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ON THE IMAGE OF
NONCOMMUTATIVE LOCAL RECIPROCITY MAP

IVAN FESENKO

(communicated by J.F. Jardine)

Abstract
We recall coherent definitions of two commutative local reci-

procity homomorphisms, arithmetic and geometric, and then
suggest a new approach to the description of the image of a
noncommutative local reciprocity map introduced in [2] and
discuss some of its properties in relation to the commutative
maps.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

0. Introduction

First steps in the direction of an arithmetic noncommutative local class field
theory were described in [2] as an attempt to find an arithmetic generalization of
the classical abelian class field theory; see [3] for an exposition of its main features.
In particular, [2] clarified and simplified the metabelian local class field theory of
H. Koch and E. de Shalit [7], [8]. In the noncommutative local class field theory
[2] a direct arithmetic description of Galois extensions of a fixed local field F is
given by means of noncommutative reciprocity maps between the Galois group
Gal(L/F ) of a totally ramified arithmetically profinite Galois extension L/F and a
certain subquotient of formal power series in one variable over the algebraic closure
of the residue field of F (which, more precisely, is the completion of the maximal
unramified extension of the field of norms of L/F ). One of the reciprocity maps (see
below for definitions) is

NL/F : Gal(L/F ) −→ U¦
N (L/F )/UN(L/F ).

This map is an injective 1-cocycle (the right hand side has a natural action of
the Galois group). It is not surjective, and not a homomorphism in general. For
noncommutative extensions, the description of the Galois group in this approach is
given by objects related not only to the ground field F but partially to L as well.

To describe the image of the reciprocity map one can use a map from Gal(L/F )
to U¦

N (L/F )/YL/F induced by NL/F , where YL/F is a certain subgroup of U¦
N (L/F )
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containing UN(L/F ), such that the induced map is bijective. A key problem is to
obtain as much information as possible about the subgroup YL/F . Then via the
reciprocity map NL/F this information translates into a description of the Galois
group of L/F .

In this short note we suggest a new definition of certain maps fi (see section 2) for
regular extensions L/F . This provides more information on the submodule YL/F .

Needless to say, this arithmetic approach to nonabelian local class field theory
is very different from the approach in the Langlands programme. From a general
point of view it should be quite difficult to get a sufficiently explicit description of
YL/F for an arbitrary class of extensions L/F . There is a nice explicit description
in the case of metabelian extensions, see [2],[7],[8]. It is expected there is an explicit
description in the case of p-adic Lie extensions. This may be of use for the local
noncommutative Iwasawa theory.

We will assume that the reader has a good knowledge of basic results on local
fields, as given for example in [4, Ch.III–IV]. The referee made useful suggestions
which improved the exposition.

1. The abelian case: interpretation

We start with a brief description of an interpretation of the abelian reciprocity
maps, since it is this interpretation which leads to the construction of noncommu-
tative reciprocity maps.

Let F be a local field with finite residue field, whose characteristic is p. Denote
by F ur the maximal unramified extension of F in a fixed completion of a separable
closure of F and denote by F be the completion of F ur.

Now we briefly present two (abelian) local reciprocity maps: geometric and arith-
metic. Each of them uses the fact that for a finite Galois extension L/F the homo-
morphism

Gal(L/F) −→ kerNL/F/V (L/F), σ 7−→ πσ−1

is surjective with the kernel being the derived group of the Galois group. Here
V (L/F) is the augmentation subgroup generated by elements uσ−1 with u ∈ UL, σ ∈
Gal(L/F), and π is any prime element of L. For a noncommutative generalization
of this, see the first assertion of Theorem 1 below.

First, we give a description of the geometric reciprocity map studied in Serre’s
paper [10]. Let L/F be a finite Galois extension. Viewing all objects with respect
to the pro-algebraic Zariski topology [10] one has a commutative diagram

1 −−−−→ π1(UL) −−−−→ UL
α−−−−→ UL −−−−→ 1yNL/F

yNL/F

yNL/F

1 −−−−→ π1(UF ) −−−−→ UF −−−−→ UF −−−−→ 1y
y

1 1
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where UL and UF are the universal covering spaces of UL and UF . Applying the
snake lemma, one has a map

σ 7−→ πσ−1 ∈ UL 7−→ NL/F
(
α−1(πσ−1)

) ∈ π1(UF )/NL/Fπ1(UL)

which is the geometric reciprocity homomorphism (this is more or less straightfor-
ward from [10]).

For a separable extension L of F put Lur = LF ur, L = LF . To define the
arithmetic reciprocity map, let L be a finite totally ramified Galois extension of F .

Let ϕ be an element of the absolute Galois group of F such that its restriction
to F ur is the Frobenius automorphism of F . Denote by the same notation the
continuous extension of ϕ to the completion of the maximal separable extension of
F . Let π be a prime element of L.

There is a commutative diagram

1 −−−−→ UL −−−−→ UL
1−ϕ−−−−→ UL −−−−→ 1

yNL/F

yNL/F

yNL/F

1 −−−−→ UF −−−−→ UF
1−ϕ−−−−→ UF −−−−→ 1y

y
1 1

and, applying the snake lemma, one has a map

σ 7−→ πσ−1 ∈ UL 7−→ NL/F
(
(1− ϕ)−1(πσ−1)

) ∈ UF /NL/F UL.

This is the arithmetic local reciprocity homomorphism studied by Iwasawa, Haze-
winkel, Neukirch (see [5], [6], [9], [4, Ch.IV]). The equation

u1−ϕ = πσ−1

plays a fundamental role for the arithmetic reciprocity homomorphism.
Of course, the geometric reciprocity homomorphism can be viewed as the pro-

jective limit of the arithmetic reciprocity homomorphisms.

2. The reciprocity map NL/F

We present one of noncommutative reciprocity maps originally defined in [2].
Denote by Fϕ the fixed subfield of ϕ in the separable closure of F . Let L/F be a

Galois arithmetically profinite extension which is infinite. We will suppose through-
out the paper that L ⊂ Fϕ. For the theory of fields of norms of arithmetically
profinite extensions see [11] and [4, Ch. III sect. 5]. The field of norms N(L/F ) of
the extension L/F is a local field of characteristic p with residue field isomorphic
to the residue field of F .

Denote by X the norm compatible sequence of prime elements of finite subex-
tensions of F in L which is the part of the unique norm compatible sequence of
prime elements in finite extensions of F in Fϕ (for its existence and uniqueness see
the first section of [8]).
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Denote by N (L/F ) the completion of the maximal unramified extension of the
field N(L/F ). Denote by U¦

N (L/F ) the subgroup of those elements of UN (L/F ) whose
F-component belongs to UF .

The reciprocity map NL/F is defined as

NL/F : Gal(L/F ) −→ U¦
N (L/F )/UN(L/F ), NL/F (σ) = U mod UN(L/F ),

where U ∈ UN (L/F ) satisfies the equation

U1−ϕ = Xσ−1.

It was shown in [2] that the ground F-component of NL/F equals the arithmetic
reciprocity map described above, so NL/F is indeed a genuine extension of the
abelian reciprocity map.

Fix a tower of subfields

F = E0 − E1 − E2 − . . . ,

such that L = ∪Ei, Ei/F is a Galois extension, and Ei/Ei−1 is cyclic of degree p
for i > 1 and E1/E0 is cyclic of degree relatively prime to p. Let σi be an element
of Gal(L/F) whose restriction to Ei is a generator of Gal(Ei/Ei−1). Denote by vEi

the discrete valuation of Ei = EiL. Put

si = vEi(π
σi−1
Ei

− 1)

where πEi is a prime element of Ei.
The group U¦

N (L/F ) contains a subgroup YL/F (which contains UN(L/F )) such
that the reciprocity map NL/F induces a bijection between the set Gal(L/F ) and
the set U¦

N (L/F )/YL/F , see [2, Th.2]. To get more information on YL/F and its more
explicit description, [2] uses certain liftings

fi : Uσi−1
Ei

−→ UN (L/Ei) −→ UN (L/F ).

This is a central part of the noncommutative class field theory, and the better the
description of fi, the more information one obtains about the Galois extensions.
Liftings fi were defined in [2, Def. 3–4] by using arbitrary topological Zp-generators
of Uσi−1

Ei
.

Definition 1. Call an extension L/F regular if L\F contains no primitive pth root.
In positive characteristic every extension is regular. In characteristic zero L/F is
regular if and only if the extension F (ζp)/F is unramified or the extension L(ζp)/L
is not unramified. In particular, if E1 = E0 then L/F is regular.

Now we make a correction for the paragraph standing between Definition 3 and
Definition 3′ in the published version of [2], whose statement is incorrect in general
(thanks are due to K. Keating). The statement there holds for regular extensions.
Indeed, let F be of characteristic zero. If a primitive pth root of unity ζp equals
uσ1−1 with u ∈ UE1 , then NE1/E0(ζp) = 1. Hence, if E1 \ E0 contains no primitive
pth root of unity (i.e. L/F is regular), then so does Uσ1−1

E1 . All the assertions of [2]
following Def. 3 hold for regular Galois arithmetically profinite extensions.
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In the general case of (non-regular) extensions the group Uσ1−1
E1 may have a

nontrivial p-torsion (for example, if E0 = Qp and E1 = Qp(ζp)). It is not clear at
the moment how to define the corresponding map f1 for non-regular extensions.

Below we give a new definition of maps fi for regular Galois arithmetically profi-
nite extensions L/F , L ⊂ Fϕ.

3. Splitting exact sequences

The following theorem leads to a new definition of liftings fi.
For submodules Mi of UEj

denote by
∏

Mi their product.
Denote E = Ek, E′ = Ek+1, E = Ek, E ′ = Ek+1. Denote σ = σk+1.
Recall that in the abelian class field theory an important role is played by the

following exact sequence

1 −−−−→ T −−−−→ UE′/Uσ−1
E′

NE′/E−−−−→ UE −−−−→ 1.

Here T is the isomorphic image of Gal(E′/E) in UE′/Uσ−1
E′ with respect to the

homomorphism

Gal(E′/E) −→ UE′/Uσ−1
E′ , ρ 7−→ πρ−1

Ek+1
Uσ−1
E′ ,

see [4, Ch.IV (1.7)].

Theorem 1. Fix k > 1. Assume that L/F is a regular extension.
Denote by T ′ the intersection of T with

(∏
i6k Uσi−1

E′
)
Uσ−1
E′ /Uσ−1

E′ . We have an
exact sequence

1 −−−−→ T ′ −−−−→ (∏
i6k Uσi−1

E′
)
Uσ−1
E′ /Uσ−1

E′
NE′/E−−−−→ ∏

i6k Uσi−1
E −−−−→ 1.

The sequence splits by a homomorphism

f :
∏

i6k Uσi−1
E −−−−→ (∏

i6k Uσi−1
E′

)
Uσ−1
E′ /Uσ−1

E′ .

In general, this homomorphism is not uniquely determined.

Proof. It is convenient to divide it into several parts.

1. The product of modules
∏

i6k Uσi−1
E is a closed Zp-submodule of U1,E . Let λj

be a system of topological multiplicative generators of the topological Zp-module∏
i6k Uσi−1

E , which satisfy the following property: if the torsion of this group is
nontrivial, it includes λ∗ of order pm, and the rest of λj are topologically independent
over Zp.

Define a map f on the topological generators λj as

f(λj) = uj Uσ−1
E′

where uj is any element of
(∏

i6k+1U
σi−1
E′

)
whose norm equals λj . We will prove

by the end of the fifth part that f(λ∗)pm ∈ Uσ−1
E′ . Hence we can extend f to a

homomorphism f :
∏

i6kUσi−1
E −→ ∏

i6k+1U
σi−1
E′ /Uσ−1

E′ which is a section of the
exact sequence in the theorem.
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Suppose that m > 0, i.e. λ∗, different from 1, is in the system of the generators.
As discussed at the end of the previous section, if k = 1 and L/F is a regular
extension then m = 0. Hence k > 1.

We claim that then sk+1 (defined in section 2) is prime to p. This will be proved
by the end of the fourth part.

2. By [4, Ch.III (2.3)] we know that if sk+1 is divisible by p then sk+1 =
pe(Ek)/(p − 1), a primitive pth root lies in Ek and there is a prime element πk

of Ek such that Ek+1 = Ek( p
√

πk). Using [4, Ch.II Prop. 4.5] we deduce that si are
divisible by p for 2 6 i 6 k +1. So all the ramification breaks si, 2 6 i 6 k +1, take
their maximal possible values. Using local class field theory and looking at the norm
group of Ek/E1 it is not difficult to see that Ek/E1 is a cyclic extension (see, e.g.
[1, Prop. 1.5]). Then σ2|E is a generator of its Galois group. Recall that we assume
that the torsion element λ∗ belongs to the system of generators of

∏
Uσi−1
E . Hence

a primitive pth root ζp can be written as uσ1−1
1 uσ2−1

2 with ui ∈ UE . We will show
by the end of the fourth part that this leads to a contradiction; then

sk+1 is prime to p.

3. Denote by v the discrete valuation of E , and let π be a prime element of E. To
get a contradiction, choose u1 with maximal possible value of v(u1 − 1) such that
ζp = uσ1−1

1 uσ2−1
2 . We will show that we can increase the value v(u1 − 1), and this

gives a contradiction.
Using the description of the norm map in [4, Ch.III sect.1] we deduce that

πσ1 = θ1π + terms of higher order,

πσ2−1 = 1 + θ2π
e(E2)/(p−1) + terms of higher order,

with non-zero multiplicative representatives θi, θ1 is a primitive lth root.
The Galois group of E/F is the semi-product of two cyclic groups, one of order

l = |E1 : E0| and the second of order |Ek : E1|. Let R be the fixed field of the first
group. Then σ1|E as a generator of the Galois group of E/R. Denote R = RE .

Let θ run through non-zero multiplicative representatives. In the first choice of
representatives in UE of the quotients Ui/Ui+1 of the group of principal units of E
we can include in it units 1 + θπj

R where πR is a prime element of R. Note that σ1

acts trivially on such elements. In addition,

(1 + θπi)σ1−1 = 1 + θ(θi
1 − 1)πi + terms of higher order, if (i, l) = 1.

In the second choice of topological generators of the group of principal units of
E take elements 1 + θπi, (i, p) = 1, i < pe(E)/(p − 1) and an appropriate element
1 + θ∗πpe(E)/(p−1) (see, e.g. [4, Ch.I sect.6]). We get

(1 + θπi)σ2−1 = 1 + iθθ2π
i+e(E2)/(p−1)+ terms of higher order, if (i, p) = 1.

4. From the description of the behaviour of the map x 7→ xp on the group of
principal units (see, e.g., [4, Ch.I sect.5]) we deduce the following. If for some r > 0
the element

(
(1 + θπi)pr)σ2−1 with (i, p) = 1 is not closer to 1 than ζp, then

(
(1 + θπi)pr)σ2−1 = 1 + (iθθ2)pr

πpr(i+e(E2)/(p−1))+ terms of higher order.
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Since ζp ∈ E1, l divides e(E2)/(p−1). From the previous description of the action
of σ1 we deduce that v(uσ1−1

1 − 1) = v(ζp − 1) does not hold. Using the description
of the action of σ2 and observing that pr(i + e(E2)/(p− 1)) = pk−2e(E2)/(p− 1) =
v(ζp− 1) for r > 0 implies p divides i, we also deduce that v(uσ2−1

2 − 1) = v(ζp− 1)
does not hold.

Hence v(uσ1−1
1 − 1) = v(uσ2−1

2 − 1) < v(ζp − 1) and

uσ2−1
2 = 1 + (iθθ2)pr

πpr(i+e(E2)/(p−1))+ terms of higher order,

for some r > 0. Denote j = pr(i + e(E2)/(p − 1)). Then the first two terms of
uσ−1

1 must be 1 − (iθθ2)pr

πj , and hence j is not divisible by l. Due to the choice
of u1 we can assume that when it is presented as the product of the first choice of
representatives in the group of principal units of E , that product does not contain
elements from R. Therefore u1 = wσ2−1u′1, v(u′1 − 1) > v(u1 − 1), where w =
(1 + ηπi)pr

, ηpr ≡ −θpr

(θj
1 − 1)−1 mod π and wσ2−1 = 1− (iθθ2)pr

(θj
1 − 1)−1πj+

terms of higher order.
Now ζp = uσ1−1

1 uσ2−1
2 = u′1

σ1−1
u′2

σ2−1 where u′2 = u2w
σ1−1z. Here z = 1 is

Ek/E0 is abelian and z = (wσ1σ2)1+···+σr−2
2 ∈ UE where (σ−1

1 σ2σ1)|E = σr
2|E ,

r > 1, otherwise. Since v(u′1 − 1) > v(u1 − 1), we get a contradiction.
Thus, sk+1 is prime to p.
5. Now, we argue similarly to the proof of a part of [2, Lemma 3]. Denote β∗ =

upm

∗ . We aim to show that β∗ ∈ Uσ−1
E′ . We get NE′/Eβ∗ = 1, hence β∗ can be written

as πρ−1
E′ uσ−1 with ρ ∈ Gal(E′/E), u ∈ UE′ , πE′ a prime element of E′. We shall

show that ρ = 1. Then upm

∗ belongs to Uσ−1
E′ , as desired.

Find a unit δ in E ′ such that δ1−ϕ = upm−1

∗ . Then, as briefly discussed in section 1,
the reciprocity homomorphism for E′/E maps ρ to (NE′/Eδ)p mod NE′/EUE′ ; for
more detail see [4, Ch.IV sect.3]. If ε = NE′/Eδ belongs to E, then the image of ρ
belongs to NE′/EUE′ , and hence, since the reciprocity homomorphism is injective
for abelian extensions, ρ = 1. If ε does not belong to E, then, since ε ∈ E , we
can write εp = apω where a ∈ UE and ω ∈ UE is a p-primary element (i.e. the
extension E( p

√
ω)/E is unramified of degree p). Since sk+1 is prime to p, we have

sk+1 < v(ω − 1) = pe(E)/(p − 1). Properties of the norm map (see e.g. [4, Ch. III
sect. 1]) imply that ω ∈ NE′/EUE′ . Therefore the image of ρ, which is the class of
εp, belongs to NE′/EUE′ . Thus, ρ = 1, as desired.

Remark 1. The sequence

1 −−−−→ T −−−−→ UE′/Uσ−1
E′

NE′/E−−−−→ UE −−−−→ 1

does not split if and only if sk+1 is divisible by p, i.e. the extension Ek+1/Ek is not
of Artin–Schreier type. This follows from the fifth part of the proof of the previous
theorem.

Remark 2. T ′ = {1} if and only if the extension E′/F is abelian, in this case the
splitting f is uniquely determined.

Remark 3. The sequence

1 −−−−→ T ′ −−−−→ (∏
i6k+1 Uσi−1

E′
)
/Uσ−1

E′
NE′/E−−−−→ ∏

i6k Uσi−1
E −−−−→ 1
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splits in the category of Zp-modules, but not necessarily in the category of pro-
algebraic modules. See also Remark 5.

4. A new definition of fi and YL/F

We assume in this section that the reader has a good knowledge of [2].

Definition 2. Using the previous theorem, we introduce homomorphisms, k > 1,

hk :
∏

16i6k Uσi−1
Ek

−−−−→ (∏
16i6k+1 Uσi−1

Ek+1

)
/U

σk+1−1
Ek+1

.

Set Xi = Uσi−1
Ei

.
Let

gk :
∏

16i6k Uσi−1
Ek

−−−−→ ∏
16i6k+1 Uσi−1

Ek+1

be any map such that hk = gk mod U
σk+1−1
Ek+1

.
Define

fi : Xi −→ UN (L/Ei) −→ UN (L/F )

as any map such that its Ej-component for j > i coincides with (gj−1 ◦ · · · ◦ gi)|Xi .

This definition of fi, since it comes from the splitting homomorphisms in the
previous theorem, is more functorial than that in [2].

With this choice of fi [2, Lemma 4] holds for all regular extensions.

Definition 3. Denote by Zi the image of fi.
Set

ZL/F = ZL/F ({Ei, fi}) =
{∏

i

z(i) : z(i) ∈ Zi

}
.

Define

YL/F = {y ∈ UN (L/F ) : y1−ϕ ∈ ZL/F }.
As in [2], the map 1−ϕ induces an isomorphism between the group U¦

N (L/F )/YL/F

and group ker NL/F/ZL/F .
The following theorem is proved exactly in the same way as [2, Th. 1 and Th. 2].

Theorem 2. Let L/F be a good Galois arithmetically profinite extension. The map
Gal(L/F ) −→ ker NL/F/ZL/F , τ 7−→ Xτ−1 is a bijection.

For every U ∈ U¦
N (L/F ) there is a unique automorphism τ ∈ Gal(L/F ) satisfying

U1−ϕ ≡ Xτ−1 mod ZL/F .

Thus, the map

NL/F : Gal(L/F ) −→ U¦
N (L/F )/YL/F , τ 7−→ U

where U ∈ U¦
N (L/F )/YL/F satisfies the equation of the previous paragraph, is a

bijection.
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Remark 4. Thus, we get the second reciprocity map HL/F : U¦
N (L/F ) −→ Gal(L/F )

defined by HL/F (U) = τ . The above construction of ZL/F and YL/F provides a new
calculation of its kernel.

Remark 5. The group ZL/F for a finite extension L/F is a subgroup of finite index
of V (L/F). Recall [10] that V (L/F) is the connected component of ker NL/F in
the pro-algebraic Zariski topology. The group ZL/F is a connected subgroup of finite
index of V (L/F). One can show that the quotient V (L/F)/ZL/F has exponent 6 p.
It is a challenging problem to investigate if one can modify the Zariski topology to a
new topology t so that ZL/F becomes the connected component of ker NL/F . Then
one would have a bijection between πt

1(UF )/NL/F πt
1(UL) and Gal(L/F ) similarly to

the geometric abelian case.
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