the orientations fit together and so the result is an oriented
4-manifold denoted N (M, 7). We say that 7 is a Spin-involution if N (M, 7) admits a
Spin-structure compatible with the given orientation.

The construction of N(M, ) is well known in the case of the 3-torus T with 7
complex conjugation. Then N(T3,7) is the K3-surface, which has a Spin-structure.

Theorem 4.1. Let M be a closed oriented 3-manifold with involution T with finitely
many fixed points. If T is a Spin-involution, then the code C'(M,T) is doubly even.

Proof. We assume that the reader is familiar with Pin™-structures [3]. We recall that
a Pin™-structure on a smooth manifold M is a Spin-structure on TM & Det(T'M).
Here we note that TM @ Det(TM) has a natural orientation, which we assume to
be compatible with the Spin-structure. Thus the Pin~-structures are classified by
HY(M;Z/>).

A Pin™ -structure on a surface F' determines a quadratic refinement

q: HY(F;Z/5) — 7./4,

such that ¢(x + y) = q(x) + q(y) + 2(z,y), where (x,y) is the intersection form. The
two Pin™ -structures on RPP“ are distinguished by the quadratic form, which can take
the values £1. For all this, see [3]. If W is a 3-dimensional Pin™ -manifold with bound-
ary F, then, on the image of H*(W;Z/2) — H'(OW;Z/3), the intersection form and
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the quadratic refinement vanish. This follows from [3] as explained in [6].

Now suppose that the disjoint union of k£ copies of RP? is the boundary of a
Pin™-manifold W and the induced Pin™ -structure is equal on all components of the
boundary. Then if x € HY(W;Z/5), and y = i*(x) = (y1,...,Ys), we conclude that
> ¥i =0 mod 4. Thus we are finished if the condition that 7 is a Spin-involution
implies that (M \ +;B?)/7 has a Pin~-structure, which on all boundary components
is the same. Here B3; is an open ball around the i-th fixed point.

To see this we first note that a Pin~-structure on RP? is the same as a Spin-
structure on the total space of TRP? & Det TRP?. Since Det TRP? is the normal bun-
dle of RP? in RP?, we can, via a tubular neighbourhood, identify TRP? & Det TRP?
with an open subset of RP?, which is homotopy equivalent to RP* — pt. Thus a Pin™-
structure on RP? determines a Spin-structure on RP® and vice versa. In particular,
this means that the Pin~-structure on RP? determines an orientation on RP?. We
note that RP? is the total space of the complex line bundle over CP' with first Chern
class 2. Using the complex orientation on CP' and on the complex line bundle we
obtain an orientation on RP?. It is not difficult to show that this orientation agrees
with the orientation coming from the Pin~-structure on RP? (one only has to compare
the orientations at one point). Thus, if this is the orientation on a component of the
boundary of some 4-manifold V', then we obtain an oriented manifold by gluing the
disk bundle of the complex line bundle over CP* with Chern class —2 (this induces
the negative orientation compared to the orientation above, and so the orientations
fit together). The key observation for our proof is that since this disc bundle is simply
connected there is a unique Spin-structure on it.

Now we consider M x S' with the involution given by 7 and complex conjugation
c. Each fixed point of M and each fixed point of S' gives a fixed point of M x ST,
and for each fixed point the link of the corresponding singularity in M x S'/(7 x ¢)
is RP® containing the link of the corresponding singularity in M /7. Thus a Pin™ -
structure on each link in M /7 determines a Spin-structure of the two (for each fixed
point of S1) corresponding links in M x S/(7 x ¢)) and vice versa. If N(M, 1) has a
Spin-structure, then this is the same on each disk bundle of the complex line bundle
with Chern class —2 over CP', since there is a unique Spin-structure with the given
orientation. Thus the restriction of the Pin~-structure to each link RP? is the same.
As explained above this implies the theorem. O

A by now classical result of Gleason (see e.g. [5]) says that the length of a doubly
even code must be divisible by 8.

Corollary 4.2. The total dimension of the cohomology of a 3-manifold with Spin-
involution having the mazimal number of isolated fixed points is divisible by 8.

Next we prove that for each doubly even self-dual code C, there is a 3-manifold
M with Spin-involution 7 such that the corresponding code is C.

Proposition 4.3. Let C' be a doubly even self-dual code. Then there is a 3-manifold
M with Spin-involution T whose code is C.

Proof. We proceed as in the proof of Theorem 3 and use the notation from there. Now
we consider +,RP? as a Pin~-manifold, where all copies are equipped with the same
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Pin~-structure, which, if we pass to the corresponding Spin-structure on RP? can be
extended to the disc bundle of the complex line bundle with first Chern class —2 over
CP'. Together with the map f we obtain an element of Q5™ (RP>)". We compute
this bordism group with the Atiyah-Hirzebruch spectral sequence. From [3], we use
that QFin =7, QPin" = 7Z/5 and QY = Z/8, where the latter group is generated
by RP? with any Pin~-structure.

The Atiyah-Hirzebruch spectral sequence computing Q5™ ((RP*)") has the
entries:

Qe
Hy((RP*)";Z/2),
Hy((RP*)"; Z).

The component in the first entry is given by the k-fold sum of RP? with the given
Pin™ -structure, which is zero if and only if £ =0 mod 8. But this is the case for
doubly even self-dual codes.

The last entry is as in the case of oriented bordism (twisted by L) detected by
the image of the fundamental class with coefficients in Z/5, which, as shown before,
vanishes if the code is self-dual.

The second entry is a bit delicate. We only have to detect the corresponding
entry for Q" (RP>), since we can project to the differen components. Then the
corresponding entry is in Z/5. By the fact that the bordism group is a module over
OFin™we see that the non-trivial element is represented by (S x n,ip;), where 7 is
St with the non-trivial Pin~-structure (which for 1-manifolds is the same as a Spin-
structure) and i is the inclusion S — RP*. We are free to choose a Pin~-structure
on the first factor. If we choose the Spin-structure again to be the non-trivial one,
we see that the induced 2-fold cover is 1 x 1, which is the non-trivial element in
Q5P™. We note that whatever Pin~-structure we choose on the first factor, we can
change it, if necessary, to the non-trivial one, by modifying it with the non-trivial
element in the image of H'(RP™;Z/5). The upshot of these considerations is that
we can detect the second term in the Atiyah-Hirzebruch spectral sequence of an
element [N, g] € QY (RP*), whose underlying Pin~-bordism class is zero and whose
fundamental class maps to zero by the following criterion: It is zero if and only if,
for all modifications of the Pin~-structure by elements in H'(RP>;Z/5), the induced
2-fold covering is zero bordant. Applying this to the case where N = +gRP?, we note
that the induced covering is an S? over each summand which maps non-trivially to
RP* (which is zero bordant), and that it is RP? + RP? for each summand which
maps trivially. But since RP? is a generator of QY™™ = 7/8 this implies that if the
number of summands, which are mapped trivially, is 0 mod 4, then the bordism class
is trivial. Returning to the situation given by our code we see that if the code is
doubly even, then this criterion applies.

Thus we have shown that for doubly even codes the bordism class vanishes in
Qo ((RP*°)7), and as in the proof of Theorem 2 we construct a 3-manifold M with
involution 7 giving the code. Since the Pin™ -structure is the same for all copies of
RP?, we obtain a Spin-involution. Namely, the 4-manifold we construct is the blow
up of a Spin-manifold obtained by replacing the open cones over the individual RP*’s



148 MATTHIAS KRECK aNnp VOLKER PUPPE

by the disc bundle of the complex line bundle with Chern class —2 over CP'. After
perhaps changing the orientation before the gluing, the resulting manifold is oriented.
Since the Spin-structure on all RP*’s extend to this disc bundle, the manifold is a
Spin-manifold. O

As before one can apply surgery, this time taking into account the Pin™ -structure
to get the following result.

Theorem 4.4. FEvery binary, doubly even, self-dual code can be obtained from a
Spin-involution with the mazximal number of isolated fixed points on an orientable
3-manifold.
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