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SIMPLICIAL AND CROSSED LIE ALGEBRAS
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Abstract
In this paper we examine higher order Peiffer elements in

simplicial Lie algebras and apply them to the Lie 2-crossed
module and Lie crossed squares introduced by Ellis.

Introduction

Simplicial Lie algebras arise in simplicial homotopical algebra, [6], [13], and their
homotopy theory is of considerable interest. Kassel and Loday [10] (see also [11] and
[12]) introduced crossed modules of Lie algebras as computational algebraic objects
equivalent to simplicial Lie algebras with associated Moore complex of length 1.
Following work of Conduché in a group-theoretic setting, Ellis [9] captured the
algebraic structure of a Moore complex of length 2 in his definition of a 2-crossed
module of Lie algebras. Within the homotopy theory of simplicial Lie algebras,
analogues of Samelson and Whitehead products are given by sums over shuffles
(a; b) of Lie products of the form [sbx, say]. In this paper we explain the relationship
of these shuffles to crossed modules and crossed 2-modules. More precisely, let L
be a simplicial Lie algebra with Moore complex NL. Let ∂ denote the boundary
homomorphism of the Moore complex. For n > 1 let Dn be the ideal in Ln generated
by the degenerate elements. We show in Proposition 2.3 that if Ln = Dn, then

NLn = In

where In is an ideal in Ln generated by certain shuffles. We use this equality to
prove the following theorem (in which the face homomorphisms of the simplicial
Lie algebra L are denoted by di, and for I ⊆ {1, . . . , n} the intersection ∩i∈IKerdi

is denoted by KI).
Theorem 1. Let L be a simplicial Lie algebra.
(i) L2 = D2 then ∂2(NL2) = [Kerd0, Kerd1].
(ii) L3 = D3 then

∂3(NL3) = [K{0,1}, K{0,2}] + [K{0,2}, K{1,2}] + [K{0,1}, K{1,2}] +
∑
I,J

[KI , KJ ].
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where I ∪ J = {0, 1, 2} , I ∩ J = ∅.
(iii) If Ln = Dn then

∂n(NLn) ⊇
∑
I,J

[KI , KJ ]

where I, J are nonempty subsets of {0, . . . , n − 1} with I ∪ J = {0, . . . , n − 1} .

Part (i) of this theorem is an analogue of a group-theoretic result of Brown and
Loday [2]

The paper is organised as follows. In Section 1 we recall some basics on simplicial
Lie algebras and crossed modules. In Section 2 we prove Proposition 2.3. In Section
3 we prove Theorem 1. In Section 4 we use Theorem 1 to construct a functor
from simplicial Lie algebras to 2-crossed modules; we also explain how Theorem 1
yields a functor from simplicial Lie algebras to the crossed n-cubes of Lie algebras
introduced in [8].

1. Review of simplicial Lie algebras

All Lie algebras will be over a fixed commutative ring k.
A simplicial Lie algebra [6] L is a sequence of Lie algebras,

L = {L0, L1, . . . Ln, . . .},
together with face and degeneracy maps

di = dn
i : Ln → Ln−1, 0 � i � n (n �= 0)

si = sn
i : Ln → Ln+1, 0 � i � n.

These maps are required to satisfied the simplicial identities

didj = dj−1di for i < j

disj =

⎧⎨
⎩

sj−1di for i < j

identity for i = j, j + 1
sjdi−1 for i > j + 1

sisj = sj+1si for i � j.

It can be completely described as a functor L: ∆op →LieAlgk where ∆ is the
category of finite ordinals [n] = {0 < 1 < · · · < n} and increasing maps.

Elements x ∈ Ln are called n-dimensional simplices. A simplex x is called degen-
erate if x = si(y) for some y.

A simplicial map f : L → L′ is a family of homomorphisms fn : Ln → L′
n

commuting with the di and si. We let SLA denote the category of simplicial Lie
algebras.

An essential reference from our point of view is Carrasco’s thesis, [3], where
many of the basic techniques used here were developed systematically for the first
time and the notion of hypercrossed complex was defined (although in a different
context).
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The following notation and terminology is derived from the analogous group
theoretic case treated in [3], [4]. For the ordered set [n] = {0 < 1 < . . . < n}, let
αn

i : [n + 1] → [n] be the increasing surjective map given by

αn
i (j) =

{
j if j � i

j − 1 if j > i.

Let S(n, n − r) be the set of all monotone increasing surjective maps from [n] to
[n−r]. This can be generated from the various αn

i by composition. The composition
of these generating maps is subject to the following rule αjαi = αi−1αj , j < i.

This implies that every element α ∈ S(n, n − r) has a unique expression as α =
αi1 ◦ αi2 ◦ . . . ◦ αir with 0 � i1 < i2 < . . . < ir � n − 1, where the indices ik
are the elements of [n] such that {i1, . . . , ir} = {i : α(i) = α(i + 1)}. We thus can
identify S(n, n − r) with the set {(ir, . . . , i1) : 0 � i1 < i2 < . . . < ir � n − 1}.
In particular, the single element of S(n, n), defined by the identity map on [n],
corresponds to the empty 0-tuple ( ) denoted by ∅n. Similarly the only element of
S(n, 0) is (n − 1, n − 2, . . . , 0). For all n � 0, let

S(n) =
⋃

0�r�n

S(n, n − r).

We say that α = (ir, . . . , i1) < β = (js, . . . , j1) in S(n)

if i1 = j1, . . . , ik = jk but ik+1 > jk+1 (k � 0) or
if i1 = j1, . . . , ir = jr and r < s.

This makes S(n) an ordered set. For instance, the orders in S(2) and in S(3) are
respectively:

S(2) = {∅2 < (1) < (0) < (1, 0)};
S(3) = {∅3 < (2) < (1) < (2, 1) < (0) < (2, 0) < (1, 0) < (2, 1, 0)}.

We also define α ∩ β as the set of indices which belong to both α and β.

The Moore complex
The Moore complex NL of a simplicial Lie algebra L is the complex

NL : · · · → NLn
∂n→ NLn−1 → · · · → NL1

∂1→ NL0
∂0→ 0

where

NL0 = L0, NLn =
n−1⋂
i=0

Kerdi, ∂n = dn (restricted to NLn).

Truncated Simplicial Lie Algebras
By an m-truncated Simplicial Lie Algebra, we mean a collection of Lie algebras

{L0, . . . , Lm} and homomorphisms di : Ln → Ln−1 for 0 � i � n, 0 � n � m and
si : Ln → Ln+1 for 0 � i � n, 0 � n � m− 1 which satisfy the simplicial identities.
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The Semidirect Decomposition of a Simplicial Lie Algebra
The fundamental idea behind this can be found in Conduché [5]. A detailed

investigation of it for the case of a simplicial group is given in Carrasco and Cegarra
[4]. The algebra case of that structure is also given in Carrasco’s thesis [3].

Proposition 1.1. If L is a Simplicial Lie Algebra, then for any n � 0

Ln
∼= (. . . (NLn � sn−1NLn−1) � . . . � sn−2 . . . s0NL1)�

(. . . (sn−2NLn−1 � sn−1sn−2NLn−2) � . . . � sn−1sn−2 . . . s0NL0).

Proof: This is by repeated use of the following lemma. �

Lemma 1.2. Let L be a Simplicial Lie Algebra. Then Ln can be decomposed as a
semidirect product:

Ln
∼= Kerdn

n � sn−1
n−1(Ln−1).

Proof: The isomorphism is defined as follows:

θ : Ln −→ Kerdn
n � sn−1

n−1(Ln−1)
l �−→ (l − sn−1dnl, sn−1dnl).

�

The bracketting and the order of terms in this multiple semidirect product are
generated by the sequence:

L1
∼= NL1 � s0NL0

L2
∼= (NL2 � s1NL1) � (s0NL1 � s1s0NL0)

L3
∼= ((NL3 � s2NL2) � (s1NL2 � s2s1NL1))�

((s0NL2 � s2s0NL1) � (s1s0NL1 � s2s1s0NL0)).

and

L4
∼= (((NL4 � s3NL3) � (s2NL3 � s3s2NL2))�

((s1NL3 � s3s1NL2) � (s2s1NL2 � s3s2s1NL1)))�
s0(decomposition of L3).

Note that the term corresponding to α = (ir, . . . , i1) ∈ S(n) is

sα(NLn−#α) = sir ...i1(NLn−#α) = sir ...si1(NLn−#α),

where #α = r. Hence any element x ∈ Ln can be written in the form

x = y +
∑

α∈S(n)

sα(xα) with y ∈ NLn and xα ∈ NLn−#α.

Crossed Modules of Lie Algebras
The notion of crossed module of Lie algebras was defined by Kassel and Loday

[10].
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Let M and P be two Lie algebras. By an action of P on M we mean a k-bilinear
map P × M → M, (p, m) �→ p · m satisfying

[p, p′] · m = p · (p′ · m) − p′(p · m)
p · [m, m′] = [p · m, m′] + [m, p · m′]

for all m, m′ ∈ M, p, p′ ∈ P. For instance, if P is a subalgebra of some Lie alge-
bra Q (including possibly the case P = Q), and if M is an ideal in Q, then Lie
multiplication in Q yields an action of P on M.

Suppose that M and N are Lie algebras with an action of M on N and action
of N on M. For any Lie algebra Q we call a bilinear function h : M ×N → Q a Lie
pairing [7] if

h([m, m′], n) = h(m, m′ · n) − h(m′, m · n),
h(m, [n, n′]) = h(n′ · m, n) − h(n · m, n′),

h(n · m, m′ · n′) = −[h(m, n), h(m′, n′)],

for all m, m′ ∈ M, n, n′ ∈ N. For example if M and N are both ideals of some Lie
algebra then the function M × N → M ∩ N, (m, n) �→ [m, n] is a Lie pairing.

Recall from [10] the notion of a crossed module of Lie algebras. A crossed module
of Lie algebras is a Lie homomorphism ∂ : M → P together with an action of P on
M such that ,

CM1) ∂(p · m) = [p, ∂m] CM2) ∂m · m′ = [m, m′]

for all m, m′ ∈ M, p ∈ P.

The second condition (CM2) is called the Peiffer identity. A standard example
of a crossed module is any ideal I in P giving an inclusion map I → P, which is
a crossed module. Conversely, given any crossed module ∂ : M → P, the image
I = ∂M of M is an ideal in P.

2. Hypercrossed Complex Pairings and Boundaries in the

Moore Complex

Lemma 2.1. Let L be a simplicial Lie algebra and let NL
(r)

n =
⋂n

i=0
i�=r

Kerdi for

0 � r � n. Then the mapping

ϕ : NLn −→ NL
(r)

n

in Ln, given by

ϕ(l) = l −
n−r−1∑

k=0

(−1)k+1sr+kdnl,

is a k-linear isomorphism. �

This easily implies:
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Lemma 2.2.

dn(NLn) = dr(NL
(r)

n ).

�

Proof of Theorem 1 (iii): For any J ⊂ [n−1], J �= ∅, let r be the smallest element
of J. If r = 0, then replace J by I and restart and if 0 ∈ I ∩ J, then re-define r to
be the smallest nonzero element of J. Otherwise continue.

Letting l0 ∈ ⋂
j∈J

Kerdj and l1 ∈ ⋂
i∈I

Kerdi, one obtains

di[sr−1l0, srl1] = 0 for i �= r

and hence [sr−1l0, srl1] ∈ NL
(r)

n . It follows that

[l0, l1] = dr[sr−1l0, srl1] ∈ dr(NL
(r)

n ) = dnNLn by the previous lemma,

and this implies [ ⋂
i∈I

Kerdi,
⋂
j∈J

Kerdj

]
⊆ ∂nNLn.

Hypercrossed complex pairings
We recall from Carrasco [3] the construction of a family of k-linear morphisms.

This was done there for associative algebras but adapts well to the Lie context. We
define a set P (n) consisting of pairs of elements (α, β) from S(n) with α∩β = ∅, (for
the definition of α∩ β, see section 1), where α = (ir, . . . , i1), β = (js, ..., j1) ∈ S(n).
The k-linear morphisms that we will need,

{Mα,β : NLn−#α × NLn−#β −→ NLn : (α, β) ∈ P (n), n � 0}
are given as composites by the diagrams

NLn−#α × NLn−#β

sα×sβ

��

Mα,β �� NLn

Ln × Ln
[ , ]

�� Ln

p

��

where

sα = sir . . . si1 : NLn−#α −→ Ln , sβ = sjs . . . sj1 : NLn−#β −→ Ln,

p : Ln → NLn is defined by composite projections p = pn−1 . . . p0, where

pj = 1 − sjdj with j = 0, 1, . . . n − 1

and we denote the Lie bracket by [ , ] : Ln × Ln → Ln. Thus

Mα,β(xα, yβ) = p[ , ](sα × sβ)(xα, yβ)
= p([sα(xα), sβ(yβ)])
= (1 − sn−1dn−1) . . . (1 − s0d0)([sα(xα), sβ(yβ)]).
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We now define the ideal In to be that generated by all elements of the form

Mα,β(xα, yβ)

where xα ∈ NLn−#α and yβ ∈ NLn−#β and for all (α, β) ∈ P (n).
Consider Mα,β(xα, yβ) and Mβ,α(yβ , xα), here one uses [sα(xα), sβ(yβ)], the other

[sβ(yβ), sα(xα)] = −[sα(xα), sβ(yβ)],

so the changing α and β gives the only minus sign.

Example For n = 2, suppose α = (1), β = (0) and x, y ∈ NL1 = Kerd0. It follows
that

M(1)(0)(x, y) = p1p0[s1x, s0y]
= [s1x, s0y] − [s1x, s1y]
= [s1x, s0y − s1y]

and these give the generator elements of the ideal I2.

For n = 3, the linear morphisms are the following

M(1,0)(2), M(2,0)(1), M(2,1)(0),

M(2)(0), M(2)(1), M(1)(0).

For all x ∈ NL1, y ∈ NL2, the corresponding generators of I3 are:

M(1,0)(2)(x, y) = [s1s0x − s2s0x, s2y],
M(2,0)(1)(x, y) = [s2s0x − s2s1x, s1y − s2y],
M(2,1)(0)(x, y) = [s2s1x, s0y − s1y + s2y];

whilst for all x, y ∈ NL2,

M(1)(0)(x, y) = [s1x, s0y − s1y] + [s2x, s2y],
M(2)(0)(x, y) = [s2x, s0y],
M(2)(1)(x, y) = [s2x, s1y − s2y].

Proposition 2.3. Let L be a simplicial Lie algebra and n > 0, and Dn the ideal
in Ln generated by degenerate elements. We suppose Ln = Dn, and let In be ideal
generated by elements of the form

Mα,β(xα, yβ) with (α, β) ∈ P (n)

where xα ∈ NLn−#α, yβ ∈ NLn−#β. Then

NLn = In.

As corollary we, of course, have that the image of Nn is equal to the image of NLn,

i.e., ∂n(NLn) = ∂n(In).

We omit its proof which can be obtained by changing slightly the corresponding
results in [1]
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3. Proof of first two parts of Theorem 1

Proof of Theorem 1 (i): We know that any element l2 of L2 can be expressed in
the form

l2 = b + s1y + s0x + s0u

with b ∈ NL2, x, y ∈ NL1 and u ∈ s0L0. We suppose D2 = L2. For n = 1, we take
α = (1), β = (0) and x, y ∈ NL1 =Kerd0. The ideal I2 is generated by elements of
the form

M(1)(0)(x, y) = [s1x, s0y − s1y].

The image of I2 by ∂2 is known to be [[Kerd0, Kerd1]] by direct calculation. Indeed,

d2[M(1)(0)(x, y)] = d2[s1x, s0y − s1y]
= [x, s0d1y − y]

where x ∈ Kerd0 and [x, s0d1y − y] ∈ Kerd1 and all elements of Kerd1 have this
form due to Lemma 2.1.

As ∂ = ∂1 restricted to NL1, this is precisely d2(M(1)(0)(x, y)). In other words
the ideal ∂I2 is the ‘Peiffer ideal’ of the precrossed module ∂ : NL1 → NL0, whose
vanishing is equivalent to this being a crossed module. The description of ∂I2 as
[Kerd0,Kerd1] gives that its vanishing in this situation is module-like behaviour
since a module, M , is a Lie algebra with [M, M ] = 0. Thus if (NL, ∂) yields a
crossed module this fact will be reflected in the internal structure of L by the
vanishing of [Kerd0,Kerd1]. Because the image of this M(1)(0)(x, y) is the Peiffer
element determined by x and y, we will call the Mα,β(x, y) in higher dimensions
higher order Peiffer elements and will seek similar internal conditions for their
vanishing.

We have seen that in all dimensions
∑
I,J

[KI , KJ ] ⊆ ∂n(NLn) = ∂In

and we will show shortly that this inclusion is an equality, not only in dimension 2
(as above), but also in dimension 3 and 4. The arguments are calculatory and do
not generalise in an obvious way to higher dimensions although similar arguments
can be used to get partial results there.

Proof of Theorem 1 (ii): By Proposition 2.3, we know the generator elements of
the ideal I3 and ∂3(I3) = ∂3(NL3). For each pair α, β ∈ S(3) with ∅3 < α <

β and α ∩ β = ∅, we take x ∈ NL3−#α, y ∈ NL3−#β and set Mα,β(x, y) =
p3p2p1 [sα(x), sβ(y)] where pi(l) = l − sidi(l). This element is thus in NL3. The
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valid pairs together with their corresponding pairing functions is given in the fol-
lowing table:

α β Mα,β(x, y)
1 (1,0) (2) [s1s0x − s2s0x, s2y]
2 (2,0) (1) [s2s0x − s2s1x, s1y − s2y]
3 (2,1) (0) [s2s1x, s0y − s1y + s2y]
4 (2) (1) [s1x, s0y − s1y] + [s2x, s2y]
5 (2) (0) [s2x, s0y]
6 (1) (0) [s2x, s1y − s2y]

The explanation of this table is the following:
∂3Mα,β(x, y) is in [KI , KJ ] in the simple cases corresponding to the first 4 rows.

In row 5, ∂3M(2)(0)(x, y) ∈ [K{0,1}, K{1,2}] + [K{0,1}, K{0,2}] and similarly in row 6,
the higher Peiffer element is in the sum of the indicated [KI , KJ ]. To illustrate the
sort of argument used we look at the case of α = (1, 0) and β = (2), i.e. row 1. For
x ∈ NL1 and y ∈ NL2,

d3[M(1,0)(2)(x, y)] = d3[s1s0x − s2s0x, s2y]
= [s1s0d1x − s0x, y]

and so

d3[M(1,0)(2)(x, y)] = [s1s0d1x − s0x, y] ∈ [Kerd2, Kerd0 ∩ Kerd1].

We have denoted [Kerd2,Kerd0 ∩ Kerd1] by [K{2}, K{0,1}] where I = {2} and
J = {0, 1}. Rows 2, 3 and 4 are similar. For Row 5, α = (2), β = (0) with x, y ∈
NL2 = Kerd0 ∩ Kerd1,

d3[M(2)(0)(x, y)] = d3[s2x, s0y]
= [x, s0d2y].

We can assume, for x, y ∈ NL2,

x ∈ Kerd0 ∩ Kerd1 and y + s0d2y − s1d2y ∈ Kerd1 ∩ Kerd2

and, multiplying them together,

[x, y + s0d2y − s1d2y] = [x, y − s1d2y] + [x, s0d2y]
= d3[M(2)(1)(x, y)] + d3[M(2)(0)(x, y)]

and so
d3[M(2)(0)(x, y)] ∈ [K{0,1}, K{1,2}] + d3[M(2)(1)(x, y)]

⊆ [K{0,1}, K{1,2}] + [K{0,1}, K{0,2}].

For Row 6, for α = (1), β = (0) and x, y ∈ NL2 = Kerd0 ∩ Kerd1,

d3[M(1)(0)(x, y)] = d3

(
[s1x, s0y − s1y] + [s2x, s2y]

)
= [s1d2x, s0d2y − s1d2x] + [x, y].
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We can take the following elements

(s0d2y − s1d2y + y) ∈ Kerd1 ∩ Kerd2 and (s1d2x − x) ∈ Kerd0 ∩ Kerd2.

When we multiply them together, we get

[s0d2y − s1d2y + y, s1d2x − x] = [s0d2y, s1d2x] − [s1d2y, s1d2x] + [y, x]
−[x, s0d2y] + [x, (s1d2y − y)]
+[y, (s1d2x − x)]

= d3[M(1)(0)(x, y)] − d3[M(2)(0)(x, y)]+
d3[M(2)(1)(x, y) + M(2)(1)(y, x)]

and hence

d3[M(1)(0)(x, y)] ∈ [K{0,2}, K{1,2}] + [K{0,1}, K{1,2}] + [K{0,1}, K{0,2}].

So we have shown

∂3I3 ⊆
∑
I,J

[KI , KJ ] + [K{0,1}, K{0,2}] + [K{0,2}, K{1,2}] + [K{0,1}, K{1,2}].

The opposite inclusion can be verified by using proposition 2.3. Therefore

∂3(NL3) = [Kerd2, (Kerd0 ∩ Kerd1)] + [Kerd1, (Kerd0 ∩ Kerd2)]+
[Kerd0, (Kerd1 ∩ Kerd2)] + [(Kerd0 ∩ Kerd1), (Kerd0 ∩ Kerd2)]+
[(Kerd1 ∩ Kerd2), (Kerd0 ∩ Kerd2)] + [(Kerd1 ∩ Kerd2), (Kerd0 ∩ Kerd1)]

This completes the proof of Theorem 1 (ii).

4. Application to 2-Crossed Modules and Crossed

Squares of Lie Algebras

The following definition is due to Ellis [9].

Definition 4.1. A 2-crossed module of Lie algebras consists of a complex of Lie
algebras

M2
∂2−→ M1

∂1−→ M0

with ∂2, ∂1 morphisms of Lie algebras, where the algebra M0 acts on itself by Lie
bracket M0 acts on M1 and M2 such that

M2
∂2−→ M1

is a crossed module in which M1 acts on M2 via M0, further, there is a M0-bilinear
function giving

{ , } : M1 × M1 −→ M2,
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called a Peiffer lifting, which satisfies the following axioms:

PL1 : ∂2{y0, y1} = [y0, y1] − y0 · ∂1(y1),
PL2 : {∂2(x1), ∂2(x2)} = [x1, x2],
PL3 : {∂2(x), y} = y · x − ∂1(y) · x,

PL4 : {y, ∂2(x)} = y · x,

PL5 : {y0, y1} · z = {y0 · z, y1} + {y0, y1 · z},
PL6 : {[y0, y1], y2} = {y0, y2} · ∂1y1 + {y1, [y0, y2]}

−{y1, y2} · ∂1y0 − {y0, [y1, y2]},
PL7 : {y0, [y1, y2]} = {y0, y1} · ∂1y2 − {y0, y2} · ∂1y1

+{y1, [y0, y2] − y0 · ∂1y2} − {y2, [y0, y1] − y0 · ∂1y1},
for all x, x1, x2 ∈ M2, y, y0, y1, y2 ∈ M1 and z ∈ M0.

We denote such a 2-crossed module of algebras by {M2, M1, M0, ∂2, ∂1}.
The following result is an analogous result of the commutative algebra version,

cf. [1].

Proposition 4.2. Let L be a simplicial Lie algebra with the Moore complex NL.

Then the complex of Lie algebras

NL2/∂3(NL3 ∩ D3)
∂2−→ NL0

is a 2-crossed module of Lie algebras, where the Peiffer map is defined as follows:

{ , } : NL1 × NL1 −→ NL2/∂3(NL3 ∩ D3)

(y0, y1) �−→ [s1y0, s1y1 − s0y1].

Here the right hand side denotes a coset in NL2/∂3(NL3 ∩ D3) represented by the
corresponding element in NL2.

Proof: We will show that all axioms of a 2-crossed module are verified. It is read-
ily checked that the morphism ∂2 : NL2/∂3(NL3∩D3) → NL1 is a crossed module.
(In the following calculations we display the elements omitting the overlines.)

PL1:
∂2{y0, y1} = ∂2[s1y0, s1y1 − s0y1]

= [y0, y1] − y0 · ∂1y1.

PL2: From ∂3(M(1)(0)(x1, x2)) = [s1d2(x1), s0d2(x2) − s1d2(x2)] + [x1, x2], one ob-
tains

{∂2(x1), ∂2(x2)} = [s1d2x1, s1d2x2 − s0d2x2]
≡ [x1, x2] mod ∂3(NL3 ∩ D3).

PL3:

{∂2(x), y} = [s1∂2x, s1y − s0y],
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but

∂3(M(2,0)(1)(y, x)) = [s0y − s1y, s1d2x] − [s0y − s1y, x] ∈ ∂3(NL3 ∩ D3)

and

∂3(M(1,0)(2)(y, x)) = [s1s0d1y − s0y, x] ∈ ∂3(NE3 ∩ D3),

so then

{∂2(x), y} ≡ [s1(y), x] − [s0(y), x] mod ∂3(NL3 ∩ D3)
= y · x − ∂1(y) · x by the definition of the action,

PL4: since ∂3(M(2,1)(0)(y, x)) = [s1y, s0d2x − s1d2x] + [s1(y), x],

{y, ∂2(x)} = [s1y, s1∂2x − s0∂2x]
≡ [s1(y), x] mod ∂3(NL3 ∩ D3)
= y · x by the definition of the action.

PL5: By the definition of the action, we get

{y0, y1} · z = {y0 · z, y1} + {y0, y1 · z}

with x, x1, x2 ∈ NL2/∂3(NL3 ∩ D3), y, y0, y1, y2 ∈ NL1 and z ∈ NL0. Verification
of axioms PL6 and PL7 are omitted as they are routine. This completes the proof
of the proposition. �

This only used the higher dimension Peiffer elements. A result in terms of [KI , KJ ]
vanishing can also be given:

Proposition 4.3. If in a simplicial Lie algebra L, one has [KI , KJ ] = 0 in di-
mension 2 for the following cases: I ∪ J = [2], I ∩ J = ∅; I = {0, 1}, J = {0, 2} or
I = {1, 2}; and I = {0, 2}, J = {1, 2} then

NL2 −→ NL1 −→ NL0

can be given the structure of a 2-crossed module.

Another application of higher order Peiffer elements is a Lie crossed square. First
we recall from [8] the notion of crossed n-cubes of Lie algebras.

A crossed n-cube of Lie algebras is a family of Lie algebras, MA for A ⊆< n >=
{1, ..., n} together with homomorphisms µi : MA → MA−{i} for i ∈< n > and for
A, B ⊆< n >, functions

h : MA × MB −→ MA∪B
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such that for all λ ∈ Λ, a, a′ ∈ MA, b, b′ ∈ MB, c ∈ MC , i, j ∈< n > and A ⊆ B

1) µia = a if i � ∈A

2) µiµja = µjµia

3) µih(a, b) = h(µia, µib)
4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩ B

5) h(a, a′) = [a, a′]
6) h(a, a) = 0
7) h(a + a′, b) = h(a, b) + h(a′, b)
8) h(a, b + b′) = h(a, b) + h(a, b′)
9) λh(a, b) = h(λa, b) = h(a, λb)
10) h(h(a, b), c) + h(h(b, c), a) + h(h(c, a), b) = 0.

A morphism of crossed n-cubes is defined in the obvious way. We thus denote a
category of crossed n-cubes by Crsn.

Theorem 1 (iii) can be used to verify that the following construction in a functor
from simplicial Lie algebras to crossed n-cubes.

For a simplicial Lie algebra L and a given n, we write M(L, n) for the crossed
n-cube, arising from the functor

M(−,n) : SLA −→ Crsn.

Then the crossed n-cube M(L,n) is determined by:
(i) for A ⊆< n >,

M(L, n)A =

⋂
j∈A Kerdn

j−1

dn+1
n+1(Kerdn+1

0 ∩ {⋂j∈A Kerdn+1
j });

(ii) the inclusion ⋂
j∈A

Kerdn
j−1 −→

⋂
j∈A−{i}

Kerdn
j−1

induces the morphism

µi : M(L, n)A −→ M(L, n)A−{i};

(iii) the functions, for A, B ⊆< n >,

h : M(L, n)A × M(L, n)B −→ M(L, n)A∪B

given by

h(x̄, ȳ) = [x, y],

where an element of M(L, n)A is denoted by x̄ with x ∈ ⋂
j∈AKerdn

j−1.
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