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TRUNCATIONS OF THE RING OF NUMBER-THEORETIC FUNCTIONS
JAN SNELLMAN
(communicated by Winfried Bruns)

Abstract
We study the ring I" of all functions Nt — K, endowed with the
usual convolution product. I', which we call the ring of number-theoretic
functions, is an inverse limit of the “truncations”

I,={fel|Vm>n: f(m)=0}.

Each T',, is a zero-dimensional, finitely generated K-algebra, which
may be expressed as the quotient of a finitely generated polynomial
ring with a stable (after reversing the order of the variables) monomial
ideal. Using the description of the free minimal resolution of stable
ideals given by Eliahou-Kervaire, and some additional arguments by
Aramova-Herzog and Peeva, we give the Poincaré-Betti series for T',.

1. Introduction

Cashwell and Everett [2] studied “the ring of number-theoretic functions”
I={fIN" 5K} (1)

where NT is the set of positive natural numbers (we denote by N the set of all natural numbers)
and K is a field containing the rational numbers. I' is endowed with component-wise addition
and multiplication with scalars, and with the convolution (or Cauchy) product

fo(n) = > fla)g(b) (2)
(a,b)€(NF)x (Nt)
ab=n
With these operations, [' becomes a commutative K-algebra. It is immediate that it is a local
domain; less obvious is the fact that it is a unique factorisation domain. Cashwell and Everett
proved this in [2] using the isomorphism

o:T — K[[X]]
3
fr ) fmarage - ©
where X = {z1,z2,23,...}, K[[X]] is the “large” power series ring of all functions from the

free abelian monoid M = [X] (the free abelian monoid generated by X) to K, and where
the summation extends over all n = p{*p5?--- € N*. Here, and henceforth, we denote by p;
the 7’th prime number, with p; = 2, and by P the set of all prime numbers. That (3) is an
isomorphism is immediate from the following isomorphism of commutative monoids, implied
by the fundamental theorem of arithmetics:

(NF,) = JT % +) (4)
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The following number-theoretic functions are of particular interest (whenever possible, we
use the same notation as in [2]):

1. The multiplicative unit € given by €(1) = 1, e(n) =0 for n > 1,

2. A : Nt — N given by A(1) = 0, X(q1---q) = if ¢1,...,q are any (not necessarily
distinct) prime numbers.

3. A: Nt — Ngiven A(1) = 0, A(p* ...p%) = 3 a,p,.

4. The Mobius function p(1) = 1, u(n) = (—1)V if n is the product of v distinct prime
factors, and 0 otherwise,

5. For any i € N*, x;(p;) = 1, and x;(m) = 0 for m # p;. Note that under the isomorphism
(3), ®(xi) = =

The topic of this article is the study of the “truncations” I',,, where for each n € Nt

I'y={fellm>n = f(m)=0} (5)

With the modified multiplication given by

fg(n) = > f(a)g(b) (6)

(a,b)e{1,...,n} x{1,...,n}

ab=n

T'), becomes a K-algebra, isomorphic to I'/.J,,, where J,, is the ideal
Jp={feT|¥Ym<n: f(lm)=0}.
If we define
m, ' =T, (7)

T (f)(m) = {

flm) m<n
0 m>n

(8)

then 7, is a K-algebra epimorphism, and J, is the kernel of 7,,. We note furthermore that J,
is generated by monomials in the elements ;.

To describe the main idea of this paper, we need a few additional definitions. First, for
any n € N* we denote by r(n) € N the largest integer such that p,(,) < n. In other words,
r(n) is the number of prime numbers < n (this number is often denoted 7(n)). Secondly, for
a monomial m = z{* ---z%, we define the support Supp(m) as the set of positive integers i
such that a; > 0. We define max(m) and min(m) as the maximal and minimal elements in
the support of m.

Definition 1.1. A monomial ideal I C K[zy,...,,] is said to be strongly stable if whenever
m is a monomial such that z;m € I, then x;m € I for all ¢ < j. If this condition holds at least
for all ¢ < 7 = max(m) then I is said to be stable.

We can now state our main theorem:
Theorem 1.2. Let n € Nt and r = r(n). Then the following holds:
(1) T, ~ K{mli"w”], where I, is a strongly stable monomial ideal, with respect to the reverse
order of the variables.
(II) T, is artinian, with dimg (T',,) = n. Furthermore, if it is given the natural grading
with |x;| = 1, then its Hilbert series is Y., d;t' where d; is the number of w < n with
Mw) = 1.
(III) There is a 1-1 bijection between the minimal monomial generators of I, of minimal
support v, and the solutions in non-negative integers to the equation

logn —logp, < Z bilogp; < logn (9)

i=v



Homology, Homotopy and Applications, vol. 2, No. 2, 2000 19

(IV) If we denote by Cy,, the number of such solutions, then the Poincaré-Betti series of
the free minimal resolution of K as a cyclic module over Ty, is the following rational
function:

1+¢t)"
P(Torl"(K,K),t) = ( . 10
( * ( ) )> ) 1 —¢2 (Z::l(l +t)(z_1)cn,r—i+1) ( )
We will show this result, and also give the graded Poincaré-Betti series. For this, we define
the number C), , ¢ which counts the number of minimal generators of I,, of minimal support v
and total degree d. We determine some elementary properties of the numbers C,, , 4 and Cp, 5.

2. The ring of number-theoretic functions and its truncations

2.1. Norms, degrees, and multiplicativity

For a monomial M 5 m = z7'...z% we define the weight of m as w(m) = p§* ... pt~ (we
put w(1) = 1). Hence w gives a bijection between M and Nt. Furthermore, we can define a
term order on M by m > m' iff w(m) > w(m'). If we define the initial monomial in(f) of
f € K[[X]] as the monomial in Supp(f) minimal with respect to >, then in(f) is easily seen
to correspond to the norm N(a) of a number-theoretic function «, defined as the smallest n
such that a(n) # 0. Here, we must use w and & to identify M and N* and K[[X]] and T'. As
observed in [2], the norm is multiplicative: N(a8) = N(a)N(f).

Cashwell and Everett also define the degree D(a) to mean the smallest d such that there
exists an n with A(n) = d and a(n) # 0. This corresponds the smallest total degree of a
monomial in Supp(f). Furthermore, the norm M (a), defined as the smallest integer n with
A(n) = D(a), a(n) # 0, corresponds to the initial monomial of f under the term order obtained
by refining the total degree partial order with the term order >.

A multiplicative function is an element o € T' such that a(1) = 1 and a(ab) = a(a)a(b)
whenever a and b are relatively prime. Cashwell and Everett observes that a multiplicative
function is necessarily a unit in I'. One can further observe that if « is multiplicative, then
f = ®(a) can be written

f(xy, 22, 23,...) = fi(z1) fa(22) f3(3) - - -

where each fi(z;) € K]J[x;]] is invertible. In particular, the constant function I' 5 vy with
vo(n) = 1 for all n, corresponds to

S - 1 1 1
meM 1—.7,'11—5[721—5[73

Since the Mobius function is defined to be the inverse of this function, we get that it corresponds
to

(I—2)(I—22)(1—a3)---=1— (Zﬂfi) + (O mimy) = (Y mimgwr) + -

i<j i<j<k

2.2. Truncations of the ring of number-theoretic functions
Let n,n’ € N*, n’ > n. Then there is a K-algebra epimorphism

" Ty =T,

Hence, the I';,’s form an inverse system.

Lemma 2.1. @Fn ~T.
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Proof. Given any f € I, the sequence (71 (f), m2(f), 7w3(f),...) is coherent. Conversely, given
any coherent sequence (g1,92,93,--.), we can define g : N — K by g(m) = g¢;(m) where
1 >=m. O

As a side remark, we note that

Lemma 2.2. The decreasing filtration
S22 2032 (11)
is separated, that is, N, J, = (0).
Definition 2.3. We define
I, = K[[X]]{m € M|w(m) >n}, (12)
that is, as the monomi;l[[i;l](]eal in K[[X]] generated by all monomials of weight strictly higher

than n. We put A, = ==

Proposition 2.4. A K-basis of A, is given by all monomials of weight < n. Hence A,, is an
artinian algebra, with dimg (A,) = n. Putting r = r(n), we have that

_ K[[X]] ~ K[.Tl,...,wr]
An = I, — I,NK[zy,...,2,] (13)

Proof. As a vector space, K[[X]] ~ U @ I,,, where U consists of all functions supported on
monomials of weight < n. It follows that A4, ~ U as K vector spaces. Of course, there are
exactly n monomials of weight < n. Finally, if s > r then w(z,) = ps > n, hence z, € I,. O

We will abuse notations and identify I,, and its contraction I,, N K[z, ..., z,].
Lemma 2.5. T',, ~ 4,,.

Proof. Since A, has a K-basis is given by all monomials of weight < n, the two K-algebras are
isomorphic as K-vector spaces. The multiplication in A, is induced from the multiplication
in K[[X]], with the extra condition that monomials of weight > n are truncated. This is the
same multiplication as in I',. [l

Proposition 2.6. I, is a strongly stable ideal, with respect to the reverse order of the vari-
ables.

Proof. We must show that if m € I,,, and z; |m, then ma;/z; € I for i < j < r. We have that
w(me;/z;) = w(m)p;/pi > w(m) > n. O

Part I of the main theorem is now proved.
We give K[z1,...,7,] an N?-grading by giving the variable z; bi-degree (1,p;). Since each
I,, is bihomogeneous, this grading is inherited by A,,.

Theorem 2.7. The bi-graded Hilbert series of A, is given by
Ap(tu) = Zcijtiuj,
2]

where c;; is the number of pi* ...p% < n with Y. a, =1 and Y arpr = j. Furthermore,

An(t,1) =) dit’
An(Lu) = Zejuj
j

where d; is the number of w < n with N(w) = i, and e; is the number of w < n with Mw) = 1.
In particular, the t'-coefficient of A, (t,1) is the number of prime numbers < n.
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Proof. The monomial z{" --- 2% has bi-degree (31, a;, Y a;p;). O

This establishes part IT of the main theorem.

3. Minimal generators for I,

Let n € N, and let r = r(n). We have that
et =mel, << wm)>n << [[p>n (14)
i=1

We denote by G(I,,) the set of minimal monomial generators of I,,. For m = z{'...x%" to
be an element of G(I,,) it is necessary and sufficient that m € I,, and that for 1 < v < r,
z, Im = m/x, & I,,. In other words,

T
1<j<n,a; >0 = n<Hp?i<pjn. (15)

i=1

Definition 3.1. For n,v,d positive integers, we define:

Cn = #G(In) (16)
Chv = #{m € G(I,,)|min(m) = v } (17)
Chv,a=#{m e G,)|min(m) =v, |m| =d} (18)

Theorem 3.2. C,,, is the number of solutions (b1,...,b.) € N to the equation

logn —logp, < Z b; logp; < logn. (19)

i=v

Equivalently, Ch, , is the number of integers x such that n/p, < x < n and such that no prime
factors of x are smaller than p,.

Similarly, Cp,v,q is the number of solutions (by,...,b,) € N to the system of equations

logn —logp, < Zbilogpi <logn

i=v
> bi=d-1.
i=1

or equivalently, Cp y.q is the number of integers x such that n/p, < x < n and such that no
prime factors of x are smaller than p,, and with the additional constraint that \(x) = d.

(20)

Proof. We have that a, > 0, a,, = 0 for w < v. Hence equation (15) implies that
n < [[pf < pon.
j=v
Putting b, = a, — 1, b; = a; for j > v we can write this as
T T
n<py [[pF <pm = n/p<][[pF<n
s j=v
from which (19) follows by taking logarithms. This implies (20) as well. O

We have now proved part III of the main theorem.
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Figure 1: The numbers C), and Cj, ;.

n S [i=1[]i=2]3]4]5[6]7][8]9T]10]

2 T T

3 3 2 1

4 3 2 1

5 6 3 2 1

6 6 3 2 1

7 | 10 4 3 2 |1

8 | 10 4 3 2|1

o | 11 5 3 2|1

10 | 11 5 3 2|1

11 | 16 6 4 3|21

12 | 16 6 4 3|21

13 | 22 7 5 als |21

14 | 22 7 5 als |21

15 | 23 8 5 als |21

16 | 23 8 5 als |21

17 | 30 9 6 5 (4|3 |2]1

18 | 30 9 6 504|321

19 | 38 10 7 6|5 |4|3|2]1

20 | 38 10 7 6|5 |4a|3|2]1

21 | 39 11 7 6|5 |a|3|2]1

22 | 39 11 7 6|5 |a|3|2]1

23 | 48 12 8 7165 |als|2]1

24 | 48 12 8 7|65 |als|2]1

25 | 50 13 9 7|65 |als|2]1

26 | 50 13 9 7|65 |als|2]1

27 | 51 14 9 716|543 ]|2]1

28 | 51 14 9 716|543 ]|2]1

20 | 61 15 10 8| 7|6 |5|4a]|3]|2

30 | 61 15 10 s |76 |5 ]4a]|3]2

Figure 2: The numbers Cp, ; 4.
)t

n i =1 i =2 [ 8 J4J5J6J7[8T9]
2 T
3 2 1
4 w1 1
5 u+ 2 2 1
6 2u 1 2 1
7 2u 2 3 2 1
8 w? 4w t2 3 2 1
9 u2 4 2u+2 u+2 2 1
10 w2 $3u 41 u+ 2 2 1
11 w2 4 3u+2 u+ 3 3 2|1
12 2u2 4 2u 42 u+3 3 2|1
13 2u? 4 2u+3 u+4 4 3|2 |1
14 2u2 4 3u 42 u+4 4 3|2 |1
15 2u? 4 4u 42 2u 43 4 3|2 |1
16 w3 4 u2 fau42 2u +3 4 3|21
17 wd 4w f4au+3 2u 44 5 a3 |21
18 | w3 +2u2+4+3u+3 2u 44 5 a3 |21
19 w3 +2u2 4 3u+4 2u+5 6 514|321
20 | u® 4+3uZf2u 44 2u+5 6 5 (4|3 ]|2]1
21 | w3 +3u24+3u+4 3u 44 6 5|a|ls|l2]1
22 | w3 +3u244u+3 3u 44 6 5|a|ls|l2]1
23 ud +3u2 f4au+t4 3u+5 7 6|5 |a|3]|2]1
24 | 203 4202 f4u 44 3u+5 7 6|5 |4|3]2]1
25 | 2uB +2u2 $5u 44 4u+5 ut+6 6|5 [a|3]2]1
26 | 2ud +2u2 +6u+3 4u+5 wu+6 |6 |5 |als|2]1
27 | 2ud +3u2 +6u+3 | u2+3u+5 | u+6|6|5|4a|3]|2]|1
28 | 20 +4u? +5u+3 | w2 +83u+5|u+6|6|5|4a|l3|2]|1
20 | 2u8 +4u? 45ut4 | w2 43ut6 | w7 | 7|6 |5 4|32
30 | 2uB +5u2+4u+4a | w243ut+6 | ut+7 | 7|6 |5 ]|a]|3]|2

22
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Example 3.3. The first few I,,’s are as follows: I = (23), Iy = (23,22, 21 23), I = (23, ©3, 172),
— (3 2 2
I5—(.’I}l,flfz,.’1,'1.’1,'2,.’1}3,.’151.’1,'3,.’1}2563)-

We tabulate C,,; and C,; 4, the latter in form of the polynomial uw=? > Chp,iju’ in the

tables 1 and 2.

Theorem 3.4. (1) C,, =0 forv>r(n

(2) Yn e N: Yo <r(n) : Cpigr(n)—v 2 0,
(3) ¥neN: C, > ("W,

(4) Yo €N: 3N :Vn > N : Cpiqpin)—y = V-
(5) If n is even, then Cy, , = Cp_1,4 for all v,
(6) Cna=[n/2].

Proof. (1) Obvious.

(2) and (3) It suffices to show that for any subset S C {1,...,r} of cardinality 1 or 2, there
is an m € G(I,) with Supp(m) = S. If S = {i} then there is an unique positive integer a such
that pg_l <n < pb, and m = 2¥ is the desired generator. If S = {i,j} with i < j then we
claim that there is a positive integer a such that zfx; € G(I,). Namely, choose b such that
p?il <n< p?, then since p; < p; one has n < p'»’*lpj. Hence x?ilmj € I, so it is a multiple

(2
of some minimal generator. By the definition of b, this minimal generator must be of the form

zfx; for some a, which establishes the claim.
(6) We must show that the number of solutions in N" to

r

n .

5 < I[lpibl <n
1=

is precisely [5]. Obviously, any integer € (%, n] fits the bill; there are [3] of those.
(5) The case v = 1 follows from (6). Hence, it suffices to show that if v > 1, z € (J-,n]NN,

and if z has no prime factor < p,, then = € ("p—_l,n — 1] N N. The only way this can fail to
happen is if z = n, but then z is even, and has the prime factor 2 = p; < p,, a contradiction.

(4) For large enough n, the only integers < n with all prime factors > 1+ r(n) — v are
DPltr(n)—vs- - -»Pr(n)- Lhere is v of these, and they are all > p%' O
Theorem 3.5. 1. Cpyq =0 forv>r(n), and for d < 2,

2. VWweN:IN:Vn>N: Cn’1+r(n),v72 =, Cn71+r(n)7ruyd =0 ford#2,

3. (") = #{m e Nt|m < n, \(m) =2}.
Proof. The first and the last assertions are obvious. The second one follows from the proof of
(4) in the previous lemma. O

4. Poincaré series

In [3], a minimal free multi-graded resolution of a I over S is given, where S = K[z1,...,z,]
is a polynomial ring, and I C (z1,...,7,)? is a stable ideal. As a consequence, the following
formula for the Poincaré-Betti series is derived:

P(TorS (1K), 1) = 3 (14 o)t (21)
a€G(I)

where G(I) is the minimal generating set of I. Since the resolution is multi-graded, (21) can
be modified to yield a formula for the graded Poincaré-Betti series (we here consider S as
N-graded, with each variable given weight 1):

P(TorS (I,K), t,u) = > alol(1 4 gymax(®-1 (22)
acG(I)
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We will use the following variant of this result:

Theorem 4.1 (Eliahou-Kervaire). Let I C (z1,...,7,)> C K[z1,...,2,] = S be a stable
monomial ideal. Put

big=#{m € G(I)|max(m) =i, Im| =d} (23)
bi = #{m € G(I)|max(m) =i} (24)
Then
P(Tor? (I, K),t) = zr:bi(l + )0 (25)
P(Tor? (I,K),t,u) = Z (1+tw) > by jud | (26)

For the Betti-numbers we have that
B, = dimg (TorS (I, K)) = 3 b; (Z ; 1). (27)
i=1

From Proposition 2.6 we have that the ideals I,, are stable after reversing the order of the
variables. Hence, replacing max by min, and hence b; with C, 14,4, we get:

Corollary 4.2. Letn € Nt r =r(n), S = K[z1,...,z,]. Then

P(Torl (I, K),t) =Y Crygroi(1+ )01 (28)
i=1
P(Tor] ,(In, K),t,u) = > (14 tw) ™" Cpyppijur. (29)
i=1 j

For the Betti-numbers we have that
. i—1
ﬁq = Z Cn,1+ri< q > (30)
i=1

In [6, 1] it is shown that if S = K[z1,...,2,] and I is a stable monomial ideal in S, then
S/I is a Golod ring. Hence, from a result of Golod [4] (see also [5]), it follows that

(1+¢)"

P(Tord/ (K, K),t) = 31
( (K, K), 1) 1 —t2P(Tor (I, K),t) (31)
Regarding S as an N-graded ring, one can show that in fact
1 T
P(Tor?H (K, K),t,u) = (1 +ut) (32)

1 — t2P(Tor? (I, K), t,u)
The following theorem is an immediate consequence:

Theorem 4.3 (Herzog-Aramova, Peeva). Let S = K[z1,...,z,]|, and suppose that I is a
stable monomial ideal in S. Put

bia = #{z € G(I)|max(z) =i, x| = d}
bi=#{z € G()| max(z) =i}
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Then, for R = S/1I, we have that

_ (I+1t)"

IR DDV

. 1+t

1= 230 (14 tu)h) > bijud

Specialising to the case of A,,, we obtain:

P(Tor(K,K),t)

P(TorF(K, K),t,u)

Corollary 4.4. Let n € Nt and let r = r(n). Regard A, as a naturally graded K -algebra,
with each x; given weight 1, and regard K as a cyclic A-module. Then

1+t)"

P(Tor (K1) 1) — ( ' 35

(Tory™ (K, K),1) 1_t222:1(1+t)(’—1)0n,r—i+1 (%)
1 r

P(Torfn (K’ K)’t,u) e ( + U’t) (36)

11— (E::l ((1 + tu)li=D) Ej Cn,r—i-i-l,juj))
Part IV of the main theorem is now proved.

Example 4.5. We consider the case n = 5, then r = r(n) = 3, so S = Kz, %2, 23] and
I =I5 = (23, 2122, 173, 73, 2273, 23). We get that Cs; = 3, C52 = 2,C5 3 = 1. According
to our formulas' we have
PP(t) =1+42(1+1t) +3(1 +t)*> = 6 + 8 + 3>

s/ (1 + t)r _ 1

Ko7 1—e2pSt)  1-3t
When we consider the grading by total degree, we have that C5 1> =2,C513 =1, C522 =
2, U532 = 1. Hence, our formulas yield

PP (t,u) = u? + 20 (1 + 1) + (2u® + u®)(1 + )2
= 5u” + u® + (6u® + 2u)t + (2u® + u®) £
1+ tu
udt? + 2820 + 2tu — 1

We list, the first few Poincaré-Betti series P(Tor2" (K, K),t,u) in table 3.

P (tu) =

Conjecture 4.6. P(Tor" (K, K),t) = —%, qn(t) = Efi(gl) hi(n)tt, with
1. Qn(_]-) 7é 0,
l1(n) is the number of odd primes p such that p*> < n,
) =ti(n) +1,

S S e e
>
o

5. Acknowledgements

I am indebted to Johan Andersson for suggesting the idea of studying the homological
properties of the truncations I',,. I thank the referee for suggesting a simplified proof of parts
of Theorem 3.4.

'Here, we have used the abbreviation PS(t) = P(TorS(I,K),t), we will also write Py/'(t) =
P(Torf/I(K, K),t) et cetera.
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n Graded Non — graded
—1I —1I
2 —(u-1) " —-n "
3 —(2tu—1)" —(2t-1)"
o Idtw —2t—1""1
4 (u+u2)t2+tu—1 ( )
o ld4tw - 1!
5 (uB+2u?)t24+2tu—1 (3t 1) )
— 1d4tw — -1~
6 (2uB4u?)t?+2tu—1 (3t 1) )
_ 1+4+tu _ _ -
7 (2uB+2u?)t2+3 tu—1 (4t 1) L
_ 1+4+tu _ _ -
8 (ut+ud+2u?)t>+3 tu—1 (4t 1)
9 1+2 tutt’u® 1+t
T WSz ur 2 ) 3 (w3 ud A u?) 22 tu—1 T 5t243t—1
10 . 142 tutt2u> 14t
(ub+3 u4+u3)t3+(u4+412A3—é-3u2)t2+2tu—1 5t24+3t—1
11 _ 142 tuttu 14t
(w43 ut+2u3)t3+ (ur+4 u3+5 u?)t2+3 tu—1 6t24+4t—1
12 _ 1+2 tutt?u® — 4t
(2uP+2ut+2u3)t34+ (2 ut+3 ud+5u?)t2+3 tu—1 6t24+4t—1
13 _ 1+2 tutt?u® 4t
(2ub+2u?+3ud)t3+(2 u4+23 %3+7u2)t2+4tu71 Tt24+5t—1
142 tutt"u 14t
14 - Lt
(2ub+3 ut+2ud)t3+(2 u4+24%3+6 u?)t2+4 tu—1 Tt24+5t—1
15 _ 142 tutt3u 1+t
(2udb+4u?+2u3)t3+(2 u4+26 %34—5 u?)t2+4 tu—1 8t24+5¢t—1
16 _ 142 tutt2u 1+t
(u6+u5+4u4+2u3)t3+(u5+u24+26u3+5 u?)tZ2+4 tu—1 8t24+5¢t—1
17 _ 142 tuttu 14t
(u6+u5+4u4+3u3)t3+(u5+u24+26u3+7u2)t2+5 tu—1 9t24+6t—1
18 _ 142 tuttu 14t
(uS+2uP+3ut+3ud)t3+(uP+2 ut+5ud+7 u?)t2+5 tu—1 9t246¢t—1
19 _ 1+2 tutt®u® S €. =
(uS+2uP+3 ut+4 ud)t3+(uP+2 u? +5 ud+9 u2)t2+6 tu—1 10t24+7t—1
20 . 142 tutt3u® _ 1+t
(uS+3uP+2 ut+4 ud)t3+(ud+3 u?+4 ud+9 u2)t2+6 tu—1 10t24+7t—1
21 _ (1+tu)? _ 14¢
t3ub+3 u5t3+t2u5+3t3u4+3u4t2+421t3u3+6 t2u3 48 t2u+6 tu—1 11¢247t—1
22 | — (L+tu) 14t
t3ub+3 udt3+t2ud+4 t3ut+3 utt2+3 t3ud+T t2ud+7t2u2 46 tu—1 11¢24+7¢—1
23| — (1+tu)® 1+t
t3ub+3 u5t3+t2u5+4t3u4+3u4t2+421t3u3+7t2u3+9t2u2+7tu71 12t248t—1
_ (1+tu) 1+t
24 2t3ub+2 uBt3+4+2 t2udb+4 t3ut+2 u4t2gL4t3u3+7t2u3+9t2u2+7tu71 12t248¢t—1
25 _ (14tu) _ (141)2
FIERD) 133122 0247 1—1
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Figure 3: Graded and non-graded Poincaré-Betti series of the minimal free resolution of K

over A,.
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