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A∞-SUBALGEBRAS AND NATURAL TRANSFORMATIONS

PAUL SEIDEL

(communicated by Ralph Cohen)

Abstract
We consider a localization construction which appears, at

least conjecturally, in symplectic geometry. Besides the general
algebraic theory, we also look at a specific example, coming from
mirror symmetry.

0. Introduction

This paper explores a version of categorical localization. While the results are
purely algebraic, the construction itself arose in symplectic topology, specifically in
the theory of Lefschetz fibrations, and the connection with localization was arrived
at a posteriori.

The setup is as follows. We consider pairs (A,B) consisting of an A∞-algebra B and
a subalgebra A. We will be primarily working with the category V = H0(mod(A)) of
A-modules. However, that category inherits certain additional data from the presence
of B. The most important such data are a functor F : V → V , given by tensor prod-
uct with the quotient bimodule (B/A)[−1], together with a natural transformation
T : F → Id .

We will introduce a new object associated to (A,B), which is an A∞-algebra D with
nonvanishing curvature. The definition is quite straightforward, but its meaning is not
transparent. We will study an appropriately defined category W = H0(modt(D)) of
modules over D. The main result is that W is the localization of V along T , a special
case of the Verdier quotient construction for triangulated categories. In particular, W
only depends on V , F and T . A similar statement holds for the underlying differential
graded categories (see Theorem 4.1 for the precise formulation). We also obtain a
corresponding result for the Hochschild homology HH(D), which turns out to be
expressible in terms of iterated tensor products with (B/A)[−1] (Theorem 5.4).

Objects similar to D have already appeared in at least two places in the symplectic
literature, namely in the theory of Fukaya categories for closed manifolds [9], and in
relative contact homology for Legendrian submanifolds (see [5] for an elementary
case). We will suggest a tentative link to the latter topic, and further relations to
similar symplectic invariants, mostly following [20].
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1. Localization along a natural transformation

This section introduces the relevant category theory background. We start in an
elementary context, then focus on the triangulated case, and also consider the more
modern framework of dg categories. Finally, we give two examples of known construc-
tions which can be interpreted as localizations in our sense.

The basic construction
Let V be a category. Even though it would be possible to work in complete gener-

ality, we prefer to assume (for consistency with later developments) that V is linear
over some field K. Let F : V → V be an endofunctor, and T : F → Id a natural trans-
formation from F to the identity functor. By acting with F on either side, one gets
two induced natural transformations RFT, LFT : F 2 → F . Explicitly,

(RFT )M = TF (M), (LFT )M = F (TM ) ∈ HomV (F 2(M), F (M)). (1.1)

These differ in general, but the compositions T ◦RFT, T ◦ LFT : F 2 → Id are
equal. We denote these compositions by T 2, and similarly define higher iterates
T p : F p → Id .

We say that T is ambidextrous if the two natural transformations in (1.1) agree.
Suppose from now on that this is the case. We can then define a new category Z,
called the localization of V along T , as follows. The objects are the same as in V .
The morphism spaces are

HomZ(M,N) = lim−→p HomV (F p(M), N), (1.2)

where the connecting maps HomV (F p(M), N)→ HomV (F p+q(M), N) in the direct
system are given by multiplying with F p(T qM ) on the right. Composition of morphisms
in Z is inherited from V as follows:

HomV (F q(N), O)⊗HomV (F p(M), N)
Id⊗F q

−−−−→ HomV (F q(N), O)⊗HomV (F p+q(M), F q(N))
composition−−−−−−−→ HomV (F p+q(M), O).

The fact that T is ambidextrous ensures that this is compatible with the direct limit,
hence that Z is well-defined.

Our category comes with a functor I : V → Z, given by the p = 0 term in (1.2).
The next result says that this is universal with respect to inverting the morphisms
S = {TM}, hence that Z agrees with the standard categorical localization S−1V .

Lemma 1.1. The image of each TM under I is an isomorphism. Conversely, each
functor from V to another category, which takes the TM to isomorphisms, factors
through I in a unique way.



A∞-SUBALGEBRAS 85

Proof. More generally, T pM becomes invertible in Z, its inverse being the image of
the identity morphism EFp(M) under HomV (F p(M), F p(M))→ HomZ(M,F p(M)).
An arbitrary morphism y ∈ HomZ(M,N) comes from some x ∈ HomV (F p(M), N),
hence can be written as a composition

M
y // N

F pM.

∼=
I(Tp

M )

ccGGGGGGGG I(x)

;;xxxxxxxx
(1.3)

Given that, it is straightforward to factor suitable functors through Z.

As a final comment, note that {T pM} (including the case p = 0 which is T 0
M = EM )

is a right localizing class of morphisms in the sense of [10]. In that situation, one can
define S−1V through a calculus of fractions, which is in fact clearly visible in (1.3).

The triangulated case
Now suppose that V is a triangulated category, and F an exact functor. Let

Vnil ⊂ V be the full subcategory consisting of those M such that T pM = 0 for pÀ 0.
This is obviously closed under taking cones and direct summands, hence is a thick
subcategory [19, Proposition 1.3]. Let Snil be the set of those morphisms whose cone
lies in Vnil . The (Verdier) quotient category is defined as V/Vnil = S−1

nil V . It carries
a canonical induced triangulated structure [11, p. 251]. We now relate this to the
previously considered localization Z = S−1V .

Lemma 1.2. For any M , TM ∈ Snil . Conversely, if f ∈ HomV (M,N) lies in Snil ,
there are a p and morphisms g ∈ HomV (F p(N),M), h ∈ HomV (F p(N),M), such
that fg = T pN and hF p(f) = T pM .

Proof. Taking C to be the mapping cone of TM , we have the commutative diagram

F (M)
TM // M // C

[1]

zz

F 2(M)
F (TM )

//

TF (M)

OO

F (M)

TM

OO

//

::v
v

v
v

v
F (C).

TC

OO

[1]

dd

The dashed arrow is obviously zero; hence TC factors through M . After applying F
one sees that T 2

C = 0.
For the converse statement, take f , and let C be its cone. Look at the long exact

sequence

· · · → HomV (F p(N),M)
f ·−→ HomV (F p(N), N) −→ HomV (F p(N), C)→ · · · .

The image of T pN under the map HomV (F p(N), N)→ HomV (F p(N), C) agrees with
that of T pC under HomV (F p(C), C)→ HomV (F p(N), C), vanishes for large p. Taking
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a preimage under the first map produces the desired g. The same kind of argument
applies to multiplication by F p(f) on the right.

Lemma 1.2 shows that S ⊂ Snil , and conversely that any element of Snil becomes
invertible once we invert S (to get a left inverse, take the equality hF p(f) = T pM and
write this as h(T pN )−1T pNF

p(f) = h(T pN )−1fT pM = T pM ). We therefore get functors in
both directions, which yield an equivalence

Z = S−1V ∼= S−1
nil V = V/Vnil . (1.4)

The differential graded case
Next, assume that V = H0(V) is the cohomology category associated to a pre-

triangulated dg (differential graded) category. Given F and T as before, one denotes
by Vnil ⊂ V the full dg subcategory with H0(Vnil) = Vnil . In this setup, one can
form the dg quotient category Z = V/Vnil in the sense of [6] (simplifying an earlier
construction of [12]). On the cohomology level, H0(Z) ∼= V/Vnil recovers our previous
Z, by [6, Theorem 3.4]. It also comes with a natural dg functor I : V→ Z such that
H0(I) = I. As a consequence of our previous discussion, there is an easy criterion for
identifying when another given dg category is quasi-equivalent to this quotient:

Lemma 1.3. Let W be a pre-triangulated dg category, and G : V→W a dg functor.
Write W , G for the corresponding cohomology level structures. Suppose that:

1. the objects in the image of G generate W as a triangulated category;

2. G(TM ) is invertible for all M ;

3. the resulting maps

lim−→p HomV (F p(M), N) −→ HomW (G(M), G(N)) (1.5)

are isomorphisms.

In that case, W is quasi-equivalent to Z = V/Vnil .

Proof. By (1.5), every x ∈ HomW (G(M), G(N)) can be written as a composition

G(M)
G(Tp

M )−1

−−−−−−→ G(F p(M))
G(y)−−−→ G(M)

for some y, where the first arrow is an isomorphism. Note that because it comes
from an underlying dg functor, G is automatically exact. It follows that the image of
the cone of y under G is isomorphic to the cone of x. This proves that the objects
in the image of G form a triangulated subcategory, which together with the other
assumption shows that G is essentially surjective (onto on isomorphism classes of
objects).
G inverts the TM , hence by Lemma 1.2 all of Snil , which means that it kills all

of Vnil. By the definition of dg quotient, we therefore have an induced dg functor
Z→W. By looking at (1.4) and (1.5), one sees that this functor is fully faithful.
On the other hand, we have shown that the underlying cohomology level functor is
essentially surjective, so we have a quasi-equivalence.
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Complements of divisors
Let X be a smooth quasi-projective variety over K = C, Y ⊂ X a (possibly sin-

gular) hypersurface, and U = X \ Y its complement. We will be interested in the
relation between coherent sheaves on X and on U . Write Y = s−1(0), where s is the
canonical section of the line bundle L = OX(Y ). The basic results are as follows:

For any coherent sheaf M on X, H∗(M |U) ∼= lim−→pH
∗(M ⊗ Lp), where

the direct limit is formed with respect to multiplication with s.
(1.6)

This is obvious for H0, and for higher Hk it can be proved by looking at the Čech
complexes associated to affine covers.

Every coherent sheaf on U is isomorphic to the restriction of a coherent
sheaf on X.

(1.7)

To see this, note first that every coherent sheaf on U can be written as a cokernel of a
map of vector bundles. More precisely, one can take both vector bundles to be direct
sums of powers of some fixed ample line bundle. Taking that line bundle to be the
restriction of an ample line bundle on X, we have written our sheaf as the cokernel of
a map M |U → N |U , where M,N live on X. This map can have poles along Y , but
one can get rid of those by replacing N with N ⊗ Lp for pÀ 0.

We now pass to the level of bounded derived categories of coherent sheaves, where
the basic results are:

The restriction functor Db(X)→ Db(U) is essentially surjective. (1.8)
HomDb(U)(M |U,N |U) ∼= lim−→p HomDb(X)(M,N ⊗ Lp) for any M,N ∈
ObDb(X).

(1.9)

The first statement is obvious from (1.6) and (1.7) above. The second one reduces
to (1.6) in the case where M and N are vector bundles or shifts thereof, via
Exti(M,N) = Hi(M∨ ⊗N). Any object of the bounded derived category can be
represented by a bounded complex of vector bundles, so a filtration argument estab-
lishes the general case (we point out that (1.9) fails for quasi-coherent sheaves,
such as

⊕∞
k=0 OX , as well as for unbounded complexes of coherent sheaves, such

as
⊕∞

k=0 OX [±k]).
To fit this into our general context, take V = Db(X), F the functor of tensor-

ing with L−1, and T : F → Id the natural transformation given by multiplying with
s. We then have an induced exact functor from the localized category Z to W =
Db(U), which is an equivalence by (1.8) and (1.9). In this case, the thick subcate-
gory Vnil consists precisely of those complexes whose cohomology is supported on
Y (these are actually isomorphic to complexes living on a formal thickening of Y ;
see [4, Lemma 3]).

Landau-Ginzburg branes
We consider the same situation as before, but concentrate on Y . Recall that an

object of Db(Y ) is called a perfect complex if it is isomorphic to a bounded complex
of vector bundles. There is a useful cohomological criterion [16, Lemma 1.11]:

M is perfect if and only if for all N ∈ ObDb(Y ), HomDb(Y )(M,N [d]) = 0
provided that dÀ 0.

(1.10)
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This, in particular, shows that perfect complexes form a thick triangulated subcate-
gory of Db(Y ). The quotient by that subcategory is called the category of Landau-
Ginzburg branes on Y , denoted by Db

sing(Y ) [15].
To interpret this in our framework, let j : Y → X be the inclusion, and j∗, j∗

the (derived) pushforward and pullback functors. For any M ∈ ObDb(Y ) there is a
canonical distinguished triangle

M ⊗ (L−1 Y )[1] // j∗j∗M // M.ff
(1.11)

There is a more universal viewpoint on this, as follows. In Db(Y × Y ) we have a
triangle

O∆Y
⊗ (L−1|Y )[1] // (j × j)∗O∆X

, // O∆Y
,

hh
(1.12)

where ∆ stands for the diagonals. The induced action on Db(Y ) by Fourier-Mukai
transforms yields (1.11). Set V = Db(Y ), and let F : V → V be the exact func-
tor of tensoring with (L|Y )[−2]. The boundary maps of (1.11), inherited from the
corresponding one in (1.12), constitute an ambidextrous natural transformation
T : F → Id , which we can use to build the localized category Z.

To relate the two constructions, we need the following observation:

M is perfect if and only if the p-th iterate of the boundary map of
(1.11), which is an element of HomDb(Y )(M,M ⊗ L−p(Y )[2p]), vanishes
for pÀ 0.

(1.13)

Namely, if M is perfect and r À 0, then HomDb(Y )(M,M ⊗ (L−p|Y )[r]) = 0 for all p,
so the p-th iterate will vanish for degree reasons. In the converse direction, we know
that the cone of the boundary map is a perfect complex, and the same then holds for
its iterates. If such an iterate is zero, then M itself is a direct summand of a perfect
complex, hence again perfect. The upshot is that the category Vnil is exactly that of
perfect complexes, hence that Z is equivalent to Db

sing(Y ). As a consequence,

HomDb
sing(Y )(M,N) = lim−→p HomDb(Y )(M,N ⊗ (L−p|Y )[2p]).

2. A∞-bimodules

The notion of bimodule over an A∞-algebra appears in many places in the litera-
ture; see for instance [13, 14, 24]. Nevertheless, it may still be appropriate to give a
concise presentation, if only to clarify the conventions.

Notation
As before, everything will be linear over a fixed ground field K. An A∞-algebra is

a graded vector space A together with a sequence of multilinear maps µdA : A⊗d → A,
d > 1, satisfying certain associativity equations. More compactly, if we set

T (A[1]) = K⊕A[1]⊕A[1]⊗2 ⊕ · · · ,
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then the A∞-structure can be written as a single graded map

µA : T (A[1]) −→ A[2],

with vanishing constant term K→ A[2]. We will use the standard “reduced” or “bar”
sign convention, so the A∞-associativity equations are

∑
m,n

(−1)∗µs−n+1
A (a1, . . . , am, µ

n
A(am+1, . . . , am+n), am+n+1, . . . , as) = 0, (2.1)

where ∗ = ‖a1‖+ · · ·+ ‖am‖ is the sum of reduced degrees ‖ai‖ = |ai| − 1. To mem-
orize the sign, think of µA as acting from the left, so that µnA (which is of degree
1 in the reduced grading) has to be commuted past a1, . . . , am. From now on, given
any expression which consists of a multilinear map applied to a block of subsequent
entries in a tensor expression, we write ∗ for the sum of degrees of all entries lying
to the left of that block, where “degree” for elements of A∞-algebras means reduced
degree. Further, all our A∞-algebras are assumed to be strictly unital, which means
that there is a (necessarily unique) e ∈ A0 such that

µ1
A(e) = 0, µ2

A(e, a) = a, µ2
A(a, e) = (−1)‖a‖+1a,

µdA(. . . , e, . . . ) = 0 for any d > 2.

We write Ā = A/Ke.

Bimodules
Let A,A′ be two A∞-algebras. An (A,A′)-bimodule consists of a graded vector

space P together with a structure map

µP : T (A[1])⊗ P⊗ T (A′[1]) −→ P[1], (2.2)

satisfying a generalized bimodule equation. Write µr|1|sP for the component of (2.2)
which has r tensor factors on the left and s on the right. Then, the A∞-bimodule
equation is
X
m,n

(−1)∗ · · ·µr|1|s−n+1
P (a1, . . . , ar,p, a′1, . . . , a

′
m, µn

A′(a
′
m+1, . . . , a

′
m+n), a′m+n+1, . . . , a

′
s)

+
X
m,n

(−1)∗ · · ·µr−n+1|1|s
P (a1, . . . , am, µn

A(am+1, . . . , am+n), am+n+1, . . . , ar,p, a′1, . . . , a
′
s)

+
X
m,n

(−1)∗µm|1|s−n
P (a1, . . . , am, µ

r−m|1|n
P (am+1, . . . ,p, . . . , a′n), a′n+1, . . . , a

′
s) = 0.

The boldface notation for elements of P is just an attempt to increase readability
in long formulae. Also, we follow the previous indications for signs (−1)∗, with the
proviso that the degree of p is the natural (unreduced) one. Finally, we impose a
unitality requirement, which is

µ
1|1|0
P (e,p) = p, µ

0|1|1
P (p, e′) = (−1)|p|+1p,

µ
r|1|s
P (. . . , e, . . . ,p, . . . ) = µ

r|1|s
P (. . . ,p, . . . , e′, . . . ) = 0 for r + s > 1.
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Morphisms of bimodules
Let P, Q be two (A,A′)-bimodules. A pre-homomorphism ρ : P→ Q of degree

|ρ| = k is a map

ρ : T (A[1])⊗ P⊗ T (A′[1]) −→ Q[k],

ρr|1|s(. . . , e, . . . ,p, . . . ) = ρr|1‖s(. . . ,p, . . . , e′, . . . ) = 0.
(2.3)

The unitality condition in (2.3) can equivalently be expressed by writing ρ as a map

T (Ā[1])⊗ P⊗ T (Ā′[1])→ Q[k].

We call ρ a bimodule homomorphism if it satisfies ∂ρ = 0, where

(∂ρ)r|1|s(a1, . . . , ar,p, a′1, . . . , a
′
s)

=
X
m,n

(−1)|ρ|∗µm|1|s−n
Q (a1, . . . , am, ρr−m|1|n(am+1, . . . ,p, . . . , a′n), a′n+1, . . . , a

′
s)

+
X
m,n

(−1)|ρ|+1+∗ρm|1|s−n(a1, . . . , am, µ
r−m|1|n
P (am+1, . . . ,p, . . . , a′n), a′n+1, . . . , a

′
s)

+
X
m,n

(−1)|ρ|+1+∗ρr|1|s−n+1(a1, . . . ,p, . . . , a′m, µn
A′(a

′
m+1, . . . , a

′
m+n), a′m+n+1, . . . , a

′
s)

+
X
m,n

(−1)|ρ|+1+∗ρr−n+1|1|s(a1, . . . , am, µn
A(am+1, . . . , am+n), am+n+1, . . . ,p, . . . , a′s).

Composition is defined by a similar, if somewhat simpler, formula:

(θρ)r|1|s(a1, . . . , ar,p, a′1, . . . , a
′
s)

=
∑
m,n

(−1)|ρ|∗θn|1|s−m(a1, . . . , am, ρ
r−m|1|n(am+1, . . . ,p, . . . , a′n), a

′
n+1, . . . , a

′
s).

A homomorphism whose higher-order terms all vanish will be called naive. In the
case of degree zero, this consists of a single graded linear map ρ0|1|0 which strictly
commutes with all bimodule operations; and such homomorphisms are composed in
the obvious way. A trivial example is the identity endomorphism 1 = 1P, given by
10|1|0(p) = p, with vanishing higher-order terms.

There is a dg category U = mod(A,A′) whose objects are bimodules, and whose
morphisms are pre-homomorphisms. Any bimodule homomorphism ρ : P→ Q induces
a map H(ρ) : H(P)→ H(Q), where the cohomology is taken with respect to µ0|1|0.
If this induced map is an isomorphism, then ρ is called a quasi-isomorphism. An
important property of the A∞ theory is that any quasi-isomorphism is an isomor-
phism in H(U). Concretely, this means that there is another bimodule homomor-
phism τ : Q→ P such that τρ and ρτ are homotopic (in the dg category sense) to
the respective identities. The proof is a standard argument involving the filtration of
homU spaces by length.

Shift
There is a natural shift operation on bimodules, P[1]i = Pi+1. This is accompanied

by a sign change in the bimodule structure maps. More precisely,

µ
r|1|s
P[1] (a1, . . . , ar,p, a′1, . . . , a

′
s) = (−1)◦+1µ

r|1|s
P (a1, . . . , ar,p, a′1, . . . , a

′
s). (2.4)
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Here ◦ = ‖a1‖+ · · ·+ ‖ar‖. As in the case of ∗, we will promote this to standard
notation: whenever we are dealing with some particular bimodule operation, ◦ is the
sum of reduced degrees for the elements of A lying to the left of the P factor. As a
consequence of the sign convention in (2.4), the naive identification

homi+1
U (P,Q) = homi

U(P,Q[1])

is an isomorphism of chain complexes. In contrast, the isomorphism

homi−1
U (P,Q) ∼= homi

U(P[1],Q),

which we write as ρ 7→ ρ[1], should be defined as (ρ[1])r|1|s = (−1)◦ρr|1|s.

Short exact sequences

Let Q be an (A,A′)-bimodule, and P ⊂ Q a submodule, which means a graded
subspace closed under all the operations µr,1,sQ . This obviously inherits a bimodule
structure, and so does the quotient O = Q/P. The inclusion and projection maps
ι : P→ Q, π : Q→ O, can be promoted to bimodule homomorphisms in the naive
way. We call the outcome a naive short exact sequence of bimodules,

0→ P
ι−→ Q

π−→ O→ 0.

Following the standard pattern, one can construct a boundary operator δ, which is a
homomorphism O→ P of degree 1. To define this, choose a splitting σ of π as a map
of graded vector spaces. Extend that naively to a pre-homomorphism of bimodules,
which means an element of hom0

U(O,Q). Then take δ = ∂σ, which will automatically
lie in the subspace hom1

U(O,P) ⊂ hom1
U(O,Q). The explicit formula is

δr|1|s(a1, . . . , ar,o, a′1, . . . , a
′
s) = (id− σπ)µr|1|sQ (a1, . . . , ar, σ(o), a′1, . . . , a

′
s). (2.5)

Note that (id− σπ) is the induced splitting of ι. Clearly, the homotopy class of δ is
independent of the choice of splitting.

In converse direction, given a unital degree 1 bimodule homomorphism δ : O→ P,
we define its mapping cone to be Q = O⊕ P, with the bimodule structure given by

µ
r|1|s
Q =

(
µ
r|1|s
O 0
δr|1|s µ

r|1|s
P

)
.

This fits into an obvious short exact sequence, whose boundary map is the given
homomorphism δ.

Tensor product

Let P be an (A,A′)-bimodule, and Q an (A′,A′′)-bimodule. We define their tensor
product to be the (A,A′′)-bimodule

S = P⊗A′ Q
def= P⊗ T (Ā′[1])⊗ Q, (2.6)
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with the differential

µ
0|1|0
S (p⊗ a′1 ⊗ · · · ⊗ a′t ⊗ q)

=
∑
n

µ
0|1|n
P (p, a′1, . . . , a

′
n)⊗ a′n+1 ⊗ · · · ⊗ a′t ⊗ q

+
∑
n

(−1)∗p⊗ a′1 ⊗ · · · ⊗ a′n ⊗ µt−n|1|0Q (a′n+1, . . . , a
′
t,q)

+
∑
m,n

(−1)∗p⊗ a′1 ⊗ · · · ⊗ a′m ⊗ µnA′(a′m+1, . . . , a
′
m+n)⊗ a′m+n+1 ⊗ · · · ⊗ a′t ⊗ q,

the one-sided higher-order structure maps

µ
r|1|0
S (a1, . . . , ar,p⊗ a′1 ⊗ · · · ⊗ a′t ⊗ q)

=
∑
n

µ
r|1|n
P (a1, . . . , ar,p, a′1, . . . , a

′
n)⊗ a′n+1 ⊗ · · · ⊗ a′t ⊗ q,

µ
0|1|s
S (p⊗ a′1 ⊗ · · · ⊗ a′t ⊗ q, a′′1 , . . . , a

′′
s )

=
∑
n

(−1)∗p⊗ a′1 ⊗ · · · ⊗ a′n ⊗ µt−n|1|sQ (a′n+1, . . . , a
′
t,q, a

′′
1 , . . . , a

′′
s ),

and finally,

µ
r|1|s
S = 0 whenever r > 0 and s > 0.

In the classical case (for complexes of bimodules over associative algebras), the for-
mulae (2.6) specialize to the derived tensor product, with the middle term T (Ā′[1])
arising from the reduced bar resolution of the diagonal bimodule. As a philosophical
aside, note that in the A∞ world any notion of tensor product must necessarily be a
“derived” one, because of the invertibility of quasi-isomorphisms.

Tensor products are functorial in the obvious sense. If τ : P→ P′ and ρ : Q→ Q′
are bimodule pre-homomorphisms, then one defines τ ⊗ ρ : P⊗A′ Q→ P′ ⊗A′ Q′ by

(τ ⊗ ρ)r|1|s(a1, . . . , ar,p⊗ a′1 ⊗ · · · ⊗ a′t ⊗ q, a′′1 , . . . , a′′s )

=
X
m,n

(−1)|ρ|∗τr|1|m(a1, . . . ,p, . . . , a′m)⊗ a′m+1 ⊗ · · · ⊗ a′n ⊗ ρt−n|1|s(a′n+1, . . . ,q, . . . , a′′s ).

To prevent confusion, we spell out what the standard sign means in this case, namely
∗ = ‖a1‖+ · · ·+ ‖ar‖+ |p|+ ‖a′1‖+ · · ·+ ‖a′n‖. This construction has the expected
properties

∂(τ ⊗ ρ) = ∂τ ⊗ ρ+ (−1)|τ |τ ⊗ ∂ρ,
(τ1 ⊗ ρ1)(τ2 ⊗ ρ2) = (−1)|ρ1| |τ2|τ1τ2 ⊗ ρ1ρ2.

Tensor product with the diagonal
Following standard usage, we talk of A-bimodules instead of (A,A)-bimodules. The

standard example is the diagonal bimodule, whose underlying graded vector space is
A, with operations

µ
r|1|s
A = (−1)◦+1µr+1+s

A .

The shifted version A[1] is actually a little simpler, since µr|1|sA[1] = µr+1+s
A .
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Naively, one expects the tensor product with the diagonal to do nothing. In the
present framework, this holds only up to quasi-isomorphism. More precisely, we have
a natural quasi-isomorphism

ε = εP,left : A⊗A P −→ P,

εr|1|s = (−1)◦µr+1+t|1|s
P : Ā[1]⊗r ⊗A⊗ Ā[1]⊗t ⊗ P⊗ Ā[1]⊗s −→ P

(2.7)

(as before, if we shift to ε[1] : (A⊗A P)[1] = A[1]⊗A P→ P, the sign vanishes). Natu-
rality of εmeans that for any bimodule homomorphism ρ : P→ Q, one has a homotopy
commutative diagram

A⊗A P
εP,left //

1A⊗ρ
²²

P

ρ

²²
A⊗A Q

εQ,left // Q

(2.8)

(in the notation from (2.7), the homotopy is κr|1|s = (−1)◦ρr+1+t|1|s). The fact that
ε is a quasi-isomorphism follows from standard spectral sequence arguments, which
reduce things to the cohomological level and hence to the classical case of algebras.
One can also construct an explicit quasi-inverse ξ = ξP,left : P→ A⊗A P. Namely,
take

ξr|1|0(a1, . . . , ar,p) = e⊗ a1 ⊗ · · · ⊗ ar ⊗ p, (2.9)

and set the other terms ξr|1|s, s > 0, to zero. This is actually strictly natural, meaning
that the diagram corresponding to (2.8) (with the horizontal arrows pointing left)
commutes on the nose.

For completeness, we should also mention the right-sided counterparts of (2.7)
and (2.9),

ε = εP,right : P⊗A′ A′ −→ P,

ξ = ξP,right : P −→ P⊗A′ A′.

The first is given by εr|1|s = (−1)‡µr|1|s+1+t
P , where

‡ = ‖a1‖+ · · ·+ ‖ar‖+ |p|+ ‖a′1‖+ · · ·+ ‖a′t‖+ 1.

Similarly, the non-vanishing components of the quasi-inverse are

ξ0|1|s(p, a′1, . . . , a
′
s) = p⊗ a′1 ⊗ · · · ⊗ a′s ⊗ e′.

Given any (A,A′)-bimodule P and (A′,A′′)-bimodule Q, we have two possible choices
of quasi-isomorphisms in either direction:

1P ⊗ εQ,left , εP,right ⊗ 1Q : P⊗A′ A′ ⊗A′ Q −→ P⊗A′ Q,

1P ⊗ ξQ,left , ξP,right ⊗ 1Q : P⊗A′ Q −→ P⊗A′ A′ ⊗A′ Q.

The first pair turns out to be homotopic, while the second pair agrees strictly. Note
also that in the special case of the diagonal module, the left-sided and right-sided
ε maps give rise to the same homomorphism A⊗A A→ A, while the quasi-inverses
only yield homotopic homomorphisms A→ A⊗A A.
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Convolution functors
An A∞-module over A is the same as an (A,K)-bimodule. In this situation, we will

specialize the notation to make it more familiar, writing µs|1 rather than µs|1|0, and
mod(A) rather than mod(A,K). These are of course left modules; right A-modules,
defined as objects of mod(K,A), will also arise occasionally.

Take two A∞-algebras A and A′, and consider the associated dg categories
V = mod(A), V′ = mod(A′). Every P ∈ Obmod(A,A′) gives rise to a dg functor
ΦP : V′ → V, which sends a module M to P⊗A′ M, and a module pre-homomorphism
φ to 1P ⊗ φ. We call this convolution with P. Tensor product of bimodules corre-
sponds to composition of convolution functors. Moreover, a bimodule homomorphism
ρ : P→ Q gives rise to a natural transformation Φρ : ΦP → ΦQ, which consists of the
collection of module homomorphisms ρ⊗ 1M. A more precise formulation would be
as follows: let fun(V′,V) be the dg category of all dg functors and their natural (pre-)
transformations. Then convolution defines a canonical dg-functor

Φ: mod(A,A′) −→ fun(V′,V).

There is one rather unfortunate aspect about this formalism. Taking P = A to be the
diagonal bimodule, one finds that the maps (2.9) provide a natural transformation
Id −→ ΦA. By definition, each single element making up that natural transformation
is an isomorphism in H0(V). However, it is not clear that the natural transformation
itself is an isomorphism in H0(fun(V,V)), since the inverse maps (2.7) are not func-
torial on the cochain level. One can improve the situation by considering a suitably
modified functor category (either adjoining abstract formal inverses à la derived cat-
egory, or more concretely using A∞-natural transformations). We will usually adopt
a more crude solution, which is to stay on the level of H0(V), where the problem is
of course non-existent.

Bar constructions
Assume that A is augmented, which means that it can be written as

A = Ke⊕ Ā,

with Ā itself a non-unital A∞-algebra. Consider T (Ā[1]) as a free graded coalgebra,
with the standard coproduct. µA determines a coalgebra differential of this, given
explicitly by

∂T (Ā[1])(a1 ⊗ · · · ⊗ as) =
∑
m,n

(−1)∗a1 ⊗ · · · ⊗ µnA(am+1, . . . , am+n)⊗ am+n+1 ⊗ · · · ⊗ as.

Similarly, given two augmented A∞-algebras A and A′ and a bimodule P, the bimod-
ule structure gives rise to a differential on T (Ā[1])⊗ P⊗ T (Ā′[1]), which makes that
space into a bi-comodule over the associated dg coalgebras. This construction in
fact yields a full embedding of the dg category of A∞-bimodules into that of dg
bi-comodules, which is also compatible with tensor products. However, if we start
with the diagonal A∞-bimodule, then T (Ā[1])⊗A⊗ T (Ā[1]) is not the diagonal dg
bimodule, but only a resolution thereof. This is one way of explaining the difficulties
encountered above when tensoring with the diagonal.
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3. A∞-subalgebras

This section is the computational core of the paper. We introduce one of the
two key objects, namely the boundary homomorphism associated to a pair A ⊂ B

of A∞-algebras. We also carry out some related computations with A-modules and
A-bimodules. These reveal cancellation phenomena which will be crucial later.

The boundary homomorphism
From now on, we work in the following context: B is an A∞-algebra, and A is an

A∞-subalgebra (containing the identity element of B). Consider the naive short exact
sequence of A-bimodules

0→ A
ι−→ B

π−→ B/A→ 0. (3.1)

Here A is the diagonal bimodule, and B is similarly considered to be an A-bimodule
by restriction of the diagonal B-bimodule structure. Let δ be the boundary homo-
morphism of this exact sequence. Explicitly, choosing a splitting σ : B/A→ B of the
projection, we find from (2.5) that

δr|1|s(a1, . . . , ar,b, a′1, . . . , a
′
s)

= (−1)◦+1(id− σπ)µr|1|sB (a1, . . . , ar, σ(b), a′1, . . . , a
′
s).

We usually prefer to work with δ[−1] : (B/A)[−1]→ A, which has degree zero and
where the sign reduces to a single −1.

Example 3.1. Let A be an A∞-algebra, and P an A-bimodule. One can then introduce
the trivial extension algebra B = A⊕ P, whose structure maps are

µnB =





µnA when all entries lie in A,
(−1)◦+1µ

r|1|n−1−r
P when one entry lies in P, and all others in A,

0 whenever at least two entries lie in P.

The choice of signs is such that the quotient bimodule B/A becomes equal to P. With
this in mind, the obvious splitting σ is a bimodule homomorphism, and if one uses
that, then δ will vanish identically. Hence, the homotopy class [δ] is zero in the trivial
extension case, for any choice of splitting.

Lemma 3.2. The following diagram is homotopy commutative:

(B/A)[−1]⊗A (B/A)[−1]
1⊗δ[−1]

ttiiiiiiiiiiiiiiii
δ[−1]⊗1

**UUUUUUUUUUUUUUUU

(B/A)[−1]⊗A A

εright **UUUUUUUUUUUUUUUU
A⊗A (B/A)[−1].

εleftttiiiiiiiiiiiiiiii

(B/A)[−1]

(3.2)

Proof. Take the pre-homomorphism κ : (B/A)[−1]⊗A (B/A)[−1]→ (B/A)[−1] of
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degree −1, whose components are the maps

κr|1|s(a1, . . . , ar,b⊗ a′1 ⊗ · · · ⊗ a′t ⊗ b′, a′′1 , . . . , a
′′
s )

= πµr+s+t+2
B (a1, . . . , ar, σ(b), a′1, . . . , a

′
t, σ(b′), a′′1 , . . . , a

′′
s ).

Then ∂κ is precisely the difference between the two sides in (3.2).

Remark 3.3. It is instructive to review how much of the given data we have used
so far. The bimodule structure of B/A contains part of µ∗B, namely that where all
inputs except one lie in A, and where the output is projected to B/A. The expression
for the boundary map δ takes the same kind of inputs, but this time it projects the
output to A. To define κ, we wrote down expressions µ∗B where all inputs except two
lie in A, and where the output goes to B/A. It seems likely that there is an entire
hierarchy of bimodule pre-homomorphisms, of which κ is only the first member, and
which eventually would involve all the structure of B. We have no immediate use for
this hierarchy, but it may be a worthwhile subject for future investigations.

A bimodule computation
We introduce a formal variable t of degree 2, which will be used to shift gradings.

This is just a bookkeeping device for now, but it will assume a more central importance
in the next section. For each p > 1 define an A-bimodule Tp, whose underlying graded
vector space is

Tp =
⊕

i1+···+il=p
ti1B[1]⊗ T (Ā[1])⊗ ti2B[1]⊗ · · · ⊗ T (Ā[1])⊗ tilB[1], (3.3)

where i1, . . . , il > 1. For p = 1, this is just tB[1] = B[−1], and the A-bimodule struc-
ture is as in (3.1). In general, we define

µ
0|1|0
Tp (d1 ⊗ · · · ⊗ du)

=
∑
m,n

(−1)∗d1 ⊗ · · · ⊗ µnB(dm+1, . . . , dm+n)⊗ dm+n+1 ⊗ · · · ⊗ du,

µ
r|1|0
Tp (a1, . . . , ar, d1 ⊗ · · · ⊗ du)

=
∑
n

µr+nB (a1, . . . , ar, d1, . . . , dn)⊗ dn+1 ⊗ · · · ⊗ du,

µ
0|1|s
Tp (d1 ⊗ · · · ⊗ du, a′1, . . . , a′s)

=
∑
n

(−1)∗d1 ⊗ · · · ⊗ dn ⊗ µu−n+s
B (dn+1, . . . , du, a

′
1, . . . , a

′
s)

µ
r|1|s
Tp (a1, . . . , ar, d1 ⊗ · · · ⊗ du, a′1, . . . , a′s)

= µr+u+s
B (a1, . . . , ar, d1, . . . , du, a

′
1, . . . , a

′
s),

(3.4)

where r, s > 0. Here, the d variables can lie in Ā[1] or in tiB[1] for any i > 0, and
powers of t are multiplied in the standard way.

Lemma 3.4. Project Tp to the summand where l = p and (i1, . . . , il) = (1, . . . , 1),
and then project each tB[1] factor further to the quotient t(B/A)[1], except for the
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rightmost one. The outcome is a quasi-isomorphism

πp : Tp −→ t(B/A)[1]⊗Ap−1 ⊗A tB[1].

Proof. We argue by induction on p, the case p = 1 being trivial. Define a finite
decreasing filtration W •Tp as follows. A tensor expression as in (3.3) lies in W 2i+1Tp

if the leftmost term has power ti+1 or higher, and it lies in W 2iTp if the leftmost term
either lies in tiA, or has a power strictly larger than ti. By induction assumption, we
then have quasi-isomorphisms

W 2iTp/W 2i+1Tp = tiA[1]⊗A Tp−i

'−→ tiA[1]⊗A t(B/A[1])⊗Ap−i−1 ⊗A tB[1] for 1 6 i 6 p− 1,

W 2i+1Tp/W 2i+2Tp = ti+1(B/A)[1]⊗A Tp−i−1a

'−→ ti+1(B/A)[1]⊗A t(B/A)[1]⊗Ap−i−2 ⊗A tB[1] for 0 6 i 6 p− 2.

Let Ci be the cone of

εleft [1] : A[1]⊗A t(B/A[1])⊗Ap−i−1 ⊗A tB[1]→ t(B/A[1])⊗Ap−i−1 ⊗A tB[1],

shifted up by 2i. For each 1 6 i 6 p− 2, there is a commutative diagram of chain
complexes, with short exact columns,

0

²²

0

²²
W 2i+1Tp/W 2i+2Tp //

²²

ti+1(B/A)[1]⊗A t(B/A)[1]⊗Ap−i−2 ⊗A tB[1]

²²
W 2iTp/W 2i+2Tp

²²

// Ci

²²
W 2iTp/W 2i+1Tp //

²²

tiA[1]⊗A t(B/A)[1]⊗A(p−i−1) ⊗A tB[1]

²²
0 0.

(3.5)

Since the top and bottom horizontal arrows are quasi-isomorphisms, so is the mid-
dle one. But on the other hand, Ci is acyclic by definition; hence so isW 2iTp/W 2i+2Tp

for any i > 1. A similar but simpler reasoning applies to the bottom of the
filtration. Namely, W 2p−2Tp can be directly identified with the mapping cone of
εleft [1] : tp−1A[1]⊗A tB[1]→ tpB[1], hence is again acyclic.

Having shown this, it follows that the projection Tp → Tp/W 2Tp = t(B/A)[1]⊗A

Tp−1 is a quasi-isomorphism. Now πp can be thought of as the composition of that
projection and 1⊗ πp−1, hence is itself a quasi-isomorphism by induction assumption.



98 PAUL SEIDEL

Curvature terms and inverse limits

Given a left A-module N and a right A-module M, we define a chain complex T ,
which is a kind of enlarged tensor product. Discussion of the significance of this is
again deferred to the next section. The underlying graded vector space is

T =
∏

l

∏

i1,...,il

N ⊗ T (Ā[1])⊗ ti1B[1]⊗ T (Ā[1]) · · · ⊗ tilB[1]⊗ T (Ā[1])⊗M, (3.6)

where l > 0 and ik > 1, and the differential is

∂(m⊗ d1 ⊗ · · · ⊗ du ⊗ n)

=
∑
s

µ
1|s
N (m, d1, . . . , ds)⊗ ds+1 ⊗ · · · ⊗ du ⊗ n

+
∑
r

(−1)∗m⊗ d1 ⊗ · · · ⊗ du−r ⊗ µr|1M (du−r+1, . . . , du,n)

+
∑
m,n

(−1)∗m⊗ · · · ⊗ d1 ⊗ · · · ⊗ dm ⊗ µnB(dm+1, . . . , dm+n)

⊗ dm+n+1 ⊗ · · · ⊗ du ⊗ n

+
∑
m

(−1)∗m⊗ · · · ⊗ dm ⊗ te⊗ dm+1 · · · ⊗ n.

(3.7)

Here, it is understood that those dk which lie in tiB[1], i > 0, act trivially on N

and M in the first two lines of (3.7). T comes with a complete decreasing filtration
F •T by the total power of t. Most terms in (3.7) actually preserve that power. The
exceptions are those in the last line, which insert te ∈ tB[1], hence raise the total
power by 1. Obviously, passing to the graded spaces F pT/F p+1T just kills those
terms. By comparing this with (3.4) and applying Lemma 3.4, one sees that

F pT/F p+1T =

{
N ⊗A M p = 0,
N ⊗A Tp ⊗A M ' N ⊗A t(B/A)[1]⊗Ap−1 ⊗A tB[1]⊗A M p > 0.

(3.8)
Consider the A-module homomorphism

ρ : t(B/A)[1]⊗Ap−1 ⊗A tB[1]⊗A M,
projection−−−−−−→ t(B/A)[1]⊗Ap ⊗A M

1⊗ξ−−→ t(B/A)[1]⊗Ap ⊗A tA[1]⊗A M

inclusion−−−−−→ t(B/A)[1]⊗Ap ⊗A tB[1]⊗A M,

(3.9)

where ξ is the map from (2.9), thought of as a degree 1 homomorphism
M→ tA[1]⊗A M. Let R be the cone of 1⊗ ρ, where the left factor is the identity of
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N. This fits into a diagram of chain complexes of the same form as (3.5),

0

²²

0

²²
F p+1T/F p+2T //

²²

N ⊗A t(B/A)[1]⊗Ap ⊗A tB[1]⊗A M

²²
F pT/F p+2T

²²

// R

²²
F pT/F p+1T //

²²

N ⊗A t(B/A)[1]⊗Ap−1 ⊗A tB[1]⊗A M,

²²
0 0

(3.10)

where the top and bottom horizontal arrows, hence also the middle one, are quasi-
isomorphisms. Similarly but in a more direct way, T/F 2T can be identified with
the mapping cone of 1⊗ ρ, where now ρ = (inclusion) ◦ ξ : N→ tB[1]⊗A M. If we
consider the spectral sequence associated to F •T , then (3.8) determines the E1 page,
and (3.10) the differential on that page. We will use that knowledge to prove:

Lemma 3.5. Project T/F p+1T to the summand where l = p and all ik are 1, and then
project each tB[1] factor further to t(B/A)[1]. The outcome is a quasi-isomorphism

T/F p+1T −→ N ⊗A t(B/A)[1]⊗Ap ⊗A M. (3.11)

Proof. We start with a particularly simple special case, which is when B = A⊕ P is
a trivial extension algebra. In that case, one can write the cohomology of (3.8) as

H(F pT/F p+1T ) =





H(N ⊗A M) p = 0,
H(N ⊗A tP[1]⊗A(p−1) ⊗A M)[−1]
⊕H(N ⊗A tP[1]⊗Ap ⊗A M) p > 0.

(3.12)

With respect to this isomorphism, the boundary operator of the left column in (3.10)
is the map induced by (3.9). Concretely, for p > 0, it is an isomorphism from the
second summand in (3.12) into the first one, while for p = 0 it is the inclusion into
the first summand.

Consider the spectral sequence associated to the induced filtration of T/F p+1T ,
for some fixed p. On the E2 page of that spectral sequence, only the p-th col-
umn is nonzero, and this is reduced to the second summand of (3.12), which is
H(N ⊗A tP[1]⊗Ap ⊗A M); hence it is the same as the cohomology of the right-hand
side of (3.11). An obvious comparison argument then proves the desired result, in the
trivial extension case.

To do the general case, write P = B/A and choose a splitting σ : P→ B of the
projection. Write each tiB[1] factor in (3.6) accordingly as tiA[1]⊕ tiP[1], and define
a finite increasing filtration V•(T/F p+1T ) by counting the total number of P factors.
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Concretely,

V−1(T/F p+1T ) = 0,

V0(T/F p+1T ) =
⊕

i1+···+il6p
N ⊗ T (Ā[1])⊗ ti1A[1]⊗ · · · ⊗ tilA[1]⊗ T (Ā[1])⊗M,

· · · (3.13)

Vp(T/F p+1T )/Vp−1(T/F p+1T ) = N ⊗ T (Ā[1])⊗ tP[1]⊗ · · · ⊗ tP[1]⊗ T (Ā[1])⊗M,

Vp(T/F p+1T ) = T/F p+1T.

The map (3.11) is just projection to the last quotient in (3.13). Passing to the associ-
ated graded space of this filtration just means killing all terms in (3.7) which decrease
the number of T factors, which is the same as passing from a given B to the trivial
extension algebra A⊕ P. We know that in that case, (3.11) is a quasi-isomorphism,
and the general result follows from that by a standard filtration argument.

To be able to take the limit p→∞, we also need to know how going from p+ 1
to p affects the right-hand side of (3.11).

Lemma 3.6. Let δ be the boundary map of (3.1), for some choice of σ. Then the
following diagram of chain maps is homotopy commutative:

T/F p+2T

projection

²²

projection // T/F p+1T

projection

²²
N ⊗A t(B/A)[1]⊗Ap+1 ⊗A M

1⊗···⊗1⊗δ[−1]⊗1 ))TTTTTTTTTTTTTTT
N ⊗A t(B/A)[1]⊗Ap ⊗A M.

1⊗···⊗1⊗ξuukkkkkkkkkkkkkk

N ⊗A t(B/A)[1]⊗Ap ⊗A A⊗A M

(3.14)

Proof. Take id− σπ, think of it as a degree −1 pre-homomorphism tB[1]→ A, and
use that to define a map

T/F p+2T → N ⊗A t(B/A)[1]⊗Ap ⊗A tB[1]⊗A M

→ N ⊗A t(B/A)[1]⊗Ap ⊗A A⊗A M.

This provides the desired chain homotopy between the two sides of (3.14).

The consequence is that the cohomology of T fits into a short exact sequence

0 −→ lim←−
1
pH(N ⊗A (B/A)[−1]⊗Ap ⊗A M)[−1] −→ H(T )

−→ lim←−pH(N ⊗A (B/A)[−1]⊗Ap ⊗A M) −→ 0,
(3.15)

where the inverse limit, and its derived functor, are both formed with respect to
δ, in the same sense as in (3.14). Note that by a trivial application of the Mittag-
Leffler condition, the derived term vanishes if each H(N ⊗A t(B/A)[1]⊗Ap ⊗A M) is
finite-dimensional [25, p. 83].
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4. Categories of modules

This section introduces the second main object, namely the curved A∞-algebra
D. Having defined that, we will study the relation between the categories of modules
over A and over D, leading to the main result of the paper (Theorem 4.1).

The boundary map as a natural transformation
First, we want to reinterpret Lemma 3.2 in terms of convolution functors. Let

V = mod(A). The bimodule (B/A)[−1] defines a dg functor Φ(B/A)[−1] : V→ V, and
the homomorphism δ[−1] : (B/A)[−1]→ A gives a natural transformation

Φδ[−1] : Φ(B/A)[−1] → ΦA.

To avoid technical problems stemming from the failure of (2.8) to be strictly com-
mutative, we pass to the cohomology level, where the relevant structures are

V = H0(V),

F = H0(Φ(B/A)[−1]) : V −→ V,

T = [Φδ[−1]] : F −→ H0(ΦA) ∼= Id .

T is ambidextrous. This is because the induced natural transformations RFT , LFT
from (1.1) are given by the two sides of the following diagram, which is homotopy
commutative by Lemma 3.2:

(B/A)[−1]⊗A (B/A)[−1]⊗A M

1⊗δ[−1]⊗1

ttiiiiiiiiiiiiiiiii
δ[−1]⊗1⊗1

**UUUUUUUUUUUUUUUUU

(B/A)[−1]⊗A A⊗A M

1⊗εleft'εright⊗1 **UUUUUUUUUUUUUUUUU
A⊗A (B/A)[−1]⊗A M

εleft⊗1ttiiiiiiiiiiiiiiiii

(B/A)[−1]⊗A M.

A curved A∞-algebra
Consider the graded vector space

D = A⊕ tB[[t]] ⊂ B[[t]],

where, as before, t is a formal variable of degree 2. In words, elements of Dk are
formal power series in t, of total degree k, constrained by requiring the constant (t0)
term to lie in A. The A∞-structure maps µsD, s > 0, are the t-linear extensions of
those on B. Additionally, we introduce a curvature term

µ0
D = te ∈ D2, (4.1)

where e is the identity on A. This satisfies the extended A∞-equations, which are the
same as (2.1) but allowing terms with n = 0 as well.

D comes with its t-adic filtration F •D, given by F 0D = D, F p = tpB[[t]] for p > 0.
This is a complete decreasing filtration, compatible with the A∞-structure, and the
curvature term (4.1) is small, meaning that it lies in F 1D. These are precisely the
conditions required to make D into a filtered curved A∞-algebra, which is a special
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case of the algebraic structures studied in [9]. Note that in spite of the obvious
t-linearity of composition maps, D is still considered to be defined over K, and not
K[[t]]. However, when making any constructions involving it, the t-adic topology needs
to be taken into account.

A category of modules
The naive definition of D-module would be a graded vector space M, together with

a structure map µM : T (D[1])⊗M→M[1], which satisfies an appropriately extended
version of the A∞-module equation. Such modules no longer have cohomology, since
the first of the structure equations is

µ
0|1
M (µ1

M(m)) + µ
1|1
M (µ0

D,m) = 0.

We will need to modify the general definition somewhat, in order to adapt it to
our particular context. A torsion D-module is one which admits a finite decreasing
filtration F •M, such that:

If d1 ∈ ti1D, . . . , dr ∈ tirD and m ∈ F jM, then µ
r|1
M (d1, . . . , dr,m) ∈

F i1+···+ir+jM
(4.2)

Projection D→ D/tB[[t]] = A allows us to pull back A-modules to D. Obviously, a
D-module is such a pullback if and only if tB[[t]] ⊂ D acts trivially on it. In these
terms, a torsion D-module is one which has a filtration such that the graded pieces
F pM/F p+1M are pulled back from A.

In line with the general philosophy concerning D, we only want to allow module pre-
homomorphisms which are continuous in the t-adic topology. In the case of torsion
modules, where the topology is discrete, this means that a pre-homomorphism of
degree k is given by a map φ : T (D̄[1])⊗M→ N[k] with the following property:

There is some q À 0 such that if d1 ∈ ti1D, . . . , dr ∈ tirD, with d1 +
· · ·+ dr > q, then φr|1(d1, . . . , dr,m) = 0.

(4.3)

The differential and composition are defined in the standard way, taking µ0
D into

account. We denote the resulting dg category of torsion modules by W = modt(D),
and the pullback dg functor by G : V→W. On the cohomology level, we have

W = H0(W),

G = H0(G) : V −→W.

As a consequence of (4.3), the cone of any degree 1 cocycle in W is again a torsion
module, which means that W is pre-triangulated. As a consequence,W is triangulated,
and G is an exact functor. Moreover, because of the existence of filtrations, the objects
in the image of G generate W .

A parallel discussion applies to right modules. In fact, the chain complex T dis-
cussed in Section 3 is just the tensor product M⊗D N, where M is a right A-module
and N a left A-module, both being pulled back to D (and where the tensor product is
really a topological, which means a t-adically completed, one). Therefore, (3.15) is a
statement about the behaviour of modules under pullback. Rather than elaborate on
that we will consider the dual construction involving homs instead of tensor products.
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Morphisms of pullback modules

Let M and N be two A-modules. Pull both back to D, and consider the chain
complex C = homW(M,N). Explicitly,

C =
⊕

l

⊕

i1,...,il

hom(T (Ā[1])⊗ ti1B[1]⊗ T (Ā[1])⊗ · · · ⊗ tilB[1]⊗ T (Ā[1])⊗M,N),

where the hom on the right-hand side is just the graded vector space of linear maps.
The fact that we have a direct sum instead of a product comes from (4.3). The
differential is

(∂φ)r|1(d1, . . . , dr,m)

=
∑
m

(−1)|φ|∗µm|1N (d1, . . . , dm, φ
r−m|1(dm+1, . . . , dr,m))

+
∑
m

(−1)|φ|+1+∗φm|1(d1, . . . , dm, µ
r−m|1
M (dm+1, . . . , dr,m)) (4.4)

+
∑
m,n

(−1)|φ|+1+∗φr−n+1|1(d1, . . . , dm, µ
n
B(dm+1, . . . , dm+n), dm+n+1, . . . ,m)

+
∑
m

(−1)|φ|+1+∗φr+1|1(d1, . . . , dm, te, dm+1, . . . , dr,m),

where it is understood that tB[[t]] ⊂ D acts trivially on both M and N. This means
that the first line of (4.4) vanishes unless d1, . . . , dm ∈ Ā[1], and that the second line
vanishes unless dm+1, . . . , dr ∈ Ā[1]. Let F•C be the increasing t-adic filtration of
C; FpC consists of those maps which vanish if the total power of t involved in the
argument is > p. Passing to the graded spaces, FpC/Fp−1C just kills the curvature
term, which is the last line in (4.4). Comparing this to (3.4) shows that

FpC/Fp−1C =





homV(M,N) p = 0,
homV(Tp ⊗A M,N)
' homV(t(B/A)[1]⊗Ap−1 ⊗A tB[1]⊗A M,N) p > 0,

which is the analogue of (3.8) in our context. Proceeding as in (3.10), one can show
that Fp+1C/Fp−1C is the mapping cone of the chain map induced by the module
homomorphism ρ from (3.9), or its simplified version for p = 1. From there, following
exactly the same path as in Lemma 3.5, one finds that the inclusions

ιp : homV(t(B/A[1])⊗Ap ⊗A M,N) −→ FpC = Fp homW(M,N)

are quasi-isomorphisms. On the cohomological level, this means that

lim−→p HomV ((B/A)[−1]⊗Ap ⊗A M,N) ∼= HomW (M,N). (4.5)

In principle, one could follow the same strategy as in Lemma 3.6 to prove that the
maps which occur in this direct system are induced by δ[−1]. However, it turns out
that there is an alternative approach, which leads to the same conclusion in a form
which is better adapted for our uses.
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The multiplicative structure
Define ψ ∈ homW(M, (B/A)[−1]⊗A M) as follows: for b ∈ B and a2, . . . , ar ∈ Ā,

ψr|1(tb, a2, . . . , ar,m) = π(b)⊗ a2 ⊗ · · · ⊗ ar ⊗m, and all other components are zero.
It is easy to see that ∂ψ = 0. Composition with ψ gives a map

homW((B/A)[−1]⊗A M,N)→ homW(M,N),

which raises the t-adic filtration level by one, and which fits into a commutative
diagram

homV(t(B/A)[1]⊗Ap ⊗A (B/A)[−1]⊗A M,N)

'ιp

²²

homV(t(B/A)[1]⊗Ap+1 ⊗A M,N)

'ιp+1

²²
Fp homW((B/A)[−1]⊗A M,N)

ψ // Fp+1 homW(M,N).
(4.6)

Passing to the direct limit in p, we see that composition with ψ is a quasi-isomorphism.
By standard categorical nonsense, [ψ] itself is an isomorphism in the cohomological
category W . Moreover, the combination of various diagrams of type (4.6) yields a
commutative diagram

homV(t(B/A)[1]⊗Ap ⊗A M,N)

=

G

ttjjjjjjjjjjjjjjjjj
ιp

'
''OOOOOOOOOOOO

F0 homW((B/A)[−1]⊗Ap ⊗A M,N) // Fp homW(M,N),

(4.7)

where the bottom arrow is successive composition with the homomorphisms ξ asso-
ciated to the modules M, (B/A)[−1]⊗A M, . . . , (B/A)[−1]⊗Ap−1 ⊗A M.

We also have a pre-homomorphism ν ∈ homW(M,A⊗A M) of degree −1, given
by a similar formula as ψ, but using the splitting σ and the corresponding projection
id− σπ : B→ A. This means that for b ∈ B and a2, . . . , ar ∈ Ā,

νr|1(tb, a2, . . . , ar,m) = (id− σπ)(b)⊗ a2 ⊗ · · · ⊗ ar ⊗m.

This has the property that

∂ν = ξ − (δ[−1]⊗ 1)ψ,

where both ξ and δ[−1]⊗ 1 come from V through the pullback functor. It follows that
ξ is the inverse up to homotopy of G(ε(δ[−1]⊗ 1)) ∈ homW((B/A)[−1]⊗A M,M). On
the cohomological level, this means first of all that the elements defining the natural
transformation T become isomorphisms under G : V →W . Moreover, thanks to (4.7),
the isomorphism in (4.5) can be defined by applying G and then multiplying with the
inverses of T , as required in Lemma 1.3. With the other assumptions in this lemma
having been checked earlier, we get:

Theorem 4.1. W = modt(D) is quasi-equivalent to the dg quotient of V = mod(A)
by the full dg subcategory Vnil associated to the natural transformation T . Hence,
the triangulated category W = H0(modt(D)) is the localization of V = H0(mod(A))
along T .
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Complements of divisors revisited
Let us return to one of the two examples from Section 1, although in somewhat

reduced generality. Take a smooth affine variety X over K = C, and Y ⊂ X a hyper-
surface, whose defining function is s ∈ C[X]. We set A = C[X], and define a commu-
tative dga B = A[ε], where |ε| = −1 and ∂ε = s, giving H(B) = C[Y ] (the advantage
of using this resolution for Y is that restriction of functions turns into the inclusion
A→ B, which fits well into our general framework). Turn A and B into A∞-algebras
in the obvious way. We have B/A = A[1], so the boundary homomorphism of (3.1)
is a bimodule homomorphism A→ A of degree zero, which is just given by s itself.
Let V perf ⊂ V be the smallest thick triangulated subcategory containing the free
module A, and W perf ⊂W its image under G : V →W . The first of these is just
V perf = Db(X), and by Theorem 4.1 we find that W perf = Db(U), where U = X \ Y .

On the other hand, one can write D = A⊕ tB[[t]] = A[[t]][γ], where γ = εt has
degree 1 (as usual, µ0

D = t, and the other nontrivial terms µ1, µ2 are inherited from
the dg structure of B). Let us apply Koszul duality relative to A. Namely, take
the D-module A, and consider its endomorphism dga, which turns out to be quasi-
isomorphic to the commutative dga C = A[θ][g], where |θ| = −1, |g| = 0, and the dif-
ferential is ∂θ = 1− gs. In particular, H(C) = A/(gs− 1) = C[U ]. Convolution pro-
vides an embedding of W perf ⊂W into H0(mod(C)) ∼= H0(mod(C[U ])). In this way,
the relationship with U emerges in a slightly more transparent way. It may be possi-
ble to use a suitably sheafified version of this to address the general quasi-projective
case.

5. Hochschild homology

This section contains the closed string analogues of the computations from Sec-
tion 3. The “closed string” terminology is loosely inspired by the role of Hochschild
homology in string theory, but one can also take it in quite a naive sense, meaning
that we deal with tensor products in the form of closed chains. The target of our
discussion is Theorem 5.4, which is the counterpart of (3.15).

Cyclic tensor products
Fix A∞-algebras A1, . . . ,Al = A0. Suppose, moreover, that for each 1 6 i 6 l we

have a bimodule Pi over (Ai−i,Ai). The cyclic tensor product of these bimodules,
denoted by Z = P1 ⊗A1 P2 ⊗A2 · · · ⊗Al−1 Pl ⊗Al

cycl , is the following chain complex:

Z = P1 ⊗ T (Ā1[1])⊗ P2 ⊗ · · · ⊗ T (Ām−1[1])⊗ Pl ⊗ T (Ām[1]),

∂(p1 ⊗ a1,1 ⊗ · · · ⊗ a1,u1 ⊗ p2 ⊗ · · · ⊗ pl ⊗ al,1 ⊗ · · · ⊗ al,ul)

=
X

i,m,n

(−1)∗p1 ⊗ · · · ⊗ pi ⊗ · · · ⊗ ai,m ⊗ µn
Ai

(ai,m+1, . . . , ai,m+n)

⊗ ai,m+n+1 ⊗ · · · ⊗ pi+1 ⊗ · · · ⊗ al,ul

+
X

i,m,n

(−1)∗ p1 ⊗ · · · ai,m ⊗ µ
ui−m|1|n
Pi

(ai,m+1, . . . ,pi, . . . , ai+1,n)⊗ · · · ⊗ al,ul

+
X
m,n

(−1)#µ
ul−m|1|n
P1

(al,m+1, . . . , al,ul ,p1, a1,1, . . . a1,n)⊗ · · · ⊗ al,m,

(5.1)
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where # = (‖al,m+1‖+ · · ·+ ‖al,ul
‖)(|p1|+ · · ·+ ‖al,m‖). The last term in the differ-

ential explains the name “cyclic”. Given bimodule pre-homomorphisms φi : Pi → Qi
for 1 6 i 6 l, one defines a map f = φ1 ⊗ · · · ⊗ φl ⊗ cycl between the respective cyclic
tensor products, as follows:

f(p1 ⊗ a1,1 ⊗ · · · ⊗ a1,u1 ⊗ p2 ⊗ · · · ⊗ pl ⊗ al,1 ⊗ · · · ⊗ al,ul
)

= (−1)#+§φul−ml|1|n1
1 (al,ml+1, . . . , al,ul

,p1, a1,1, . . . , a1,n1)⊗ a1,n1+1 ⊗ · · · ⊗ a1,m1

⊗ φu1−m1|1|n2
2 (a1,m1+1, . . . , a1,u1 ,p2, a2,1, . . . , a2,n2)⊗ a2,n2+1 ⊗ · · · ⊗ a2,m2

. . .

⊗ φul−1−ml−1|1|nl

l (al−1,ml−1+1, . . . , al−1,ul−1 ,pl, al,1, . . . , al,nl
)

⊗ al,nl+1 ⊗ · · · ⊗ al,ml
.

(5.2)

Here # = (‖al,ml+1‖+ · · ·+ ‖al,ul
‖)(|p1|+ · · ·+ ‖al,ml

‖) is the Koszul sign of the
permutation, and

§ = |φ2|(‖al,ml+1‖+ · · ·+ |p1|+ · · ·+ ‖a1,m1‖)
+ |φ3|(‖al,ml+1‖+ · · ·+ |p1|+ · · ·+ |p2|+ · · ·+ ‖a2,m2‖) + · · ·

is the Koszul sign which arises when moving the φk from the left to their appro-
priate positions. (5.2) is compatible with differentials, meaning, in particular, that
if the φi are homomorphisms, then f is a chain map. Moreover, if the φi are quasi-
isomorphisms, then so is f . Finally, just like the ordinary tensor product, this con-
struction behaves well with respect to composition of homomorphisms.

Even though our terminology is non-standard, the notion itself is not new by
any means. In the simplest case, where one has only one algebra A = A0 = A1 and
bimodule P = P1, Z is the reduced Hochschild complex of A with coefficients in P,
and its cohomology is called the Hochschild homology HH(A,P) with coefficients in
P. Specializing even further to P = A, one writes HH(A) = HH(A,A). More general
cyclic tensor products can also be written as Hochschild homology groups, simply by
noticing that

P1 ⊗A1 P2 ⊗A2 · · · ⊗Al−1 Pl ⊗Al
cycl = (P1 ⊗A1 · · · ⊗Al−1 Pl)⊗Al

cycl .

There is one case where the tensor product reduces to an ordinary non-cyclic one,
namely when P1 = M⊗N is the tensor product (over K) of a left A-module M and
a right A-module N. By moving the first factor to the right (with suitable Koszul
signs), one then obtains an isomorphism Z ∼= N ⊗A1 P2 · · · ⊗Al−1 Pl ⊗Al

M. In order
to extend the domain of applicability of this trick, it is useful to have some form of
free resolutions of bimodules. This is well-known for modules over dg algebras [3,
Section 10.12.2.4], and the proof generalizes in a fairly direct way, but it may still be
worthwhile to reproduce the argument:

Lemma 5.1. Given any (A,A′)-bimodule P, one can find a quasi-isomorphism Q→
P, where Q has the following property: it admits a bounded below increasing filtration
L•Q, such that each graded space LiQ/Li−1Q is a direct sum of shifted copies of the
bimodule A⊗A′.

Proof. Construct an increasing sequence P0 ⊂ P1 ⊂ P2 · · · as follows. The starting
point is P0 = P. Homotopy classes of bimodule homomorphisms A⊗A′ → Pi−1 are
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in bijective correspondence with elements of H(Pi−1); this takes [φ] to [φ0|1|0(e⊗ e′)],
and its bijectivity can be reduced to the analogous fact in classical module theory by
a spectral sequence argument. A parallel statement holds for direct sums of shifted
copies of A⊗A′. In particular, up to homotopy, there is a unique bimodule homomor-
phism A⊗H(Pi−1)⊗A′ → Pi−1 corresponding to Id : H(Pi−1)→ H(Pi−1). By con-
struction, this induces a surjective map on cohomology. Take Pi to be the cone of that
homomorphism. The union P∞ =

⋃
i Pi is acyclic; hence if we take Q = (P∞/P0)[−1],

then the boundary map Q→ P0 = P is a quasi-isomorphism. The desired filtration is
LiQ = (Pi/P0)[−1].

The Hochschild homology of D, with torsion coefficients
In the same way as in Section 4, one can construct a dg category bimodt(D) of

torsion D-bimodules. If P1, . . . ,Pl are such bimodules, then we define

P1 ⊗D P2 · · · ⊗D Pl ⊗ cycl

by an appropriate generalization of (5.1), keeping in mind that the tensor algebra
T (D̄[1]) should be used in its t-adically completed form, and that the differential has
additional µ0

D terms.
At the moment, the only relevant case will be when there is a single bimodule,

which moreover is pulled back from A. Fix such a P, write X = P⊗D cycl for the
Hochschild complex formed over D, and HH(D,P) = H(X) for its cohomology. X
carries a complete decreasing filtration F •X by total powers of t, and the finite
quotients of that filtration come with natural projections

X/F p+1X −→ P⊗A t(B/A)[1]⊗Ap ⊗A cycl . (5.3)

Our first claim is that these are quasi-isomorphisms. If P = M⊗N, then shifting the
M factor to the right identifiesX with the complex T from (3.6), and (5.3) with (3.11),
which we know to be a quasi-isomorphism. To derive the general result from this,
we note that an A-bimodule quasi-isomorphism Q→ P induces quasi-isomorphisms
on both sides of (5.3). One can therefore replace any given P by one of the kind
considered in Lemma 5.1. Then, an obvious filtration argument applies, reducing the
desired statement to the case of the bimodule A⊗A, which is part of the previously
considered situation.

The next claim is that the maps (5.3) fit into a homotopy commutative diagram

X/F p+2X

projection

²²

projection // X/F p+1X

projection

²²
P⊗A t(B/A)[1]⊗Ap+1 ⊗A cycl

1⊗···⊗1⊗δ[−1]⊗cycl ))SSSSSSSSSSSSSS
P⊗A t(B/A)[1]⊗Ap ⊗A cycl

1⊗···⊗1⊗ξ⊗cycluullllllllllllll

P⊗A t(B/A)[1]⊗Ap ⊗A A⊗A cycl

Note that in both diagonal arrows, the leftmost homomorphism is the identity, which
means that the entries in (5.2) do not actually get permuted. The statement is obvi-
ously parallel to (3.14), and the required chain homotopy can be constructed in the
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same way as in Lemma 3.6. The upshot is:

Lemma 5.2. For any A-bimodule P, there is a short exact sequence

0 −→ lim←−
1
pHH(A,P⊗A (B/A)[−1]⊗Ap) −→ HH(D,P)

−→ lim←−pHH(A,P⊗A (B/A)[−1]⊗Ap) −→ 0,

where the connecting maps in the inverse limit are given by applying the homomor-
phism δ to one of the B/A factors.

Lemma 5.3. Consider B as a torsion D-bimodule by pullback along D→ A→ B.
Then HH(D,B) = 0.

Proof. In bimodt(D), consider the degree −1 pre-homomorphism α from B to itself,
whose only nonvanishing components are

αr|1|s(a1, . . . , ar,b, a′1, . . . , ai−1, tb
′, a′i+1, . . . , a

′
s)

= −µr+1+s
B (a1, . . . , ar,b, a′1, . . . , ai−1, b

′, a′i+1, . . . , a
′
s)

for ak, a′j ∈ Ā and b, b′ ∈ B. One computes easily that ∂α = 1 is the identity mor-
phism. Hence, B is isomorphic to the zero object in H0(bimodt(D)). Hochschild
homology being functorial in this category, the desired result follows immediately.

The Hochschild homology of D, with diagonal coefficients
Strictly speaking, the ordinary Hochschild homology HH(D) = HH(D,D) does

not fall under the definition given above, since the diagonal is not a torsion bimodule.
The only necessary modification is a further t-adic completion of the Hochschild
complex, but it still may be best to write down the resulting complex, denoted by D.
Explicitly,

D =
Y

A⊗ T (Ā[1])⊗ ti2B[1]⊗ T (Ā[1])⊗ · · · ⊗ T (Ā[1])⊗ tilB[1]⊗ T (Ā[1])

⊕
Y

ti1B⊗ T (Ā[1])⊗ ti2B[1]⊗ T (Ā[1])⊗ · · · ⊗ T (Ā[1])⊗ tilB[1]⊗ T (Ā[1]),
(5.4)

where the product is over l > 1, and i1, . . . , il > 0 in the second case, and over l > 1,
i2, . . . , il > 0 in the first case, containing, in particular, the Hochschild complex of A

as the case l = 1. Let G•D be the complete decreasing filtration of D whose terms are
the second summand in (5.4), followed by its subspace where i1 > q for some number
q. Clearly, D/G1D is the Hochschild complex of D with coefficients in A, while for
any q > 0, GqD/Gq+1D is the analogous complex with coefficients in B (up to an
even shift). The cohomology of these complexes is determined by Lemma 5.2 and
Lemma 5.3, respectively. Hence:

Theorem 5.4. The Hochschild homology of D fits into a short exact sequence

0 −→ lim←−
1
pHH(A, (B/A)[−1]⊗Ap)

−→ HH(D) −→ lim←−pHH(A, (B/A)[−1]⊗Ap) −→ 0,

where the connecting maps are as in Lemma 5.2.
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6. Symplectic geometry

This section is a concise discussion of the original geometric motivation for our
algebraic constructions, mostly following [20]. We also consider one nontrivial exam-
ple, which is based on the known validity of homological mirror symmetry for CP2

and for elliptic curves (as in [2, 17, 18], even though our presentation is actually a
scaled-down version of [22]).

Semisimple base rings
Instead of a field K, we will need to work over a semisimple ring of the form

R = Kd = Ke1 ⊕ · · · ⊕Ked, where e2i = ei, eiej = 0 for i 6= j. For instance, an A∞-
algebra A over R is the same as an A∞-category with d ordered objects. Basis ele-
ments of T (Ā[1]), where the tensor product is now taken over R, can be thought of
as composable chains of morphisms in that category. Correspondingly, when taking
cyclic tensor products, one should use closed composable chains. To be precise, write
Mdiag =

⊕
i eiMei for the diagonal part of any R-bimodule M . Then the Hochschild

complex of A is given by (A⊗R T (Ā[1]))diag, and similarly in the more general context
of (5.1). With this in mind, the main results, and their proofs, remain as before.

A conjectural dictionary
Let π : E → D be an exact symplectic Lefschetz fibration over a disc, together

with a trivialization of the canonical bundle of E. For the precise definitions, see
for instance [23, Chapter 3]. Fix some z ∈ ∂D, and let M = Ez be the fibre at that
point. M is an exact symplectic manifold with contact type boundary, and comes
with an induced trivialization of its canonical bundle, hence it has a well-defined
Fukaya category F(M), which is an A∞-category over K. We will assume that F(M)
is strictly unital, which is not true with the most common definition, but can always be
achieved by passing from the given category to a quasi-isomorphic one. After making
some choices of paths, the global symplectic topology of E can be expressed in terms
of an ordered collection (L1, . . . , Ld) of vanishing cycles, which are Lagrangian spheres
in M . Denote by B ⊂ F(M)opp the full A∞-subcategory, or equivalently A∞-algebra
over R, formed by these d objects (the opposite category appears here for technical
reasons, having to do with our use of left modules in the body of the paper). We also
have the directed subalgebra A ⊂ B, whose morphism spaces depend on the ordering
of the objects:

eiAej =





eiBej i < j,

Kei i = j,

0 i > j.

This has a more intrinsic meaning, being part of F(π)opp, the Fukaya category of the
Lefschetz fibration as defined in [23]. Note that because of the Calabi-Yau (cyclic
or Frobenius) nature of B, the quotient B/A is canonically isomorphic to the dual
diagonal bimodule A∨[−dimC(M)]. Let D be the curved A∞-algebra associated to
the pair (A,B).

By construction, the Li are boundaries of Lagrangian submanifolds ∆i ⊂ E, called
Lefschetz thimbles. These are naturally objects of the wrapped Fukaya category
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W(E) [1] (here we are implicitly assuming that the corners of E have been rounded
off, so as to turn it into an exact symplectic manifold with contact type boundary).
The first conjecture is:

The full subcategory of W(E) with objects (∆1, . . . ,∆d) is quasi-
isomorphic to the full subcategory of W = modt(D) whose objects are
the pullbacks of the A-modules Ae1, . . . ,Aed. In particular, for each i
the cohomology H(homW(Aei,Aei)) is isomorphic to the wrapped Floer
cohomology HW ∗(∆i) of the corresponding Lefschetz thimble.

(6.1)

Example 6.1. Take a Lefschetz fibration whose fibre M = [−1, 1]× S1 is an annulus,
and which has a single vanishing cycle L1 = {0} × S1. In this case, E is deformation
equivalent to a four-dimensional ball; hence HW ∗(∆1) = 0. On the other hand, A =
K, and the exact sequence (3.1) obviously splits, so the category W = H0(W) is zero
by Theorem 4.1.

There is a corresponding conjecture for Hochschild homology, which was the main
subject of [20]:

Up to grading-reversal, HH∗(D) is isomorphic to the symplectic homol-
ogy SH∗(E). In particular, it is a symplectic invariant of E, independent
of the Lefschetz fibration.

(6.2)

Take the product D ×M , and pick distinct cyclically ordered points

z1, . . . , zd ∈ ∂D.
Then, the disjoint union of the Ki = {zi} × {Li}, which we denote by K, is a Legen-
drian submanifold in the boundary of D ×M , hence it has an associated Chekanov-
type dga, which is linear over R. (Chekanov’s original construction [5] is for Legen-
drian links in the standard contact R3, but a generalization to the boundary of any
exact symplectic manifold is envisaged as part of the general development of relative
Symplectic Field Theory; see [7, 8].) Tentatively, we would like to propose:

The Chekanov dg algebra associated to K should be quasi-isomorphic to
T (D̄[1])∨. (6.3)

Here, we have used the directedness of A to write it as A = R⊕ Ā, and similarly
D = R⊕ D̄. Note that the dga arising from contact geometry is also of the form
T (C[1])∨ for an appropriately defined A∞-algebra with curvature C. It seems natural
to expect an underlying relation between C and D̄, with the caveat that the notion
of equivalence for such structures is a little more tricky.

Remark 6.2. One can think of T (D̄[1])∨ as the endomorphism dga of the simple
torsion D-module R, and this relates (6.3) to (6.1). On the other hand, E is obtained
from D ×M by attaching Weinstein handles to the Ki. This is indicative of a more
general relationship between Symplectic Field Theory, wrapped Floer cohomology,
and Weinstein handle attachment.

Fukaya category computations
Take the function (C∗)2 → C, (x1, x2) 7→ x1 + x2 + (x1x2)−1, restrict its domain

and range to suitable large compact subsets, and choose an appropriate symplec-
tic form, so as to obtain an exact Lefschetz fibration π : E → D. The fibre M is a
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torus with three boundary components, and for a suitable choice of paths, the three
vanishing cycles (L1, L2, L3) are as drawn in the figure below.

L1

L2

L′1

L3

We will start by determining the cohomology algebra B = H(B) underlying
B ⊂ F(M)opp. It is convenient to take K = C, and to write the underlying semisimple
ground ring as a group ring R = C[Γ], where Γ = Z/3 (the idempotents ei ∈ R are
then given by the three characters of the group). In these terms,

B = ΛH o Γ,

where Γ acts diagonally on H = C3 by cubic roots of unity, and ΛH is the exterior
algebra with the induced action. It is instructive to draw B as a quiver whose vertices
correspond to the idempotents ei ∈ R ⊂ B, and where the arrows i→ j are labeled
with the spaces eiB̄ej :

Ce3

Λ3H

§§

Λ2H

¸¸

H

~~
Ce1

Λ3H

LL

Λ2H

>>

H
,, Ce2

Λ2H

ll

H

UU

Λ3H

hh

The grading of B is not the standard grading of the exterior algebra (even though
the two agree mod 2). Its precise shape depends on some choices, but one possibility
is:

morphism space degree
e1Be2 = H 1
e2Be3 = H 1
e3Be1 = H −1
e2Be1 = Λ2H 0
e3Be2 = Λ2H 0
e1Be3 = Λ2H 2
ekBek = Λ0H ⊕ Λ3H 0, 1
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All this is straightforward to check, since Floer cohomology computations on M can
be done in a purely combinatorial fashion.

Without changing the quasi-isomorphism class of B, we may assume that it is
minimal (µ1

B = 0, so it is an A∞-deformation of B itself) and strictly unital. It is
well-known that the classification of A∞-deformations is governed by Hochschild
cohomology. In this case, only one of the relevant cohomology groups is nonzero,
and the upshot of the classification theory is as follows: there is a unique degree 3
homogeneous polynomial s ∈ Sym3(H∨) such that for all h ∈ H,

µ3
B(h, h, h) = s(h). (6.4)

Here, the input (h, h, h) is thought of as lying in e1Be2 × e2Be3 × e3Be1 = H×3, and
the output belongs to (e1Be1)0 = C. Moreover, this polynomial determines the entire
A∞-structure of B, up to A∞-homomorphisms whose linear term is the identity. We
refer to [22, Section 3] for an exposition of the relevant algebraic deformation theory,
and to [22, Section 4] for the Hochschild cohomology computation. This statement
reduces the computation of B to finding s, hence to a finite number of unknowns.
In fact, there are further constraints coming from the nontriviality of π1(M), which
imply that s(h) = ch1h2h3 for some c ∈ C. To determine that constant, one introduces
a slightly perturbed version L′1 of L1, and computes the Massey product by counting
rectangles. This is shown in figure on page 111 for h = (1, 1, 1), where precisely one
relevant rectangle exists, thereby proving that c 6= 0 (the precise value of c depends
on the conventions used in the isomorphism B ∼= ΛH o Γ, hence is irrelevant). In
particular, this shows that B is not formal.

Let A ⊂ B be the directed A∞-subalgebra. Because of the homogeneity of the
grading, it is clear that A is a graded algebra in the ordinary sense, with vanishing
higher-order products. For the same reason, B/A is an ordinary A-bimodule, which
means that its structure maps µr|1|s vanish for r + s 6= 1. In V = mod(A), take the
simple module Re1. The dual of the chain complex homV((B/A)[−1]⊗A Re1, Re1)
is e1T (Ā[1])⊗R (B/A)[−1]⊗R T (Ā[1])e1, which is explicitly given by

H ⊗H ⊗H

0
@∧ ⊗ id
id⊗ ∧

1
A

−−−−−−−→ (Λ2H ⊗H)⊕ (H ⊗ Λ2H)
(∧,−∧)−−−−→ Λ3H. (6.5)

The only nontrivial cohomology group of (6.5) is Sym3H ⊂ H⊗3. Consider the canon-
ical cocycle ε(δ[−1]⊗ 1) ∈ homV((B/A)[−1]⊗A Re1, Re1). By using Definition (2.5)
together with (6.4), one sees that its cohomology class is precisely given by s ∈
Sym3(H∨). This shows that the action of δ[−1] on the module category captures
the additional information arising from the non-formality of B.

The mirror equivalence
π : E → D is the mirror of the algebraic variety X = CP2, or more precisely (to

make things basis-independent) of P (H). A rigorous formulation of this statement is
as follows. Let V perf ⊂ V = H0(mod(A)) be the smallest thick triangulated subcat-
egory containing the free module A. Then

V perf is equivalent to the derived category Db(X). (6.6)
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Indeed, as already pointed out in [21], A is the algebra associated to Beilinson’s
exceptional collection of sheaves (Ω2

X(2),Ω1
X(1),OX). Given that, it is straightforward

to construct the equivalence, which sends these sheaves to the modules Aei.
The bimodule (B/A)[−1] is isomorphic to A∨[−2] (this is a general fact, as men-

tioned before, but on the other hand it is elementary to verify it in this particular
case). Hence, the associated convolution functor F : V perf → V perf is the Serre func-
tor, up to a shift [−2]. Under (6.6), this corresponds to the functor of tensoring with
the canonical bundle KX . Therefore, the natural transformation corresponding to
T is given by a section of K−1

X
∼= OX(3). Using the previous computation for the

simple module, one shows that this section is just given by the previously defined
polynomial s (up to a nonzero constant, which is irrelevant). The image W perf of
V perf under the functor V →W = H0(modt(D)) is the localization along this nat-
ural transformation, which as discussed before is the derived category of coherent
sheaves on the open subset U = X \ Y for Y = s−1(0). For the particular s which
occurs here, U ∼= (C∗)2. Since the object of V corresponding to Ae1 is a line bundle,
HomW (Ae1,Ae1) is just the ring of functions C[U ]. On the other hand, the total space
E of our fibration is deformation equivalent (as an exact symplectic manifold with
contact type boundary) to the unit cotangent bundle of T 2, and this deformation
also turns the Lefschetz thimble ∆1 into a cotangent fibre. It is known that in this
case, the wrapped Floer cohomology is isomorphic to the homology of the based loop
space, HW 0(∆1) ∼= H0(ΩT 2;C); this is in turn isomorphic to HomW (Ae1,Ae1), as
predicted by (6.1).
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