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K-THEORY OF AFFINE TORIC VARIETIES
JOSEPH GUBELADZE

(commaunicated by Hvedri Inassaridze)

Abstract

This is an updated and expanded version of my preprint #68 in the
K-theory server at Urbana (which was an abstract of my talk at Vechta
conference on commutative algebra, 1994). In §2 two conjectures on
nilpontency of the ‘monoid Frobenius action’ on the K-theory of toric
cones and on stabilizations of the corresponding K-groups are stated.
Both of these conjectures are higher analogues of Anderson’s conjecture
and their proof would bring a rather complete understanding of K-
theory of toric varieties/semigroup rings.

1. Survey of results

Homotopy properties of algebraic K-functors have always been among the central topics of
algebraic K-theory which, unlike its topological counterpart, is not homotopy invariant.

Recall, that a functor F' from the category of rings (or its certain subcategory, or schemes, S-
schemes, etc) is called homotopic (on the corresponing category) if the natural homomorphisms
of type F(R) — F(R[t]) (F(X xAl) — F(X), respectively) are all isomorphisms (# a variable).
Also, a ring R is called F-regularif F(R) = F(R][t]).

The starting point here is the Grothendieck-Serre classical theorem that a regular ring is
Kyp-regular. This has been extended to K; by Bass-Heller-Swan and to all K; by Quillen in
his fundamental work [Q1].

In the unstable setting the same homotopy properties are at least no less interesting. The
well known Serre Problem on freeness of projective modules over polynomial rings with coef-
ficients in a field (equivalently, on triviality of algebraic vector bundles over affine spaces) is
certainly a distinguished question in this diretion. The 20 years of unceased activity to resolve
this question, that was rised in Serre’s famous Faisceaur algébriques cohérents and has playd
an essential role in creating algebraic K-theory, culminated in two independent confirmations
in 1976 by Quillen and Suslin [Q2][Sul].

Affine toric varieties are natural generalizations of affine spaces. Originally, M. Demazure
considered in [D] complete smooth toric varieties (in the context of maximal agebraic tori
in Cremona groups). They can be characterized as equivariant (smooth) compactifications
of algebraic tori (say, a projective space). The theory of general (normal) toric varieties was
then developed in [KKMS]. Geometrically, toric varieties are exactly the normal varieties
containing an open torus (the embedded torus) whose group structure extends to an action on
the whole variety (we refer [F,0] for the background).

Affine toric varieties, which glue up to general toric varieties, are exactly prime spectra of
affine normal monomial algebras. Moreover, the condition of the presence of a stable point un-
der the torus action is equivalent to the condition of the absence of invertible non-trivial mono-
mials. The latter constitute a class of intuitively contractible varieties, generalizing in a natural
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way affine spaces (for instance, Spec(k[X?, X2V, XY?2,Y?]), Spec(k[X3,Y3, Z3, XY Z])). Cor-
respondingly, Anderson’s conjecture [A] states that projective modules over affine normal
monomial subalgebras of polynomial algebras are free (k a field).

Observe that the only regular rings in Anderson’s conjecture are polynomial algebras. Thus
there is no immediate application of the aforementioned Grothendieck-Serre theorem even in
the stable case. (Actually, one should apply its corollary that Ko(Ro) = Ko(R) for a graded
regular ring R=Ry® Ry B ---.)

In order to achieve maximal generality (both for the coefficients rings and the involved
monomial structures) we now switch to the monoid rings setting.

All the considered below monoids M are assumed to be commutative, cancellative and,
unless specified otherwise, torsion free (that is, torsion free in the group of differences). These
conditions ammount to the injectivity of the natural mappings M — gp(M) — Q ® gp(M),
where gp(M) is the corresponding group of differences. By the same token we exactly get the
class of additive submonoids of rational vector spaces.

A monoid M is called normal if (writing additively) nxz € M for n € N and = € gp(M)
imply € M. M is called seminormal if the following implication holds

x€gp(M), 2r e M and 3z € M = x € M.

Observe that monoids are in general assumed neither finitely generated nor without non-trivial
invertible elements.

Normal monoids are seminormal, but there are many seminormal non-normal monoids
[Gul].

It is well known that a monoid domain R[M] is normal (seminormal) if and only if the
domain R and the monoid M are normal (seminormal, respectively).

We say that M is c-divisible for some ¢ € N if for any € M there exists y € M for which
cy = z. Observe that a c-divisible monoid is always seminormal.

Later on Z, will denote the additive monoid of nonnegative rational integers and Q4 that
of nonnegative rationals.

All the considered rings are assumed to be commutative.

The following result in particular confirms Anderson’s conjecture:

Theorem 1.1 ([Gul]). For any principal ideal domain (PID) R and any monoid M (maybe
infinitely generated and with non-trivial units) the following conditions are equivalent:

(a) Pic(R[M]) =0,

(b) Ko(R[M]) =7,

(c)

(d)

finitely generated projective R[M]-modules are all free,

M is seminormal.

Remark 1.2.

(a) M. Masuda, L. Moser-Jauslin and T. Petrie [MMJP] succeeded in establishing a pos-
itive answer to the FEquivariant Serre Problem for reductive abelian groups (that every
G-vector bundle over the representation space is trivial whenever G is abelian) by con-
necting it with the corresponding Quotient Problem, which in its turn reduces to the
special case of Theorem 1.1.

(b) R. Laubenbacher and C. Woodburn have developed an algorithmic vesrion of Theorem
1.1 [LW].

For the stable case we have

Theorem 1.3 ([Gu2][Gub]). For any regular ring R and any monoid M we have SKy(R) =
SKo(R[M]) and K_;(R) = K_;(R[M]) = 0 (Bass negative K -groups). The following condi-
tions are equivalent:
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(a) Pic(R) = Pic(R[M]),
(b) Ko(R) = Ko(R[M]),
(¢c) M is seminormal.
The equality above concerning SKj is still valid for monoids M for which gp(M ) is a
p-group (for some prime p) if in addition p-1 =0 in R [Gub].
R. G. Swan has deduced from [Gul] the most general unstable result:
Theorem 1.4 ([Sw1]).
(a) For any monoid M and a Dedekind domain R all finitely generated projective R[M]-
modules are of type free®rank 1.
(b) For any affine regular domain R and a seminormal monoid M without nontrivial units
all finitely generated projective R[M]-modules are extended from R.

Remark 1.5. The claim (a) confirms a conjecture of P. Murthy. By Popescu’s approximation
theorem on regular domains containing a field [Sw2] we immediately obtain the generalization
of the statement (b) to arbitrary regular rings just containing a subfield (we recall that the
case when M is free corresponds to the Bass-Quillen Conjecture, proved for geometric case by
H. Lindel, [Lin]).

The converse to Theorem 1.1 is provided by the following
Theorem 1.6 ([Gu2][Swl]). For a not necessarily torsion free monoid M the following con-
ditions are equivalent:
(a) Pic(R[M]) =0 for all PID’s R,
(b) M is torsion free and seminormal.

Remark 1.7. No longer the torsion freeness of M follows from the triviality of the Pic(k[M])
if instead of PID’s k runs through fields. The monoid Z x Z2 \ {(0,1)} is such an example.

The situation changes radically when we consider higher K-groups:

Theorem 1.8 ([Gu6]). For any Ks-regular ring R and any intermediate finitely generated
monoid " C M C Q7 , where n is an arbitrary natural number, the following conditions are
equivalent:

(a) M ~1ZY,

(b) R[M] is K;-regular,

(c) M is seminormal and SK;(R) = SK,(R[M]),

and, if in addition, Q}%/Z #0

(d) SKi(R) = SK(R[M]).

Remark 1.9.

(a) In case QF /7= 0 there are ‘exotic’ examples of fields and non-seminormal monoids
whose monoid algebras have trivial SK;-groups. For instance, SK;(k[X?, X3]) = 0 for
any number field & [Kr]. However, according to the statement (b) the ring k[X?2, X?] is
not SKi-regular.

(b) First explicit examples of nontrivial elements in SK;(C[M]) for certain rank 2 monoids
(i. e. rank(gp(M) = 2)) were constructed by V. Srinivas [SR]. Actually, as it follows
from [Gu6], Theorem 1.8 is valid for essentially more wide class of finitely generated
monoids than in the statement above. Moreover, the corresponding nontrivial elements
in SK;-groups are explicitly constructed. This theorem in particular implies that rings of
type R[M] for M as above are not K;-regular for all i > 0. Therefore, the ‘naive’ higher

analogue (the equalities of type K;(R) = K;(R[M])) of Anderson’s conjecture fails badly
in the class of finitely generated monoids.
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(c) The method developed in [Gu6] does not allow one to show that the homogeneous
coordinate ring of the Segre embedding P' x P! — P3 is not K;-regular. I could not
show independently that this ring K[UW,UX, VW,V X] (k a field) is in fact not K-
regular. Hence the question: is the mentioned ring an example of a singular ring which
is K;-regular for all i € N? We recall that the question wether or not regularity and
K -regularity are equivalent in the Noetherian setting is still unsettled (even for affine
rings).

However, there is a wide class of infinitely generated monoids for which the K-regularity is
restored. The next three results are in this direction.

Theorem 1.10 ([Gu2]). Let ¢ > 1 be a natural number and M a c-divisible monoid. Then:
(a) SL.(R[M])= E.(R[M]) for all Euclidean domains R and for all natural numbers r > 3,
(b) Ki(R) = K{(R[M]) for any regular ring R provided M has no nontrivial units.

Theorem 1.11 ([M]). Let M be a c-divisible monoid for some ¢ > 1, having no non-trivial
units. Then Ky(R) = K2(R[M]) for any regular ring R.

Theorem 1.12 ([Gu5]). K;(R) = K;(R[M]) for any regular ring R provided Z'} C M C Q' ,
i,n €N, and M is ¢ divisible for some ¢ > 1.

Remark 1.13. The key ingredient in the proof of Theorem 1.12 is the Suslin-Wodzicki solu-
tion to the excision problem in algebraic K-theory [SuW]. The condition Z} C¢ M C Q7 is
equivalent (up to isomorphism) to the condition that the set ®(M) (to be defined below) is
a simplex. The generalization to arbitrary convex polytopes provides a natural generalization
of Anderson’s conjecture to higher K-groups. See §2 for details.

The following result concerns certain class of monoids — the monoids of ®-simplicial growth.
This class generalizes the class of intermediate monoids Z} C M C (U} exactly in the same way
as the class of simplicial growth convex polytopes generalizes the class of arbitrary simplices
(of arbitrary dimensions). Here a finite convex polytope P C R™ is said to be of simplicial
growth if there exists a sequence of convex polytopes

PCcPhC...CP,=P

(for some natural m) such that P, and the closures (in the Euclidean topology) of P; \ P;_;
(i € [2,m]) are all simplices. The polytope itself, associated to a monoid M, is obtained by a
hyperplane cross section of the cone spanned by M (in the real space gp(M) ® R), provided
such exists. The mentioned polytope will be denoted by ®(M). Of course, ®(M) is defined up
to projective equivalence, but the properties we deal with are invariant under this equivalence.

It is a classical fact of convex geometry that the aforementioned cross section exists for any
finite, convex, pointed, polyhedral cone. On the other hand M spans such a cone in R® gp (M)
if it is finitely generated and has no non-trivial units. More generally, the cross section exists
if there is a monoid extension N C M satisfying the conditions: N is finitely generated and
without non-trivial units, and for any x € M some positive multiple of = is in N (the integral
extension condition)

Theorem 1.14 ([Gu3][Gud]). Let R be a noetherian ring of finite Krull dimension d and
M a monoid of ®-simplicial growth. Then the group of elementary matrices E,.(R[M]) acts
transitively on the set of unimodular r-rows Um,(R[M]) for all r > max(3,d + 2).

Remark 1.15. The classical case of this theorem (i. e. when M = 7Z7) is due to Suslin [Su2].
We remark that the case of monoids M of type Z"t C M C @} is also nontrivial and that in
order to involve all monoids one has to treat the monoids to whom correspond arbitrary finite
convex polytopes. It should also be mentioned that Theorem 1.14 generalizes to the monoids
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for which gp(M )i, is either cyclic or a p-group for some prime p (provided p-1 = 0 in R)
[Gub]. Theorem 1.14 evidently implies (for monoid rings) an improvement of Bass-Vaserstein
general estimate for surjective K;-stabilization. In view of results of Bhatwadekar-Lindel-Rao-
Roy, concerning Kjy-stabilizations for polynomial rings, we can hope for such an improvement
of Ky-stabilizations for monoid rings (see §2 for details).

Basing on [Gu2] (and the technique developed by Lindel) G. Schabhiiser proved that a
weak form of the expected injective Kjp-stabilization for a monoid ring (i. e. the correspond-
ing cancellation property for projective modules) actually takes place when the monoid is
c-divisible for some ¢ > 1.

It turns out that we can invoke ‘generalized Discrete Hodge Algebras’ in the picture as
follows.

Theorem 1.16 ([Gu5]).

(a) For a ring R and a monoid M the equality Ko(R) = Ko(R[M]) (SK1(R) = SK;(R[M]))
implies Ko(R) = Ko(R[M]/RI)
(SK1(R) = SK{(R[M]/RI) respectively), where I is an arbitrary proper ideal of M.

(b) The implications as in (a) hold for the corresponding unstable objects (meening the prop-
erties that projective modules are extended from R and SL, = E,.).

(¢) For a ring R and a c-divisible monoid M (c > 1) the equality K;(R) = K;(R[M]) implies
K;(R) = K;(R[M]/RI), wherei € N and I is an arbitrary proper radical ideal of M (. e.
VI=1I).

The special case of Theorem 1.16(b) for ‘ordinary’ Discrete Hodge Algebras (i. e. monomial
quotients of polynomial algebras) is due to Vorst [Vor].

The proofs of these results involve the corresponding algebraic tools (Quillen’s local-to-
global principle, various generalizations of Horrocks’ monic inversion theorem, symbols, ex-
cision in algebraic K-theory, special automorphisms of polynomial and monoid rings etc.)
combined with purely convex geometrical constructions (relative interiors, homothetic trans-
formations, special decompositions of polytopes etc.).

In view of the results presented above it is natural to ask whether one can always distin-
guish monoid rings corresponding to non-isomorphic monoids. The theorem below gives the
(essentially final) positive answer to this question (posed in [Gi]).

Theorem 1.17 ([Gu8]). Let M and N be finitely generated monoids and R be a ring. Then
each of the following conditions implies M ~ N :
(a) M and N have no non-trivial units and R[M] = R[N] as augmented R-algebras (with
respect to the natural augmentations
R[M] = R and R[N] — R mapping non-unit monomials to 0).

(b) R[M] = R[N] as R-algebras and M is normal.

We remark that for rank two monoids the isomorphism problem is answered in the positive
without any additional condition [Gu7].

2. Conjectures

Here we state two main conjectures on stable and unstable K-theory of semigroup rings.
They include the results from §1 in a uniform way and, simultaneously, provide their final
possible generalizations.

A e-divisible monoid is a filtered union of its e-divisible submonoids of finite rank (¢ > 1).
In its turn any finite rank c-divisible monoid is a filtered limit of c¢-divisible hulls of finitely
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generated monoids, i. e. limits of diagrams of type

M 2Py pp ZPey .. M finitely generated,

where exp,(m) = m® (writing the monoid structure multiplicatively). The crucial point here
is Gordan Lemma saying the following: any finite rank monoid M without non-trivial units is
finitely generated if (and only if) gp(M) is finitely generated and the cone C(M) C R®gp (M)
spanned by M is finite polyhedral.

In view of these remarks on c-divisible monoids and Theorems 1.10, 1.11, 1.12 the equalities
K;(R) = K;(R[M]) for fixed R, i, ¢ > 1, and M running through all ¢-divisible monoids
without non-trivial units, are equivalent to the equalities

K;(R) = li_ffl D(R,i e, M)

with the same R, i, ¢, and M running through finitely generated monoids without non-trivial
units, where D(g ; ., ar) is the diagram

K;(R[M)) Ki(R[M]) ZBleeeD,

We, therefore, arrive at the following conjecture whose special cases are Theorems 1.10, 1.11
and 1.12. Consider N as a monoid with respect to the multiplicative structure. Then there is
an action of N on the quotient groups K;(R[M])/K;(R) defined by

¢ — K;(R[exp,])/Ki(R).

We say that this action is nilpotent if for any =z € K;(R[M])/K;(R) and ¢ € N\ {1} there is
n € N such that ¢" -2 =0

Ki(Rlexp.])

Conjecture 2.1. For any index i € Zy, any reqular ring R and any monoid M without
non-trivial units the multplicative action of N on K;(R[M])/K;(R) is nilpotent.

In other words, we say that the equalities K;(R) = K;(R[M]) hold always for c-divisible
monoids M without non-trivial units. But we state the conjecture in terms of the multiplicative
actions of N because of Remark 2.3(c,d) below.

By Theorems 1.1, 1.10, 1.11 and 1.12 this conjecture holds in the special cases when either
i < 2 or M runs through intermediate monoids Z%} C M C Q} (n € N). A further support is
provided by

Theorem 2.2 ([Gub]).

(a) Conjecture 2.1 is equivalent to the same nilpotency condition when M runs through the
subclass of finitely generated normal monoids without non-trivial units.

(b) Conjecture 2.1 implies the analogous nilpotency property of the multiplicative action of
N on the groups K;(R[M]/RI)/K;(R), where I C M is any ideal.

(c) Assume R is any ring and the multiplicative action of N on the groups SKo(R[M]) are
nilpotent, where M runs through monoids without non-trivial units. (This condition in
particular implies SKo(R) = 0.) Then SKo(R[M]) = 0 for all monoids without non-
trivial units.

(d) Let R be a ring. If
liin(Ko(R[M]) M Ko(R[M]) M ) =7

for all monoids M (maybe with non-trivial units) and for all natural numbers ¢ > 1 then
Ko(R[M]) =Z for all seminormal monoids M.
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Remark 2.3.

(a) The claim (a) follows from the facts that c-divisible monoids are seminormal, that the
‘interior’ submonoid of a seminormal monoid is normal [Gu5, Lemma 1.4.3], and that
excision in algebraic K-theory holds for monoid rings for ¢-divisible monoids [Gu5,§3.2].
The claim (b) is a corollary of Theorem 3.2.1 in [Gu5] — one only needs to notice that
all the nilpotent images of monomials (elements of M) in R[M]/IR map to 0 in the
corresponding limit.

(b) The claims (c) and (d) are proved in [Gu5,83.3]. They in particular show that Conjecture
2.1 is a natural higher K-analogue of Anderson’s conjecture.

(c) B. Totaro has shown in his unpublished notes the following. Let M be a finitely generated
normal monoid without non-trivial invertible elements, let k£ be a field of chracteristic
0, and let ¢ be any natural index. Then any natural number n > 1 acts (in the sense of
the aforementioned action) nilpotently on any finite-dimensional n-invariant subspace of
K;(k[M])/K;(k). It can be shown that K;(k[M])/K;(k) is a k-linear subspace of the nil
K-theory (the obstruction to homotopy invariance of K-theory) of k[M]. This nil-group
is known to be a module over the big Witt ring W(k), hence a k-vector space. The precise
statement is the existence of a grading

Ki(k[M])/K;(k) ® Q = ©;>14;

such that n-A; C A,;. In particular, Conjecture 2.1 would follow for fields of character-
istic 0 if K;(k[M])/K;(k) was concentrated in only finitely many degrees.

(d) It is not excluded that there is even a uniform nilpotency degree of the mentioned action
of N for R and i fixed. For instance, all non-trivial elements in SK;-groups, constructed
in [Gu6], die already by multiplying by any natural ¢ > 1.

Next we suggest another possibility for extending Anderson’s conjecture to higher K-theory,
but this time in terms of unstable groups.

Serre’s Unimodular element and Bass’ Cancellation theorems assert respectively that a
projective module P over a Noetherian ring R of finite Krull dimension d contains a unimodular
element and satisfies the cancellation condition whenever rank(P) > d [Bass, Ch 4,§2,83].
Recall that an element is called unimodular if it defines a direct summand of P isomorphic to
R, and that P satisfies the cancellation condition if R® P ~ R ® () implies P =~ @ for any
R-module Q.

This has been extended to polynomial rings over R in arbitrary number of variables. That is
a projective module P over R[ X1, ... ,X,] has a unimodular element and satisfies the cancella-
tion condition provided rank(P) > d ([BR] and [R], respectively). Observe that the mentioned
cancellation condition implies the freeness of stably free k[X,...,X,]-modules, while the
presence of unimodular elements just coincides with the freeness of projective k[ X1, ... , X,]-
modules (k a field).

The mentioned results can equivalently be formulated in terms of Kjy-stabilizations: ex-
istence of unimodular elements corresponds to the surjective stabilization and cancellativity
corresponds to the injective sabilization. We in particular see that a Noetherian ring R and its
polynomial extensions have the same bounds for Ky-stabilizations in terms of Krull dimension
of R.

Analogous result for K-stabilizations was previously obtained in [Su2], where it is shown
that the surjectice K-stabilization for polynomial rings R[X7,..., X,] occurs from max(2,
dim(R) + 1) and the injective K;-stabilization takes place from max(3,dim(R) + 2) (R as
above). This means that

GL,(R[X1,... ,X,]) = Ki(R[Xy,...,X,))
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is surjective for r > max(2, dim(R) + 1) and
GL,(R[X1,... , X))/ E-(R[X1,..., X)) = K1(R[X4,...,X4)])

is isomorphism for r > max(3, dim(R) + 2). Recall that in the classical case (i. e. when n = 0)
the estimates ‘surjectivity from r > dim(R) 4+ 1’ and ‘injectivity from r > dim(R) + 2’ were
obtained by Bass and Vasershtein (see [Bass, Ch.5,84]).

Tulenbaev’s result on Ks-stabilizations for polynomial extensions [T] is in the same vein.
In view of the previous results of Dennis, van der Kallen, Vasershtein, Suslin-Tulenbaev the
main result of [T] says that a ring and its polynomial algebras have essentially the same
K-stabilizations.

The best stabilization estimates for higher K-groups were obtained by Suslin in [Su3]. It
turns out that instead of Quillen’s theory (defined with use of his ‘+ contruction’) the naturaly
expected stabilizations can be proved for Volodin’s theory [Vol]. In particular, Suslin showed
that the natural mappings

K/ (R) > K}, (R)

are surjective for r > s.r.(R) + 4 — 1 and injective for ¢ > s.1.(R) + i (the Bass Conjecture).
This enabled him to deduce general stabilizations for Quillen’s theory too (previously obtained
by van der Kallen). Here the stable range s.r.(R) of a ring R is defined as the minimal natural
number r such that for any unimodular row (ap, a1, ... ,a,) € Um,11(R) there are by, ... , b, €
R for which the row (a; + biao,... ,a, + brap) is unimodular. It is known that s.r.(R) <
dim(R) + 1 for a Noetherian ring R.

What has been said above indicates that for a Noetherian ring R the polynomial algebra
R[Xy,...,X,] has the following estimates for higher K;-stabilizations:

K/ (R[Xy, ..., X)) = Ky (RIX, .. X)), i1,
is surjective for r > max(i + 1, dim(R) + ¢) and injective for r > max(i + 2, dim(R) + i + 1).
So we venture to make the following general

Conjecture 2.4. Let R be a Noetherian ring, M be any monoid and i € N.

(a) A projetive R[M]-module P contains a unimodular element and satisfies the cancellation
condition if

rank(P) > max(2,dim(R) + 1).
(b) The natural mappings
K (RIM)) = K (BIM)), 0> 1,
are surjective for r > max(i+1,dim(R)+14) and injective for r > max(i+2, dim(R)+i+1).

The situation here is more difficult for higher K-groups than in Conjecture 2.1, because
even the original special case of polynomial algebras is an open question.

Remark 2.5.

(a) The claim (b) is equivalent to the surjectivity of the Ky-stabilization from max(1, dim(R))
and injectivity of the Ky-stabilization from max(2,dim(R) + 1). Thus we have a uniform
picture comprising Grothendieck group and higher K-groups. Swan’s aforemntioned re-
sult (Theorem 1.4) is the first non-trivial support to Conjecture 2.4(a) beyond the rings
in Theorem 1.1. The case of singular coefficient rings remains open even in dimension 1.

(b) The crucial step in establishing the cancellation property for projective modules is the
transitivity of the elementary action on unimodular rows of the appropriate lengths. In
particular, Conjecture 2.4(a) suggests that the action

E,(R[M]) x Um,(R[M]) — Um, (R[M])
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is transitive for arbitrary monoids whenever r > max(3,dim(R) + 2). For monoids of
®-simplicial growth this is so by Theorem 1.14.

It is proved in [Gu5,83.3] that the general case of the transitivity as in (b) would follow
if the following was true. Assume a subset {z1,...,z4} C M is a basis for gp(M) ~ Z4.
Then the ring extension

R[M] C R[M,z1/m]
makes the bigger ring a free module over R[M] of rank m. Here
[M;x1/m] C Q® gp(M)

is a submonoid generated by M and z;/m (writing additively). Now assume A €
GL,(R[M]) (r as above) is a matrix such that

1 0
A ~E,.(R[M,z1/m]) (0 B)

for some B € GL,_;(R[M,x;/m]). Then there is s € N such that

me 1 0
A" ~p.(R[M)) (0 C’>
for some C' € GL,_1(R[M]). This seems to be a plausible approach to the general case.

One might expect for a more general fact than that in (c). Namely, assume we are given a
ring extension S C T making T a free S-module of rank m. Assume further A € GL,.(5),

r > 3, is a matrix such that
1 0
A~ <0 B)

for some B € GL,_1(T). (Here we assume r > 3 because E, is normal in GL, for such
r.) Then there is s € N such that

- 10
A" ~E (s) (0 C>

for some C € GL,_1(S). Actually, we have even conjectured this in [Gub] as a K-
stabilization analogue of transfer maps for Ky. However, van der Kallen subsequently
sent me his elegant topological counterexample to this conjecture. In particular, he shows
that none of the positive powers of the matrix

w o —r -y —z

r w -z y
y z w —x
z -y x w

from GL4(S), S = Rlw,x,y,2]/(w® + 2° + y*> + 22 = 1), can be reduced to a matrix of

type
1 0
0 B
using elementary transformations over S. On the other hand the first row of this matrix
is clearly equivalent to
(w—1iy, —x —iz,0,0)

under the elementary actions over T = C® S.
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