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HIGHER-DIMENSIONAL ARITHMETIC USING
p-ADIC ÉTALE TATE TWISTS
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Abstract
This paper is a survey on recent researches of the author

and his recent joint work with Shuji Saito. We will explain
how to construct p-adic étale Tate twists on regular arithmetic
schemes with semistable reduction, and state some fundamen-
tal properties of those objects. We will also explain how to
define cycle class maps from Chow groups to étale cohomology
groups with coefficients in p-adic étale Tate twists and state in-
jectivity and surjectivity results on those new cycle class maps.

Dedicated to V. Snaith on his 60th birthday

Introduction

In this paper, we like to survey recent results of the author [Sat2], [Sat3] and
his joint work with Shuji Saito [SaSa] (cf. [JSS]). Let k be an algebraic number
field, i.e., a finite field extension of Q. Let A be the integer ring of k. According
to the classical unramified class field theory, we have the following isomorphism of
finite groups:

ρA : Cl(A) '−−−−→ πab(Spec(A))̃ ,

where Cl(A) (resp. πab(Spec(A))) denotes the ideal class group of A (resp. étale
abelian fundamental group of Spec(A)) and ˜ means the quotient group corre-
sponding to abelian coverings of Spec(A) which splits completely at every real infi-
nite place. This map is defined by sending the class of a prime ideal p ⊂ A to the
arithmetic Frobenius substitution of Spec(A) at p. By works of Bloch [B1], Kato
and Saito [KS], [Sa1], this isomorphism is generalized to an arbitrary noetherian
regular scheme X which is proper flat of finite type over Spec(A):

ρX : CH0(X) '−−−−→ πab(X )̃ ,
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where CH0(X) denotes the Chow group of 0-cycles on X modulo rational equiv-
alence. In this paper we like to generalize this map, so called the reciprocity map,
to an arbitrary intermediate codimension as an étale cycle class map by introduc-
ing p-adic étale coefficients which we call p-adic étale Tate twists (see (1.1), (4.1)
below). We will state some injectivity and surjectivity results on those new cycle
class maps (Corollary 4.3, Theorem 5.1). In our injectivity results, the unramified
cohomology group H3

ur(K,Qp/Zp(2)) for the function field K := k(X) plays a key
role, which generalizes the Tate-Shafarevich group of the Jacobian variety of Xk.
We will state finiteness results on this group in §3, from which we will derive the
injectivity results (see (4.2) below). Our surjectivity results, which actually concerns
proper smooth or semistable families over local integer rings, is proved by using the
arithmetic duality theorem stated in Theorem 2.2 (see §5 for more details). Using
this surjectivity result, we will deduce the triviality of the group H3

ur(K,Qp/Zp(2))
in some special cases (see Corollary 6.3 below).
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Notation

For a scheme X and an integer q > 0, Xq denotes the set of all points x ∈ X
of codimension q. Unless indicated otherwise, all cohomology groups of schemes are
taken over the étale topology.

1. p-adic étale Tate twists

Let p be a rational prime number. Let A be a Dedekind ring whose fraction field
has characteristic zero and which has a residue field of characteristic p. We always
assume that

any residue field of A of characteristic p is perfect.
Let X be a noetherian regular scheme of pure-dimension which is flat of finite type
over B := Spec(A) and satisfies the following condition:

(∗) X is a smooth or semistable family around any fiber of X/B of characteristic
p.

Let n and r be integers with n > 0 and r > 1.

(1.1) Construction. The p-adic étale Tate twist Tr(n)X is defined as an object
K ∈ Db(Xét,Z/prZ) satisfying the following four properties:
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T1. There exists an isomorphism t : K|V ' µ⊗npr with V := X ⊗A A[1/p].
T2. K is concentrated in [0, n].
T3. For a locally closed regular subscheme i : Z → X of characteristic p, we have

a Gysin isomorphism:

WrΩn−cZ,log[−n− c]
'−−−−→ τ6n+cRi

!K in Db(Zét,Z/prZ),

where c denotes codimX(Z) and WrΩn−cZ,log means the zero sheaf in case n < c.

T4. Let y and x be points on X with ch(x) = p, x ∈ {y} and codimX(x) =
codimX(y) + 1. Put c := codimX(x). Then the boundary map

δloc
y,x(K) : Hn+c−1

y (Spec(OX,y),K) −−−−→ Hn+c
x (Spec(OX,x),K)

in the localization theory in étale topology coincides with the following boundary
map of Galois cohomology groups defined by Kato ([KCT], §1) via Gysin
isomorphisms, up to a sign depending only on (ch(y), c):

∂val
y,x :

{
Hn−c+1(y, µ⊗n−c+1

pr ) (ch(y) = 0)
H0(y,WrΩn−c+1

y,log ) (ch(y) = p)

}
−−−−→ H0(x,WrΩn−cx,log),

where the Gysin map for iy in case ch(y) = 0 arises from the isomorphism t
in T1 and Deligne’s cycle class in H2c−2

y (Spec(OX,y), µ⊗c−1
pr ).

The properties T1–T3 are Z/prZ-coefficient variants of Beilinson-Lichtenbaum ax-
ioms on conjectural étale motivic complexes ([Be], [Li2]). More precisely, T2 is
taken from the acyclicity axiom for Γ (n)étX , T1 comes from the axiom of Kum-
mer theory for Γ (n)étV , and T3 is suggested by the purity axiom and the axiom of
Kummer theory for Γ (n− c)étZ . Although T4 is not among Beilinson-Lichtenbaum
axioms, it is a natural property to be satisfied. In the following theorem, ‘unique’
means ‘unique up to a unique isomorphism’ (see [Sat3], Theorem 0.2, Corollary
0.3):

Theorem 1.1. There exists a unique pair (K, t) of an object K ∈ Db(Xét,Z/prZ)
and an isomorphism t : K|V ' µ⊗npr that satisfies T2–T4.

Definition 1.2. For each n > 0 and r > 0, we fix a pair (K, t) as in Theorem 1.1
and define Tr(n)X := K.

In case X/B is smooth, this object is already considered by Schneider [Sch]. We
have Tr(0) ' Z/prZ and Tr(n) ' Rj∗µ⊗npr for n > dim(X).
Remark 1.3. Assume that A is local with residue field F and p > n + 2. Let Y be
the closed fiber of X/B and let ι (resp. j) be the closed (resp. open) immersion
Y → X (resp. V → X).
(1) In case X/B is smooth, ι∗Tr(n)X is canonically isomorphic to Rε∗Sr(n) (cf.

[K1], [Ku]), where Sr(n) denotes the syntomic complex of Fontaine-Messing
[FM] on the crystalline site (Xr/Wr)cris with Xr := X ⊗A A/prA and Wr :=
Wr(F), and ε denotes the natural continuous map (Xr/Wr)cris → (Xr)ét of
sites. The morphism t corresponds to the Fontaine-Messing morphism
Rε∗Sr(n)→ τ6nι∗Rj∗µ⊗npr .
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(2) ι∗Tr(n)X is not the log syntomic complex of Kato and Tsuji ([K2], [Ts1])
unless n > dim(X), because the latter object is isomorphic to τ6nι∗Rj∗µ⊗npr

by [Ts2]. Therefore Tr(n)X is a new object particularly on semistable families.
Let Z(n)étX (resp. Z(n)Zar

X ) be the étale sheafification (resp. the Zariski sheafification)
of Bloch’s cycle complex ([B2], [Le1]). By works of Levine ([Le1], [Le2]), these
two objects are regarded as strong candidates for the motivic complexes Γ (n)étX and
Γ (n)Zar

X , respectively, so that we can expect the following conjecture (cf. [Sat3],
Conjecture 0.4):

Conjecture 1.4. (1) There exists a canonical isomorphism

Z(n)étX ⊗L Z/prZ '−−−−→ Tr(n)X in Db(Xét,Z/prZ).

(2) Let ε be the natural continuous map Xét → XZar of sites. Then the morphism
in (1) induces an isomorphism

Z(n)Zar
X ⊗L Z/prZ '−−−−→ τ6nRε∗Tr(n)X in Db(XZar,Z/prZ).

The case n = 0 is obvious. The case n = 1 holds true by the Kummer theory for
Gm (cf. [Sat3], Proposition 3.13):

Gm ⊗L Z/prZ −−−−→ Tr(1)X in Db(Xét,Z/prZ)

and the isomorphisms Z(1)étX ' Gm[−1], Z(1)Zar
X ' ε∗Gm[−1] (cf. [Le2], Lemma

11.2), and R1ε∗Gm = 0 (Hilbert’s theorem 90). For n > 2, by results of Geisser
([Ge], Theorems 1.2 (4), 1.3), Conjecture 1.4 (1) holds true in case X/B is smooth,
under the Bloch-Kato conjecture on Galois symbol maps.

(1.2) Product structure. The following theorem plays key roles in later sections:

Theorem 1.5. Let n and n′ be integers at least 0. Then there exists a unique
morphism

Tr(n)X ⊗L Tr(n′)X −−−−→ Tr(n+ n′)X in D−(Xét,Z/prZ) (1.2.1)

that extends the natural map µ⊗npr ⊗ µ⊗n′pr → µ⊗n+n′
pr on Vét.

Let Y ⊂ X be the divisor defined by the radical ideal sheaf of (p) ⊂ OX , and let ι
and j be as follows:

V = X[1/p]
j−−−−→ X

ι←−−−− Y.

To construct the morphism (1.2.1) in case m > 1 and n > 1, the author proved the
following natural isomorphism of étale sheaves (cf. [Sat3], Theorem 2.7):

ι∗Hn(Tr(n)X)/U1Mn
r ' Im

(
dlog : (Gm,Y )⊗n →⊕

y∈Y 0 ıy∗WrΩny,log
)

=: λnY,r,
(1.2.2)

where U• denotes the Bloch-Kato filtration on Mn
r := ι∗Rnj∗µ⊗npr (cf. [Sat3], Defi-

nition 2.2) and for y ∈ Y , ıy denotes the natural map y → Y (in case Y is smooth,
we have λnY,r 'WrΩnY,log, and the isomorphism (1.2.2) is due to Bloch-Kato [BK1]).
By (1.2.2), it turns out that the sheaf Hn(Tr(n)X) is generated by ι∗(U1Mn

r ) and
the image of (Gm,X )⊗n, so that the image of the natural cup-product map

Hm(Tr(m)X)⊗Hn(Tr(n)X) −−−−→ Rm+nj∗µ⊗m+n
pr



Homology, Homotopy and Applications, vol. 7(3), 2005 177

lies in Hm+n(Tr(m+ n)X). From this fact, we obtain the morphism (1.2.1) as the
unique morphism extending the natural map µ⊗mpr ⊗µ⊗npr → µ⊗m+n

pr on V (see [Sat3],
Proposition 3.3 for details).

Remark 1.6. For n > 0, let νnY,r be the kernel of the following boundary map of
logarithmic Hodge-Witt sheaves:

⊕
y∈Y 0 ıy∗WrΩny,log −−−−→

⊕
x∈Y 1 ıx∗WrΩn−1

x,log,

where for x ∈ Y , ıx : x → Y is as defined above. Then one can easily see that we
have λnY,r ⊂ νnY,r in general, and that λnY,r = νnY,r = WrΩnY,log in case Y is smooth.
In case Y has normal crossings, the fundamental properties of νnY,r and λnY,r are
studied in [Sat2]. Moreover, we have the following isomorphism for n > 1:

Mn
r /ι

∗Hn(Tr(n)X) ' νn−1
Y,r (1.2.3)

(cf. [Sat3], Theorem 2.7; compare with (1.2.2)).

2. Arithmetic duality theorems

Let A be either a global integer ring or a p-adic local integer ring, and put B :=
Spec(A). Let p and X/B be as in §1. In case A is global, for L ∈ D+(Xét,Z/prZ),
we define the mth étale cohomology group Hm

c (X,L) with compact support to
be Hm

c (B,Rf!L), where f denotes the structure morphism X → B and H∗c(B, •)
denotes the étale cohomology group with compact support of B (cf. [Mi2], II.2). In
this section, we give the statements and an outline of the duality results that the
author proved in [Sat3], §6 (see also [JSS] for other duality results).

(2.1) Duality theorems. We first assume that A is global. For V = X[1/p], we
have the following well-known pairing with d := dim(X), the absolute dimension of
X:

Hi
c(V, µ

⊗n
pr )×H2d+1−i(V, µ⊗d−npr ) −−−−→ H2d+1

c (V, µ⊗dpr ) trV−−−−→ Z/prZ,
which is a non-degenerate pairing of finite groups by the Artin-Verdier duality
([AV], [Ma], [Mi2]; see also [Dn], [Sp]) and the relative Poincaré duality for regular
schemes ([SGA4], XVIII, [Th], [Fu]).

Theorem 2.1. Assume that A is global and that X is proper over B. Then:
(1) There exists a canonical trace map trX : H2d+1

c (X,Tr(d)X)→ Z/prZ extend-
ing trV . If X is connected, then trX is bijective.

(2) For any integers n and i with 0 6 n 6 d, the natural pairing

Hi
c(X,Tr(n)X)×H2d+1−i(X,Tr(d− n)X) −−−−→ Z/prZ, (2.1.1)

arising from (1.2.1) and trX , is a non-degenerate pairing of finite Z/prZ-
modules.

By the non-degeneracy of the above pairing for V , Theorem 2.1 is reduced to the
following duality theorem:
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Theorem 2.2. Assume that A is local and that X is proper over B. Then:

(1) There exists a canonical trace map tr(X,Y ) : H2d+1
Y (X,Tr(d)X) → Z/prZ,

which is bijective if X is connected.

(2) For any integers n and i with 0 6 n 6 d, the natural pairing

Hi
Y (X,Tr(n)X)×H2d+1−i(X,Tr(d− n)X) −−−−→ Z/prZ, (2.1.2)

arising from (1.2.1) and tr(X,Y ), is a non-degenerate pairing of finite Z/prZ-
modules.

(2.2) Outline of Theorem 2.2. Without loss of generality, we may assume that
X is integral and A = Γ(X,OX). Let Y be the closed fiber of X/B. By a standard
argument using the Bockstein triangle (cf. [Sat3], Proposition 3.5)

Tr(n)X −−−−→ T1(n)X
δ1,r−1−−−−→ Tr−1(n)X [1] −−−−→ Tr(n)X [1],

we are reduced to the case r = 1, and then by a standard norm argument we are
further reduced to the case where Frac(A) contains primitive pth roots of unity. By
the isomorphisms (1.2.2) and (1.2.3), the non-degeneracy of (2.1.2) is reduced to
that of the following two pairings:

Hi(Y, νtY,1) × Hd−i(Y, λd−1−t
Y,1 ) −−−−→ Z/pZ, (2.2.1)

Hi(Y, U1M t
1) × Hd−1−i(Y, U1Md+1−t

1 ) −−−−→ µ, (2.2.2)

where µ denotes the group of pth roots of unity in Frac(A); we need to consider
several t’s to prove Theorem 2.2 for a single n. The non-degeneracy of (2.2.1) is
due to Milne [Mi1] in case Y is smooth, and proved by the author [Sat2] in case Y
has normal crossings. The most delicate part of our duality is the non-degeneracy
of (2.2.2). In fact, this pairing arises from the following morphism obtained by
decomposing the morphism (1.2.1) with (m,n) = (t, d+ 1− t):

U1M t
1 ⊗ U1Md+1−t

1 −−−−→ (ι∗j∗µp ⊗ νd−1
Y,1 )[1] in Db(Yét,Z/pZ),

where Mm
1 and U• are as in (1.2). The author proved an explicit formula (cf.

[Sat3], Theorem 5.6) to compute this morphism in terms of products of symbols
and a simple connecting morphism in Db(Yét,Z/pZ). By that formula, the non-
degeneracy of (2.2.2) is reduced to the Serre-Hartshorne duality for cohomology
groups of Y with coefficients in differential modules.

3. Unramified cohomology and finiteness

In this and the later sections, we work with the following setting. Let k be either
a local field or a global field. Let A be the integer ring of k. Let p be a prime number,
and let X be a noetherian regular scheme which is proper flat of finite type over
B := Spec(A). In case p is not invertible in A we always assume that X has good
or semistable reduction at all closed points on B of characteristic p. In case p is
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invertible in A (i.e., k is `-adic local with ` 6= p), Tr(n)X means the usual Tate twist
µ⊗npr . Let K be the function field of X. We will often write Xk for X ⊗A k.
(3.1) Unramified cohomology. We define the unramified cohomology group
Hn+1

ur (K,Qp/Zp(n)) as the kernel of the boundary map

Hn+1(Spec(K),Qp/Zp(n)) −−−−→ ⊕
y∈X1 Hn+2

y (Spec(OX,y),T∞(n)X |Spec(OX,y)),

where T∞(n)X denotes lim−→r>1
Tr(n)X . The y-component of the group on the right

hand side is isomorphic to Hn(y,Qp/Zp(n− 1)), if ch(y) 6= p. The following isomor-
phisms hold true:

H1
ur(K,Qp/Zp(0)) ' H1(X,Qp/Zp) and H2

ur(K,Qp/Zp(1)) ' Br(X)p-tors,

where Br(X) denotes the Grothendieck-Brauer group H2(X,Gm) (see [SaSa]). An
intriguing question is whether Hn+1

ur (K,Qp/Zp(n)) is finite. In fact, this question is
related to several significant theorems and conjectures in arithmetic geometry (see
Remark 3.1 below). Moreover, the finiteness of H3

ur(K,Qp/Zp(2)) and its subgroup

H3
ur(K,Xk;Qp/Zp(2)) :=

Im
(
H3(Xk,Qp/Zp(2))→ H3(Spec(K),Qp/Zp(2))

) ∩H3
ur(K,Qp/Zp(2))

implies the injectivity of the cycle class map of X of codimension 2 and its torsion
part, respectively (see §4 below).

Remark 3.1. (1) For n = 0, the quotient H1(X,Q/Z)/H1(B,Q/Z) is finite by a
theorem of Katz-Lang [KL]; in case k is global, H1

ur(K,Qp/Zp(0)) is finite as
well, because H1(B,Q/Z) is finite.

(2) In case n = 1 and k is global, the finiteness of H2
ur(K,Qp/Zp(1)) is equivalent

to the finiteness of Br(X)p-tors.

(3) For n = d := dim(X), Hd+1
ur (K,Qp/Zp(d)) is a group considered by Kato

[KCT]. He conjectured that Hd+1
ur (K,Qp/Zp(d)) = 0 if p 6= 2 or k has no

embedding into R. This conjecture is viewed as a generalization of the classical
Hasse principle on the Brauer groups of global and local fields. The case d = 2
is proved in [KCT], and the case d = 3 is proved in [JS].

(3.2) Finiteness. We state here the following results proved in [SaSa] (cf. loc.
cit., Theorem 0.3, Corollary 0.4), where κXk

denotes the Kodaira dimension of Xk:

Theorem 3.2. Assume H2(Xk,OXk
) = 0. Then:

(1) H3
ur(K,Xk;Qp/Zp(2)) is finite.

(2) If k is `-adic local with ` 6= p and Xk is a surface, then H3
ur(K,Qp/Zp(2)) is

finite.

(3) If k is p-adic local and Xk is a surface with κXk
6 1, then H3

ur(K,Qp/Zp(2))
is finite.

(4) If k is global and Xk is a surface with κXk
6 1, then H3

ur(K,Qp/Zp(2)) is
finite.
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The conditions in this theorem comes from those in results of Bloch-Kas-Lieberman
[BKL], Salberger [Sal], Colliot-Thélène–Raskind [CTR] and Saito-Sujatha [SaSu].
More precisely, we use p-adic Hodge Theory ([K2], [Ts1]) and arguments of the
author in [Sat1], to reduce the problem to the above well-known facts. In case k is
global, we need a local-global principle due to Jannsen ([J], §4, Theorem 4).
Remark 3.3. It would be a serious problem to prove the above finiteness theorems
unconditionally (cf. [LS], [La2], [O]). In fact, the finiteness of H3

ur(K,Xk;Qp/Zp(2))
and H3

ur(K,Qp/Zp(2)) in the general case is deduced from several well-known con-
jectures in arithmetic geometry which are known to hold true in the situations in
Theorem 3.2. See [SaSa], (0.1) for precise statements and loc. cit., Chapter I for
detailed proofs.

4. Cycle class maps and injectivity in codimension 2

Let the notation be as in §3. We state here the definition of cycle class maps
and the injectivity results on the cycle class map of X of codimension 2 proved
in [SaSa], Chapter I, which is deduced from the finiteness theorems mentioned in
(3.2).

(4.1) Definition of cycle class maps. We define the cycle class map

ρnX,pr : CHn(X)/pr −−−−→ H2n(X,Tr(n)X)

as follows. We have the localization spectral sequence

Eu,v1 =
⊕

x∈Xu Hu+v
x (X,Tr(n)X) =⇒ Hu+v(X,Tr(n)X). (4.1.1)

By the purity property T3 in (1.1) and the absolute cohomological purity (cf. [Th],
[Fu]), we have

Eu,v1 '⊕
x∈Xu Hv−u(x,Z/prZ(n− u)x), if v 6 n. (4.1.2)

This implies that we have the edge homomorphism En,n2 → H2n(X,Tr(n)X) with

En,n2 ' Coker
(⊕

y∈Xn−1 H1(y,Z/prZ(1)y)
∂val

−→
⊕

x∈Xn H0(x,Z/prZ)
)

' CHn(X)/pr,

where ∂val is the sum of boundary maps ∂val
y,x with y ∈ Xn−1 and x ∈ Xn (cf. T4

in (1.1)). Thus we obtain the map ρnX,pr and the following induced maps:

ρnX,p-tors,r : CHn(X)p-tors −−−−→ H2n(X,Tr(n)X),

ρnX,Zp
: CHn(X)⊗ Zp −−−−→ H2n(X,TZp(n)X),

where for an abelian group M , Mp-tors denotes the p-primary torsion part, and
H∗(X,TZp(n)X) is defined as lim←−r>1

H∗(X,Tr(n)X).

Remark 4.1. In case A is global andX/B is proper, the map ρdX,Zp
with d := dim(X)

coincides with the p-adic part of the reciprocity map ρX in the introduction (cf.
Theorem 2.1).
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(4.2) Injectivity in codimension 2. For an abelian groupM , letMDiv (resp.Mp-Div)
be the maximal divisible subgroup (resp. the maximal p-divisible subgroup). In the
rest of this section, we restrict our attention to the case n = 2. In this case, we have
the following proposition, which reduces the injectivity of cycle class maps to the
finiteness of unramified cohomology groups (cf. [SaSa], Proposition 0.2):

Proposition 4.2. (1) Assume that H3
ur(K,Xk;Qp/Zp(2)) is finite. Then there

exists a positive integer r0 such that Ker(ρ2
X,p-tors,r) = (CH2(X)p-tors)Div for

any r > r0.
(2) Assume that H3

ur(K,Qp/Zp(2)) is finite. Then we have

Ker(ρ2
X,Zp

) = (CH2(X)⊗ Zp)Div,

and the kernel of the map

ρ′ : CH2(X) −−−−→ H4(X,TZp(2)X)

induced by ρ2
X,Zp

coincides with CH2(X)p-Div.

This proposition is proved by standard computations on the spectral sequence
(4.1.1) together with a version of the commutative diagram of Colliot-Thélène–
Sansuc–Soulé in [CTSS], §1 (cf. [SaSa] Chapter I, Lemma 3.4). By Theorem 3.2
and Proposition 4.2, we obtain the following corollary:

Corollary 4.3. Assume H2(Xk,OXk
) = 0. Then:

(1) CH2(X)p-tors is finite and ρ2
X,p-tors,r is injective for a sufficiently large r.

(2) If k is `-adic local with ` 6= p and Xk is a surface, then Ker(ρ2
X,Zp

) and Ker(ρ′)
are uniquely p-divisible.

(3) If k is p-adic local, and Xk is a surface with κXk
6 1, then ρ′ is injective up

to prime-to-p torsion elements.
(4) If k is global and Xk is a surface with κXk

6 1, then ρ2
X,Zp

is injective.

The finiteness part of Corollary 4.3 (1) is originally due to Salberger [Sal], Colliot-
Thélène and Raskind [CTR].

Remark 4.4. If H2(Xk,OXk
) = 0 and the Albanese variety of Xk has poten-

tially good reduction at every closed point on B, then the torsion cycle class map
ρ2
Xk,p-tors,r

of Xk of codimension 2 is injective for a sufficiently large r > 0 [Sa4].
Moreover, if the Albanese variety does not have potentially good reduction, then we
cannot expect the same injectivity any longer in general [PS], [Su]. However Corol-
lary 4.3 shows that we recover satisfactory injectivity properties by considering the
cycle class map of X (not of Xk).

5. Surjectivity of 1-cycle class map

Let the notation be as in §3. We explain here the surjectivity result on 1-cycle
class maps proved in [SaSa], Chapter II, §5. Let d be the absolute dimension of X.
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Theorem 5.1. Assume that k is local. Then ρd−1
X,pr is surjective for any r > 1.

Note that this theorem is unconditional on X. We show an outline of a proof of
Theorem 5.1. Let Y ⊂ X be the closed fiber of X/B and take a dense open regular
subset U of the reduced part of Y . Let ` be the residual characteristic of k. For
x ∈ X, let Ax be the henselization of OX,x at its maximal ideal. For a scheme Z, let
Br(Z) be the cohomological Brauer group H2(Z,Gm). Let (Xk)0 and (Y )0 be the
sets of all closed points on Xk and Y , respectively, and let sp : (Xk)0 → (Y )0 be the
specialization map of points. By Theorem 2.2, we have the natural isomorphism

a : H2d−2(X,Tr(d− 1)X) '−−−−→ H3
Y (X,Tr(1)X)∗,

where we put M∗ := Hom(M,Q/Z) for an abelian group M . A key step of our proof
is to construct an injective map

θpr : H3
Y (X,Tr(1)X) −−−−→ ∏

x∈(U)0 prBr(Ax[1/`])

whose dual fits into the following commutative diagram:
⊕

x∈(U)0

⊕
v∈sp−1({x}) Z/prZ

(ψpr )∗−−−−→ ⊕
x∈(U)0

(
prBr(Ax[1/`])

)∗
y (θpr )∗

y

CHd−1(X)/pr
a ◦ ρd−1

X,pr−−−−−−→ H3
Y,ét(X,Tr(1)X)∗,

where (ψpr )∗ is the direct sum of the dual of the following map for x ∈ (U)0:

ψx,pr : prBr(Ax[1/`]) −−−−→
∏
v∈sp−1({x}) Z/prZ ; ω 7→ (invv(ω|v))v

and invv denotes the invariant isomorphism prBr(v) ' Z/prZ. More precisely, θpr

is defined as a natural restriction map and the commutativity of the above diagram
is proved by a projection formula for p-adic étale Tate twists (cf. [Sat3], Corollary
4.10). By the above commutative diagram and the surjectivity of (θpr )∗, Theorem
5.1 is reduced to the following local result:

Theorem 5.2. ψx,pr is injective for any x ∈ (U)0 and r > 1.

This theorem is proved by an induction argument on the dimension of local rings
and the Brauer group theory of 2-dimensional local rings due to Saito [Sa2] (see
[SaSa], Chapter II, §1, §2 for details).

Remark 5.3. Theorem 5.2 has an application to the Brauer-Manin pairing

〈 , 〉 : CH0(Xk)× Br(Xk)→ Q/Z.

In fact, using Theorem 5.2, we proved the p-primary variant of results of Colliot-
Thélène and Saito [CTS] (see [SaSa], Chapter II, §3, §4).

As a direct consequence of Corollary 4.3 (2) and Theorem 5.1, we obtain

Corollary 5.4. Assume that k is p-adic local and that Xk is a surface with
H2(Xk,OXk

) = 0 and κXk
6 1. Then the cycle class map

CH2(X) −−−−→ H4(X,TZp(2)X)×∏
6̀=p H4(X,Z`(2))
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is injective and has dense image with respect to the pro-finite topology on the group
on the right hand side.

See [Ya] for a comparison fact between formal K-cohomology groups and syntomic
cohomology groups.

Remark 5.5. In case k is global, the surjectivity of ρd−1
X,pr implies the p-adic part

of the Hasse principle for 0-cycles on Xk up to the Brauer-Manin obstruction (cf.
[Sa3], [CT1], [CT2], [SaSa], Theorem 0.13).

6. Triviality of unramified cohomology

The notation remains as in §5; we assume that k is local. In this section, we like
to mention some consequences of Theorem 3.2 and Theorem 5.1. We first recall the
following fact proved in [SaSa], Chapter I, Proposition 3.7:

Proposition 6.1. Assume that H3
ur(K,Qp/Zp(2)) is finite. Then the order of

Coker
(
ρ2
X,Zp

: CH2(X)⊗ Zp → H4(X,TZp(2)X)
)
tors

coincides with that of H3
ur(K,Qp/Zp(2)).

This proposition is proved by standard arguments using the spectral sequence
(4.1.1), and gives a generalization of the isomorphism

H2
ur(K,Qp/Zp(1)) ' Br(X)p-tors.

By Proposition 6.1 and Theorem 5.1, we obtain

Corollary 6.2. Assume that d = 3 (i.e., Xk is a surface). Then H3
ur(K,Qp/Zp(2))

is finite if and only if it is trivial.

Hence by Theorem 3.2, we obtain the following corollary, which generalizes a result
of Spiess ([Sp], §4) to more general situations:

Corollary 6.3. Assume that d = 3 and that H2(Xk,OXk
) = 0.

(1) If k is `-adic local with ` 6= p, then we have H3
ur(K,Qp/Zp(2)) = 0.

(2) If k is p-adic local and κXk
6 1, then we have H3

ur(K,Qp/Zp(2)) = 0.
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(Astérisque 100), Soc. Math. France, 1982

[B1] Bloch, S.: Algebraic K-theory and classfield theory for arithmetic sur-
faces. Ann. of Math. 114, 229–265 (1981)

[B2] Bloch, S.: Algebraic cycles and higher K-theory. Adv. Math. 61, 267–
304 (1986)

[BKL] Bloch, S., Kas, A., Lieberman, D.: Zero cycles on surfaces with pg = 0.
Compositio Math. 33, 135–145 (1976)

[BK1] Bloch, S., Kato, K.: p-adic étale cohomology. Inst. Hautes Études Sci.
Publ. Math. 63, 107–152 (1986)

[CT1] Colliot-Thélène, J.-L.: L’arithmétique du groupede Chow des zéro-
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