Hyperbolic Graphs of Small Complexity

Damian Heard, Craig Hodgson, Bruno Martelli, and Carlo Petronio

CONTENTS

. Introduction

. Hyperbolic Geometry

. Complexity Theory

. Computer Programs and Obstructions to Hyperbolicity
. Hyperbolic Census Details

. Irreducible Nonhyperbolic Graphs

N O U1 & W N =

. Figures
Acknowledgments
References

2000 AMS Subject Classification: Primary: 57M50; Secondary:
57M27, 05C30, 57M20

Keywords: hyperbolic 3-manifolds, knotted graphs, complexity

In this paper we enumerate and classify the “simplest” pairs
(M, @), where M is a closed orientable 3-manifold and G is
a trivalent graph embedded in M.

To enumerate the pairs we use a variation of Matveev’s definition
of complexity for 3-manifolds, and we consider only (0, 1, 2)-
irreducible pairs, namely pairs (M, G) such that any 2-sphere
in M intersecting G transversely in at most two points bounds
a ball in M either disjoint from G or intersecting G in an un-
knotted arc. To classify the pairs, our main tools are geometric
invariants defined using hyperbolic geometry. In most cases, the
graph complement admits a unique hyperbolic structure with
parabolic meridians; this structure was computed and studied
using Heard’s program ORB and Goodman's program SNAP.

We determine all (0, 1, 2)-irreducible pairs up to complexity 5,
allowing disconnected graphs but forbidding components with-
out vertices in complexity 5. The result is a list of 129 pairs, of
which 123 are hyperbolic with parabolic meridians. For these
pairs we give detailed information on hyperbolic invariants in-
cluding volumes, symmetry groups, and arithmetic invariants.
Pictures of all hyperbolic graphs up to complexity 4 are pro-
vided. We also include a partial analysis of knots and links.

The theoretical framework underlying the paper is twofold, be-
ing based on Matveev’s theory of spines and on Thurston’s idea
(later developed by several authors) of constructing hyperbolic
structures via triangulations. Many of our results were obtained
(or suggested) by computer investigations.

1. INTRODUCTION

The study of knotted graphs in 3-manifolds is a natu-
ral generalization of classical knot theory, with poten-
tial applications to chemistry and biology (see, e.g., [Fla-
pan 00]). In knot theory, extensive knot tables have been
built up through the work of many mathematicians (see,
e.g., [Conway 70, Hoste et al. 98]). There has been much
less work on the tabulation of knotted graphs, but some
knotted graphs in S® have been enumerated in order
of crossing number; see [Simon 87, Litherland 89, Mo-
riuchi 04, Moriuchi 07, Chiodo et al. 10].
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In this paper we classify the simplest trivalent graphs
in general closed 3-manifolds. We first enumerate them
using a notion of complexity that extends Matveev’s defi-
nition for 3-manifolds [Matveev 90], and then we classify
them with the help of geometric invariants, mostly de-
fined using hyperbolic geometry.

More precisely, the objects considered in this paper are
pairs (M, G), where M is a closed, connected, orientable
3-manifold and G is a trivalent graph in M. The graph
G may contain loops and multiple edges, and is possibly
disconnected (in particular, G can be a knot or a link).
To avoid “wild” embeddings we work in the piecewise
linear category: thus M is a PL-manifold and G is a 1-
dimensional subcomplex, and we aim to classify graphs
up to PL-homeomorphisms of pairs.

Following [Matveev 90], a compact polyhedron P is
called simple if the link of every point of P embeds in the
1-skeleton of the tetrahedron (the complete graph with
four vertices). Points having the whole of this graph as
a link are called wvertices of P. Moreover, as defined in
[Petronio 06], P is a spine of a pair (M, G) if it embeds
in M so that its complement is a finite union of balls
intersecting G in the simplest possible ways, as shown in
Figure 1.

As usual in complexity theory, the complexity ¢(M, G)
is then defined as the minimal number of vertices in a
simple spine of (M, G). The case considered in [Petro-
nio 06] is actually that of 3-orbifolds, but the definition
of complexity is the same as just given, except that a
contribution of the edge labels is also introduced. When
G = @ we recover Matveev’s original definition, thus ob-
taining the equality ¢(M) = ¢(M, @). In general, we have
(M) < c(M,G).

For manifolds, Matveev showed that complexity is ad-
ditive under connected sum and that it behaves partic-
ularly well on drreducible manifolds (i.e., manifolds in
which every 2-sphere bounds a 3-ball). In particular,
there exist only finitely many irreducible manifolds with
given complexity. These facts extend to the context of
the pairs (M, G) described above, with the following no-
tion of irreducibility: (M, G) is (0, 1,2)-irreducible if ev-
ery 2-sphere embedded in M and meeting G transversely
in at most two points bounds a ball intersecting G as
in Figure 1, left or center (in particular, there exists no
2-sphere meeting G in one point).

This paper is devoted to the enumeration and geomet-
ric investigation of all (0, 1, 2)-irreducible graphs (M, GQ)
of small complexity. As usual in 3-dimensional topology,
a key role in the study of our graphs is played by invari-
ants coming from hyperbolic geometry, which in particu-

lar provided the tools we used in most cases to distinguish
the pairs from each other.

While the complement of G in M very often has no hy-
perbolic structure with geodesic boundary (for instance,
it is often a handlebody), most pairs (M, G) are indeed
hyperbolic in a more general sense; namely, they are
hyperbolic with parabolic meridians.
M\ G carries a metric of constant sectional curvature —1
that completes to a manifold with noncompact geodesic
boundary having:

This means that

e toric cusps at the knot components of G,

e annular cusps at the meridians of the edges of G,
and

e geodesic 3-punctured boundary spheres at the ver-
tices of G.

This hyperbolic structure is the natural analogue of the
complete hyperbolic structure on a knot or link comple-
ment and is also useful in studying orbifold structures on
(M, Q).

By Mostow—Prasad rigidity, a hyperbolic structure
with parabolic meridians is unique if it exists, so its geo-
metric invariants depend only on (M, G). One can there-
fore use the volume and Kojima’s canonical decomposi-
tion [Kojima 90, Kojima 92] to distinguish hyperbolic
graphs. For the pairs in our list we have constructed
and analyzed the hyperbolic structure using the com-
puter program ORB, written by the first author.*

Since knots and links have already been widely studied
in many contexts, this paper focuses mostly on graphs
containing vertices.

1.1 Hyperbolic Graphs

The main result of the paper is the following theorem.

Theorem 1.1. There are 45 hyperbolic graphs (M,G) up
to complexity 4. There are 78 hyperbolic graphs in com-
plexity 5 without knot components. They are all collected
in Table 1, and described in detail in Tables /8. The 45
graphs of complezity up to 4 are drawn in Section 7.

Among the 45 graphs having complexity up to 4 we
find 5 knots, 24 #-graphs, 13 handcuffs, and 3 distinct
connected graphs with four vertices; see Table 1. The
graph types occurring are shown in Figure 2. Out of our
123 graphs, 36 lie in S3; refer again to Table 1.

I Available online (www.ms.unimelb.edu.au/~snap/orb.html).
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FIGURE 1. Balls in the complement of a spine.

type c=1|c=2|c=3]| c=4 c=25
knot (in S®) | 0(0) | 0(0) | 1(1) | 4(1) - ()
2t (in S%) 0(0) | 2(1) | 4(1) | 18(4) | 49 (10)
2h (in S?) 1) | 1) 3121 82| 27()
4a (in S?) 00)| 1(1)| o0()| 0(0) 2 (2)
4b (in S3) 0() | 0()] 0()] 1(1) 0 (0)
4c (in S3) 0(0)| 0@ | 0() | 1(1) 0 (0)
total 1() | 42 | 8@ | 32(9) | 78 (20)

TABLE 1. Numbers of hyperbolic graphs. The graph types are drawn in Figure 2. When ¢ = 5 we have not investigated
graphs having knot components.

0 2t 2h 4da 4b 4c

FIGURE 2. Names of abstract graph types.

1.2 Complexity and Volume

There is a single hyperbolic graph of smallest complexity
¢ = 1. It is a handcuff graph in S3, described in Figure 3
and Example 2.1.

It is also the hyperbolic graph with vertices of least
volume 3.663862377 .. .. This fact confirms the following
relationships between complexity and hyperbolic geome-
try, which have already been verified for closed manifolds
[Matveev 90, Gabai et al. 09], cusped manifolds [Callahan
et al. 99, Cao and Meyerhoff 01, Gabai et al. 06, Gabai et
al. 09], and manifolds with arbitrary (geodesic) boundary
[Fujii 90, Kojima and Miyamoto 91, Miyamoto 94, Frige-
rio et al. 04]:

1. Objects having complexity zero are not hyperbolic.

2. Among hyperbolic ones, the objects having lowest
volume have the lowest complexity.

Note that complexity and volume may share the same
first segments of hyperbolic objects (as they do) but are
qualitatively different globally, because in general there

are finitely many hyperbolic objects of bounded complex-
ity, while infinitely many ones may have bounded volume
thanks to Dehn surgery.

1.3 Compact Totally Geodesic Boundary

It may happen that M \ G has a hyperbolic metric that
completes to a manifold with compact totally geodesic
boundary. In this case we say that (M,G) is hyper-
bolic with geodesic boundary, which implies that (M, G) is
also hyperbolic (with parabolic meridians), but as men-
tioned above, the converse is often false. By analyzing
the graphs in Table 1, we have established the following
result.

Proposition 1.2. Up to complexity 5 there exist three
graphs (M, G) that are hyperbolic with geodesic bound-
ary, shown in Figure 4. They all belong to the set of
eight minimal-volume such manifolds described in [Ko-
jima and Miyamoto 91] and [Fujii 90], and they include
Thurston’s knotted Y [Thurston 97].
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FIGURE 3. The simplest hyperbolic handcuff graph.
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FIGURE 4. Graphs whose complements admit a hyperbolic structure with geodesic boundary.

1.4 Nonhyperbolic Graphs

Concerning (0, 1, 2)-irreducible nonhyperbolic graphs of
complexity up to 5, we have the following result.

Theorem 1.3. There are 21 (0, 1, 2)-irreducible nonhyper-
bolic graphs of complexity up to 2. There are 6 (0,1,2)-
irreducible nonhyperbolic graphs of complezity up to 5
without knot components.

These graphs are collected in Table 2 and described in
detail in Table 10 and Proposition 6.5.

The knots and links in Table 2 are all torus links in
lens spaces: this simple class of links is analyzed in Sec-
tion 6. The six other graphs are all f-graphs: the trivial
one in S? has complexity zero; the other five have com-
plexity 5 and have a Klein bottle in their complement (see
Proposition 6.5). Actually, in complexity 3 we have also
classified all graphs contained in S?, finding four more
torus links; see Table 2.

A precise description of the knots, links, and graphs
appearing in Table 2 will be provided in Section 6.

1.5 Some Open Problems

We conclude this introduction by suggesting a few prob-
lems for further investigation.

1. Enumerate the first few hyperbolic graphs with
parabolic meridians in order of increasing hyperbolic
volume.

2. Enumerate the first few hyperbolic 3-manifolds of fi-
nite volume with (compact or noncompact) geodesic
boundary in order of increasing hyperbolic volume.

3. Enumerate the first few closed hyperbolic 3-orbifolds
in order of increasing complexity as defined in
[Petronio 06].

4. Enumerate the first few closed hyperbolic 3-orbifolds
in order of increasing hyperbolic volume.

5. Determine the exact complexity of infinite families
of knotted graphs, for example the torus knots in
lens spaces (see Conjecture 6.4 below).

Note that [Kojima and Miyamoto 91, Miyamoto 94]
have already identified the lowest-volume hyperbolic
3-manifolds with compact and noncompact geodesic
boundary. Perhaps the “Mom technology” introduced
in [Gabai et al. 06, Gabai et al. 09] may offer an ap-
proach to problems 1 and 2. Recent work of [Gehring
and Martin 09, Marshall and Martin 08] has identified
the lowest-volume orientable hyperbolic 3-orbifold.
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type c=0|c=1|c=2|c=3|c=4|c=5
knot (in S%) 3 (1) 3(1) | 12 (1) - (3) - (=) - (=)
2-link (in S%) 0 (0) 1(1) 1 (0) - (1) - (=) - (=)
2t (in S?) 1(1) 0 (0) 0 (0) 0 (0) 0 (0) 5 (0)
total 4 (2) 4 (2) | 13 (1) - (4) - (=) - (=)

TABLE 2. Numbers of (0,1, 2)-irreducible nonhyperbolic graphs. When ¢ > 3, we have not investigated graphs having
knot components, except those contained in S° having complexity 3.

2. HYPERBOLIC GEOMETRY

In this section we review the main geometric notions and
results we will need in the rest of the paper.

2.1 Hyperbolic Structures with Parabolic Meridians

To help classify knotted graphs, we will study hyperbolic
structures analogous to the compete hyperbolic structure
on the complement of a knot or link. Given a graph G
in a closed orientable 3-manifold M, let N be the man-
ifold obtained from M \ G by removing an open regu-
lar neighborhood of the vertex set of G. Thus N is a
noncompact 3-manifold with boundary consisting of 3-
punctured spheres, one corresponding to each vertex of
G. Then we say that (M,G) has a hyperbolic struc-
ture with parabolic meridians if N admits a complete
hyperbolic metric of finite volume with geodesic bound-
ary (with toric and annular cusps). Equivalently, the
double D(N) of N admits a complete hyperbolic met-
ric of finite volume (with toric cusps). Such a hyper-
bolic structure on N is unique by a standard argument
using Mostow—Prasad rigidity [Thurston 79] and Tollef-
son’s classification [Tollefson 81] of involutions with 2-
dimensional fixed-point set (see [Thurston 82] and also
[Frigerio and Petronio 04]).

Example 2.1. The simplest hyperbolic handcuff graph
(83, G) can be obtained from one tetrahedron with the
two front faces folded together and the two back faces
folded together, giving a triangulation of S% with the
graph G contained in the 1-skeleton as shown in Figure 3.

If we truncate the vertices of the tetrahedron until all
edge lengths are zero, the result can be realized geometri-
cally by a regular ideal octahedron in hyperbolic space, as
shown in Figure 5. We can then glue the four unshaded
faces together in pairs so that the other four shaded faces
form two totally geodesic 3-punctured spheres.

This gives a hyperbolic structure with parabolic
meridians  for (S3,G)  with  hyperbolic  volume
3.663862377 . ... The results [Kojima and Miyamoto 91,
Miyamoto 94] show that this is the smallest volume for
trivalent graphs. This work also implies that a trivalent

FIGURE 5. Truncating the vertices of a tetrahedron
produces a regular ideal octahedron whose unshaded
faces can be glued in pairs to give a hyperbolic struc-
ture with parabolic meridians on the graph of Figure 3.

graph having this volume is obtained by identifying the
unshaded faces of an ideal octahedron as above, and
hence has complexity 1. Therefore the handcuff graph
in Figure 3 is the unique graph of minimal volume.

We next describe topological conditions for the exis-
tence of a hyperbolic structure with parabolic meridians.
Let X denote the graph exterior, i.e., the compact mani-
fold obtained from M by removing an open regular neigh-
borhood of the graph G. Then 90X is a disjoint union of
pairs of pants (corresponding to the vertices of G) and
a collection of annuli and tori P C X (corresponding to
the edges and knots in ). Thurston’s hyperbolization
theorem for pared 3-manifolds [Morgan 84, Kapovich 01]
implies the following result.

Theorem 2.2. The pair (M, G) admits a hyperbolic struc-
ture with parabolic meridians if and only if

o X is irreducible and homotopically atoroidal,
e P consists of incompressible annuli and tori,
e there is no essential annulus (A,0A) C (X, P), and

e (X, P) is not a product (S,9S) x
pair of pants.

[0,1], where S is a
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This hyperbolic structure is unique up to isometry.

Remark 2.3. To obtain a hyperbolic structure with
geodesic boundary on a general pared manifold (X, P),
we would need to add the requirements that 0X \ P be
incompressible and that (X, P) be acylindrical (i.e., that
every annulus (A4,9A) C (X,0X \ P) be homotopic into
0X). But these conditions follow here, since 0X \ P
consists of 3-punctured spheres (see [Boileau et al. 05,
pp. 243-244)).

The conditions for hyperbolicity simplify considerably
when (M, G) is (0, 1, 2)-irreducible, as defined in the in-
troduction. To elucidate the notion, we say that (M, Q)
is:

o 0-irreducible if every 2-sphere in M disjoint from G
bounds a 3-ball in M disjoint from G;

o 1-irreducible if there exists no 2-sphere in M meeting
G transversely in a single point;

o 2-irreducible if every 2-sphere in M meeting G trans-
versely in two points bounds a ball in M that inter-
sects G in a single unknotted arc.

Then a graph is (0,1, 2)-irreducible if it is i-irreducible
for i = 0,1,2.

Theorem 2.4. The pair (M, G) admits a hyperbolic struc-
ture with parabolic meridians if and only if

o (M,QG) is (0,1, 2)-irreducible,

e X is homotopically atoroidal and is not a solid torus
or the product of a torus with an interval, and

o (M, Q) is not the trivial 6-graph in S3.

Proof. Tt is easy to check that the conditions listed are
necessary for hyperbolicity. To show that they are suf-
ficient, first note that O-irreducibility of (M, G) implies
that X is irreducible, and 1-irreducibility implies that
P is incompressible or X is a solid torus, but the latter
possibility is excluded. Moreover, (X, P) is not a prod-
uct (S,95) x [0,1], where S is a pair of pants, because
(M, G) is not the trivial §-graph in S°.

According to the previous theorem, we are left to
show only that there cannot exist an essential annulus
(A,0A) C (X, P). Suppose the contrary and note that
each of the two components of 9A is incident to either an

annular or a toric component of P. We show that the ex-
istence of such an annulus A is impossible by considering
the following three possibilities:

1. If A is incident only to annuli of P, we readily see
that 2-irreducibility is violated.

2. If A is incident to an annular component A’ of P and
a torus component 7' of P, then the boundary of a
regular neighborhood of AUT is another annulus in-
cident to A" only. Again we see that 2-irreducibility
is violated, since the resulting sphere does not bound
a ball containing a single unknotted arc.

3. If A is incident to toric components only, proceed-
ing as in the previous case we find one or two tori,
depending on whether the toric components are dis-

Homotopic atoroidality implies that

these tori must be compressible or boundary parallel

in X. Using irreducibility of X and incompressibil-
ity of A, we find that X is Seifert fibered with the

core circle of A as a fiber and base space either a

pair of pants, an annulus with at most one singular

tinct or not.

point, or a disk with at most two singular points.
By homotopic atoroidality, we deduce that X is the
product of a torus and an interval or a solid torus,
contrary to our assumptions.

O

Corollary 2.5. If G is a trivalent graph containing at
least one vertex, then (M, G) is hyperbolic with parabolic
meridians if and only if (M, G) is (0,1, 2)-irreducible, ge-
ometrically atoroidal, and not the trivial 0-graph in S3.

2.2 Hyperbolic Structures with Geodesic Boundary

Let (M, G) be a graph, and let X denote the graph exte-
rior as above. Let us define Y as the manifold obtained
by mirroring X in its nontoric boundary components, so
Y is either closed or bounded by tori. Then X minus its
toric boundary components has a hyperbolic structure
with totally geodesic boundary if and only if the interior
of Y has a complete hyperbolic structure. By Thurston’s
hyperbolization theorem [Morgan 84, Kapovich 01] and
Mostow—Prasad rigidity (see [Thurston 82, p. 14]), we
then have the following result.

Theorem 2.6.
boundary components admits a hyperbolic structure with
totally geodesic boundary if and only if X is irreducible,
boundary incompressible, homotopically atoroidal, and

The graph exterior X minus its toric
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1sometry.

This hyperbolic structure is unique up to

Comparing Theorems 2.2 and 2.6, one easily sees that
if X minus its toric boundary components admits a hy-
perbolic structure with geodesic boundary, then (M, G)
admits a hyperbolic structure with parabolic meridians.
The converse, however, is false, as most of the pairs
(M, G) described below show.

2.3 Hyperbolic Orbifolds

One of the initial motivations of our work was the study
of hyperbolic 3-orbifolds, but the analysis of graphs
turned out to be interesting enough by itself, so we de-
cided to leave orbifolds for the future. However, we men-
tion them briefly here.

Given a trivalent graph G in a closed 3-manifold M, we
obtain an orbifold @ associated to (M, G) by attaching
an integer label n, > 2 to each edge or circle e of G.
Note that we do not impose any restrictions on the labels
(p,q,r) of the edges incident to a vertex v, so from a
topological viewpoint, v gives rise either to an interior
point of Q (if %4— % +1 > 1) or to a boundary component
of Q, a 2-orbifold of type S%(p,q,r).

We will say that @ is hyperbolic if M\ G admits an in-
complete hyperbolic metric whose completion has a cone
angle 27 /n. along each edge or circle e in G. Depending
on whether % + % + % — 1 is positive, zero, or negative, a
vertex with incoming labels (p, ¢, r) gives rise to an inte-
rior point of @ to which the singular metric extends, to a
cusp of @, or to a totally geodesic boundary component
of Q.

The main connections between orbifold hyperbolic
structures and those we deal with in this paper are as
follows:

o If (M,G) has a hyperbolic orbifold structure for
some choice of labels n., then (M, G) admits a hy-
perbolic structure with parabolic meridians.

o If (M,G) admits a hyperbolic structure with
parabolic meridians, then the corresponding orb-
ifolds are hyperbolic if all labels are sufficiently large;
moreover, the structure with parabolic meridians
can be regarded as the limit of the orbifold hyper-
bolic structures as all labels tend to infinity.

The first assertion follows from Theorem 2.2 by topo-
logical arguments only (see [Boileau et al. 05, Propo-
sition 6.1]), while the second one is a consequence
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of Thurston’s hyperbolic Dehn surgery theorem (see
[Boileau et al. 05, Cooper et al. 00] for details).

2.4  Algorithmic Search for Hyperbolic Structures

As already mentioned, the hyperbolic structures and re-
lated invariants on the 123 pairs of our census have been
obtained using the computer program ORB. More details
on this program will be provided below, but we outline
here the underlying theoretical idea (from [Thurston 79])
of the algorithmic construction of a hyperbolic struc-
ture with geodesic boundary on a pared manifold (X, P),
where X is compact but not closed and P is a collection
of tori and annuli on 0X.

The starting point is a (suitably defined) ideal trian-
gulation of (X, P), namely a realization of (X, P) as a
gluing of generalized ideal tetrahedra. Each of these is a
tetrahedron with its vertices removed and, depending on
its position with respect to dX and P, with perhaps en-
tire edges and/or open regular neighborhoods of vertices
removed as well.

The next step is to choose a realization of each of these
tetrahedra as a geodesic generalized ideal tetrahedron in
hyperbolic 3-space. These realizations are parameterized
by certain moduli, and the condition that the hyperbolic
structures on the individual tetrahedra match up to give
a hyperbolic structure on (X, P) translates into equations
in the moduli. The algorithm then consists in chang-
ing the initial moduli using Newton’s method until the
(unique) solution of the equations is found.

When M is closed, one can search for its hyperbolic
structure using a similar method, starting from a decom-
position of M into compact tetrahedra

2.5 Canonical Cell Decompositions

Whenever a hyperbolic manifold X is not closed, it ad-
mits a canonical decomposition into geodesic hyperbolic
polyhedra, which allows one to compute very efficiently
its symmetry group and compare it for equality with an-
other such manifold. The decomposition was defined in
[Epstein and Penner 88] when dX = & but X has cusps,
and in [Kojima 90, Kojima 92] when 0X # @. We will
now briefly outline the latter construction.

Begin with the geodesic boundary components of X
and very small horospherical cross sections of any torus
cusps of X, and expand these surfaces at the same rate
until they bump to give a 2-complex (the cut locus of the
initial boundary surfaces). Then dual to this complex is
the Kojima canonical decomposition of X into general-
ized ideal hyperbolic polyhedra. This is independent of
the choice of horosphere cross sections, provided they are
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chosen sufficiently small, and it gives a complete topolog-
ical invariant of the manifold.

Thus two finite-volume hyperbolic 3-manifolds with
geodesic boundary are isometric (or equivalently, homeo-
morphic) if and only if their Kojima canonical decompo-
sitions are combinatorially the same; and the symmetry
group of isometries of such a manifold is the group of
combinatorial automorphisms of the canonical decompo-
sition.

Similarly, two graphs admitting hyperbolic structures
with parabolic meridians are equivalent if and only
if there is a combinatorial isomorphism between their
canonical decompositions taking meridians to meridians,
and the group of symmetries of such a graph is the group
of combinatorial automorphisms of the canonical decom-
position taking meridians to meridians.

2.6 Arithmetic Invariants

Let us first note that a hyperbolic structure on an ori-
entable 3-manifold without boundary corresponds to a
realization of the manifold as the quotient of hyper-
bolic space H? under the action of a discrete group I' of
orientation-preserving isometries of H3. If the manifold
has geodesic boundary, H? should be replaced by a I'-
invariant intersection of closed half-spaces in H2. More-
over for any given hyperbolic 3-manifold, the group I is
well defined up to conjugation within the full group of
orientation-preserving isometries of IH?, which is isomor-
phic to PSL(2, C).

If T is a discrete subgroup of PSL(2, C), then the in-
variant trace field k(I') C C is the field generated by
the traces of the elements of I'?) = {42 | v € T'} lifted
to SL(2,C). This is a commensurability invariant of I'
(unchanged if T' is replaced by a finite-index subgroup).
Further, if H?/T" has finite volume, then it follows from
Weil-Garland (or Mostow—Prasad) rigidity that k(I") is
a number field, i.e., a finite-degree extension of the ra-
tional numbers Q. (See [Maclachlan and Reid 03] for an
excellent discussion and proofs.)

If a trivalent graph (M, G) admits a hyperbolic struc-
ture N with parabolic meridians, then N is the convex
hull of H?/T', where I is a discrete subgroup of PSL(2, C).
Thus k(') is an invariant of (M,G). Now the double
D(N) (defined at the start of Section 2.1) has the form
H3 /Ty, where I'y is a Kleinian group containing I'. Since
D(N) is hyperbolic with finite volume, k(T';) is an alge-
braic number field. Hence the subfield k(T') is also an
algebraic number field. We compute this by combining

ORB with a modified version of Oliver Goodman’s pro-
gram SNAP.2

SNAP begins with generators and relations for I', and
a numerical approximation to I' provided by ORB. It
first refines this using Newton’s method to obtain a high-
precision numerical approximation to I', and then tries to
find exact descriptions of matrix entries and their traces
as algebraic numbers using the LLL algorithm. Finally,
SNAP verifies that we have an exact representation of I'
by checking that the relations for I' are satisfied using
exact calculations in a number field, and computes the
invariant trace field k(I") and associated algebraic invari-
ants. (See [Coulson et al. 00] for a detailed description
of SNAP.)

3. COMPLEXITY THEORY

A theory of complexity for 3-orbifolds, mimicking
Matveev’s theory for manifolds [Matveev 90|, was devel-
oped in [Petronio 06]. Removing all references to edge
orders and their contributions to the complexity, one de-
duces a theory of complexity for 3-valent graphs embed-
ded in closed orientable 3-manifolds. In this paragraph
we will summarize the main features of this theory, the
main ideas of which are as follows:

1. Triangulations are the best way to manipulate 3-
dimensional topological objects by computer.

2. Therefore, the minimal number of tetrahedra re-
quired to triangulate an object gives a very natural mea-
sure of the complexity of the object.

3. However, there exists another definition of com-
plexity, based on the notion of simple spine. A trian-
gulation, via a certain “duality,” gives rise to a simple
spine, and therefore complexity defined via spines is not
greater than complexity defined via triangulations.

4. Simple spines are more flexible than triangulations.
In particular, there are more general nonminimality crite-
ria for simple spines than for triangulations. More specif-
ically, there are instances in which a triangulation may
appear to be minimal (as a triangulation) whereas the
dual spine is obviously not minimal (as a simple spine).

5. A theorem ensures that for a hyperbolic object a
minimal simple spine is always dual to a triangulation.

6. As a conclusion, if one wants to carry out a census
of hyperbolic objects in order of increasing complexity,
one deals by computer with triangulations, but one dis-
cards triangulations to which, via duality, the stronger
nonminimality criteria for spines apply. This is because

2 Available online (sourceforge.net/projects/snap-pari).



thanks to the theorem, such a triangulation encodes ei-
ther a nonhyperbolic object or a hyperbolic object that
has been met earlier in the census.

We will now turn to a more detailed discussion.

3.1 Simple Spines and Complexity

To proceed with the key notions and results, we recall
a definition given in the introduction. A compact poly-
hedron P (in the PL sense [Rourke and Sanderson 72])
such that the link of each point embeds in the 1-skeleton
of the tetrahedron is said to be simple.> We denote by
V(P) the set of points of P whose link is isomorphic to
the 1-skeleton of a tetrahedron, and we note that V(P)
is a finite set.

Definition 3.1. A simple spine of a trivalent graph (M, G)
with closed M is a simple polyhedron P embedded in M
in such a way that:

1. G intersects P transversely (in particular, P N G
consists of a finite number of points that are not
vertices of G).

2. Removing an open regular neighborhood of P from
(M, G) gives a finite collection of balls, each of which
intersects G in either (a) the empty set, (b) a single
unknotted arc of G, or (¢) a vertex of G with un-
knotted strands leaving the vertex and reaching the
boundary of the ball. (See Figure 1.)

It is very easy to see (and it will follow from the dual-
ity with triangulations described in Proposition 3.2) that
each (M, G) admits simple spines. Therefore, the com-
plezity of (M, G), which we define as

¢(M,G) = min {#V(P) : P is a simple spine of (M, G)},
is a finite number.

3.2 Special Spines and Duality

To illustrate the relation between spines and triangula-
tions, we need to introduce two subsequent refinements
of the notion of simple polyhedron. We will say that P
is almost special if it is a compact polyhedron and each
of its points has one of the following sets as a link:

1. the 1-skeleton of the tetrahedron with two open op-
posite edges removed (a circle);

3In [Matveev 90] such a polyhedron was originally called almost
stmple, while the term simple was employed for almost special poly-
hedra; see Section 3.2.
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7

FIGURE 6. Local structure of an almost-special polyhedron.

1

2. the 1-skeleton of the tetrahedron with one open edge
removed (a circle with a diameter);

3. the 1-skeleton of the tetrahedron (a circle with three
radii).

The corresponding local structure of an almost-special
polyhedron is shown in Figure 6.

Besides the set V(P) of vertices already introduced
above for simple polyhedra, we can define for an almost-
special P the singular set, given by the nonsurface points
and denoted by S(P). We remark that S(P) is a 4-valent
graph with vertex set V(P). Note also that if P is an
almost-special spine of (M, G), then by the transversality
assumption, G intersects P away from S(P).

An almost-special polyhedron P is called special if
P\ S(P) is a union of open disks and S(P) \ V(P) is
a union of open segments. A special spine of a graph
(M, @) is a simple spine that in addition is a special poly-
hedron.

The following result, which refers to the case of mani-
folds without graphs embedded in them, has been known
for a long time; see for instance [Matveev 03]. We point
out that we use the term triangulation for a (closed, con-
nected, orientable) 3-manifold M in a generalized (not
strictly PL [Rourke and Sanderson 72]) sense. Namely,
we mean a realization of M as a simplicial pairing be-
tween the faces of a finite union of tetrahedra, i.e., we
allow multiple and self-adjacencies between tetrahedra.

Proposition 3.2. Given a closed 3-manifold M, for each
triangulation T of M define ®(T) as the 2-skeleton of
the cell decomposition dual to T ; see Figure 7. Then ®
defines a bijection between the set of (isotopy classes of)
triangulations of M and the set of (isotopy classes of)
special spines of M.

3.3 (Efficient) Triangulations of Graphs

We now turn to graphs (M,G), and we define a trian-
gulation of (M,G) to be a (generalized) triangulation 7°
of M that contains G as a subset of its 1-skeleton. We
will further say that 7 is efficient if it has precisely one
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FIGURE 7. Duality between triangulations and special
spines.

vertex at each vertex of GG, one on each knot component
of G, and no other vertices.

The following easy result shows that under suitable
conditions, Proposition 3.2 has a refinement to graphs.

Proposition 3.3. For a simple spine P of a graph (M, G)
the following conditions are equivalent:

e P is dual to a triangulation of (M, G);

o P is special, G intersects P transversely away from
S(P), and each component of P\ S(P) intersects G
at most once.

3.4 Minimal Spines

A simple spine P of a graph (M, G) is called minimal if
it has ¢(M, G) vertices and no subset of P is also a spine
of (M, G). The success of the strategy based on complex-
ity theory (as outlined at the beginning of this section)
for the enumeration of hyperbolic graphs depends on the
next three results. They require the concept of (0,1, 2)-
irreducibility defined in the introduction. The first one
is part of Theorem 2.4; the next two easily follow from
[Petronio 06, Theorem 2.6].

Proposition 3.4. If (M,G) is hyperbolic with parabolic
meridians, then (M,G) is (0,1, 2)-irreducible.

Proposition 3.5. The (0,1, 2)-irreducible graphs (M, Q)
with ¢(M,G) = 0 are those described as follows and il-
lustrated in Figure 8:

o M is S3, L(3,1), or P?, and G is either empty or
the core of a Heegaard solid torus of M ;

o M is S3, and G is the trivially embedded 0-graph.

3/1

FIGURE 8. The (0, 1, 2)-irreducible graphs of complex-
ity 0. Here and below, a knot component carrying a
fractional label should be understood as a surgery in-
struction [Rolfsen 76]. In particular, it is not actually
part of the graph.

Theorem 3.6. Let (M, G) be a graph with ¢(M,G) > 0.
Then the following are equivalent:

o (M,QG) is (0,1, 2)-irreducible;
o (M,G) admits a special minimal spine;

e Every minimal spine of (M,G) is special, and dual
to it there is an efficient triangulation of (M, Q).

3.5 Nonminimality Criteria

The following result was used for the enumeration of can-
didate triangulations of (0, 1, 2)-irreducible graphs, as ex-
plained in more detail in the next section.

Proposition 3.7. Let T be a triangulation of a graph
(M, G), and let P be the special spine dual to T . Suppose
that in T there is an edge not lying in G and incident to
i distinct tetrahedra, with i < 3. Then P is not minimal.

Proof. We will show that we can perform a move on P
leading to a simple spine of (M, G) with fewer vertices
than P.

For i = 3 we do not even need to use spines, for the
move exists already at the level of triangulations: it is the
famous Matveev—Piergallini 3 — 2 move [Matveev 87,
Piergallini 88] illustrated in Figure 9. We need to note
only that after the move we still have a triangulation of
(M, G), because the edge that disappears with the move
does not lie in G.

For i = 1,2 we do need to use spines. The moves we
apply (a 1 — 0 and a 2 — 0 move) are illustrated in
Figure 10. Both moves involve the removal of the com-
ponent R of P\ S(P) dual to the edge of the statement,
and the result of the move is still a spine of (M, G) be-
cause G does not meet R. We note that the 2 — 0 move
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FIGURE 9. The 3 — 2 move on triangulations and its
dual version for spines.

’
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FIGURE 10. The 1 — 0 and the 2 — 0 moves on
spines. Both these moves transform a special spine P
into a simple spine that is not necessarily special. If P
has at least two vertices, both moves destroy at least
two vertices of P: the 2 — 0 move destroys precisely
two; the 1 — 0 move can be completed by collapsing
the face f, which is necessarily adjacent to at least
another vertex of P that disappears after the collapse.

leads to an almost-special polyhedron, but it can create a
spine with an annular nonsingular component, in which
case the spine is not dual to a triangulation. The 1 — 0
move gives a spine that is not almost special. O
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Remark 3.8. Sometimes, the nonminimality criteria of
the previous proposition do not apply directly, but only
after a modification of the triangulation. For instance,
a triangulation 1" with n tetrahedra may be transformed
into one T with n + 1 tetrahedra via a 2 — 3 move:
if 7' contains an edge incident to one or two distinct
tetrahedra, the dual spine P’ can be transformed into
a simple spine with at most n — 1 vertices by applying
one of the moves in Figure 10. Therefore, the original
triangulation 7' is not minimal.

3.6 Complexity of the Complement

Matveev’s complexity [Matveev 90| is defined for every
compact 3-manifold, with or without boundary. The
complement X of an open regular neighborhood of a
graph G in a closed 3-manifold M therefore has a com-
plexity, which is related to ¢(M, G) as follows.

Proposition 3.9. For any graph (M, G) we have
c(X) < e(M,G).

If (M,G) is (0,1,2)-irreducible with ¢(M,G) # 0 and
G # &, then
o(X) < (M, Q).

Proof. If P is a minimal simple spine of (M,G), then
the graph G intersects P in a finite number of points.
Removing from P open regular neighborhoods of these
points gives a simple polyhedron P’ C P that is a spine
of X with the same vertices as P. Therefore c(X ) <
c(M,G).

If (M,G) is (0,1,2)-irreducible, G # @, and
c¢(M,G) # 0, then Theorem 3.6 shows that a minimal
simple spine P of (M, G) is special and G N P consists of
some k > 1 points belonging to the interior of k£ distinct
disk components of P\ S(P). Removing these k disks,
we get a simple spine of X with strictly fewer vertices
than P. O

Remark 3.10. A compact 3-manifold that admits a com-
plete hyperbolic metric with geodesic boundary and finite
volume (after the tori are removed from its boundary)
has complexity at least 2; see [Matveev 90, Callahan et
al. 99, Frigerio et al. 04]. This explains why the first hy-
perbolic knots (M, G) have ¢(M,G) > 3 (see Tables 1
and 2). Analogously, the first graphs (M, G) whose com-
plement is hyperbolic with geodesic boundary must have
¢(M,G) > 3. (In fact they have complexity 5; see Sec-
tion 5.4.)
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n |1 2 3 4 5
cn |1 2 4 10 28
cn |1 3 5 18 56

TABLE 3. The number ¢, of 4-valent graphs with n
vertices and the number ¢, of 4-valent graphs with
oriented vertices.

4. COMPUTER PROGRAMS AND
OBSTRUCTIONS TO HYPERBOLICITY

In this section we describe the Haskell code we have writ-
ten to enumerate triangulations, and the computer pro-
gram ORB we have used to investigate hyperbolic struc-
tures.* We also describe how nonhyperbolic graphs were
identified (see also Section 6 below).

4.1 Enumeration of Marked Triangulations

Thanks to Theorem 3.6 and the other results stated in the
previous section, the enumeration of (0, 1,2)-irreducible
graphs of complexity n can be performed by listing all
efficient triangulations with n tetrahedra satisfying some
minimality criteria. This was done via a separate pro-
gram, written in Haskell,® which suitably adapts the
strategy already used in similar censuses (e.g., [Martelli
and Petronio 01, Matveev 94]).

A triangulation of a graph (M, G) can be encoded as
a triangulation of M with some edges marked as those
constituting G. A triangulation here is just a gluing of
tetrahedra, which can be described via a connected 4-
valent graph (the incidence graph of the gluing) having a
label on each edge encoding how the corresponding trian-
gular faces are identified (there are 3! = 6 possibilities).

A first count gives ¢, - 62" = ¢, - 36" triangulations
to check, where ¢,, is the number of 4-valent graphs with
n vertices (and 2n edges), shown in Table 3. On each
triangulation there are 2¢ = 271% distinct markings of
edges, where e is the number of edges and v is the number
of vertices in the triangulation of M. Since there are at
least two triangles in the link of each vertex, it follows
that v < 2n and e < 3n. There are therefore up to
Cp - 36™ - 23" = ¢, - 288™ marked triangulations to check.
This number is already too big for n = 3, so in order to
simplify the problem, we used some tricks.

We are interested only in orientable manifolds M. We
can therefore orient each tetrahedron and require the
identifications of faces to be orientation-reversing. This
reduces the number of possible labels on edges from 6

4See also the complete source code for the results described
in this paper, available online (www.dm.unipi.it/pages/petronio/
public_html/).

5 Available online (www.haskell.org).

to 3, and the number of triangulations to ¢}, -3?" = ¢/, -9™,
where ¢/, is the number of 4-valent graphs with “oriented”
vertices: each vertex has a fixed parity of orderings of the
incident edges. For a fixed 4-valent graph G with n ver-
tices, the vertices can be oriented in 2" different ways,
but up to the symmetries of GG, the number of distinct
orientations typically turns out to be very small. This
explains why ¢/, is actually much less than 2" - ¢,, as
shown in the table.

We selected from the resulting list of triangulations
only those yielding closed manifolds. Finally, on each tri-
angulation we a priori had 2¢ distinct markings on edges
to analyze. Proposition 3.7 was used to discard many of
these: in a triangulation dual to a minimal spine, an edge
incident to at most three distinct tetrahedra is necessar-
ily marked. It remained then to check which markings
give rise to efficient triangulations.

4.2 Orb

Hyperbolic structures were computed using the program
ORB, written by Damian Heard [Heard 05]. This pro-
gram builds on ideas of Thurston, Weeks, Casson, and
others to find hyperbolic structures and associated geo-
metric invariants for a large class of 3-dimensional man-
ifolds and orbifolds. The program begins with a trian-
gulation of the space with the singular locus or graph
contained in the 1-skeleton and tries to find shapes of
generalized hyperbolic tetrahedra (with vertices inside,
on, or outside the sphere at infinity) that fit together to
give a hyperbolic structure.

The generalized hyperbolic tetrahedra are described
using one parameter for each edge in the triangulation.
For a general tetrahedron, a lift to Minkowski space is
chosen. Then the parameters are Minkowski inner prod-
ucts of the vertex positions.

For compact tetrahedra, each parameter is just the
hyperbolic cosine of the edge length. For each ideal
vertex, the lift to Minkowski space determines a horo-
sphere centered at the vertex; for each hyperideal vertex,
a geodesic plane orthogonal to the incident faces is deter-
mined. Then the edge parameters are simple functions
of the hyperbolic distances between these surfaces.

Given the edge parameters, all dihedral angles of the
tetrahedra are determined. Moreover, the parameters
give a global hyperbolic structure if and only if the sum
of the dihedral angles around each edge is 27 (or the
desired cone angle, in the orbifold case). This gives a
system of equations that ORB solves numerically using
Newton’s method, starting with suitable regular general-
ized tetrahedra as the initial guess.



Once a hyperbolic structure is found, ORB can com-
pute many geometric invariants including volumes, the
Kojima canonical decompositions, and symmetry groups.
This uses methods based on ideas of [Weeks 93, Ushi-
jima 02, Frigerio and Petronio 04], too complicated to be
reproduced here.

After computing hyperbolic structures numerically us-
ing ORB, we checked the correctness of the results us-
ing Jeff Weeks’s program SNAPPEAS to calculate com-
plete hyperbolic structures on the manifolds with torus
cusps obtained by doubling along all 3-punctured sphere
boundary components.

Finally, we verified the results using Oliver Good-
man’s program SNAP [Coulson et al. 00] to find exact
hyperbolic structures. This provides a proof that the hy-
perbolic structures are correct and allows us to com-
pute associated arithmetic invariants (including invariant
trace fields), as already mentioned in Section 2.6 above.

4.3 Nonhyperbolic Knots and Links

Many knots and links in the census turned out to be
torus links in lens spaces; see Section 6.1 below. From
¢ = 3, we then decided to rule out the nonhyperbolic
knots and links from our census (except for those in S3
at ¢ = 3); this helped considerably in simplifying the
classification. Many nonhyperbolic knots and links were
easily identified by the following criterion.

Remark 4.1. If the complexity of the complement is at
most 1, then the link is not hyperbolic by Remark 3.10.
This holds, for instance, if there are n tetrahedra and the
marked edge of the triangulation is incident to at least
n — 1 of them (see the proof of Proposition 3.9).

The remaining knots and links were shown to be non-
hyperbolic by examining their fundamental groups with
the help of the following observations.

Lemma 4.2. Let M be an orientable finite-volume hyper-
bolic 3-manifold, and let a,b,c € m(M). Then

(i) if [a?,b?] = 1 for some integers p,q # 0, then
[a,b] = 1;

(ii) if [a,b] = 1 and b = cac™!, then a = b.
Proof. The results are clear if a, b, or ¢ is the identity, so

we may assume that a, b, and ¢ correspond to loxodromic
or parabolic isometries of H3.

6 Available online (www.geometrygames.org).
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In part (i), the elements a?,b? must have the same
axis or fixed point at co. Since p,q # 0, the same is true
for a and b, so a and b commute.

In part (ii), @ and b have the same fixed-point set F'
on the sphere at infinity, and ¢ takes F to itself. Since ¢
is not elliptic, it must fix each point of F'. Thus ¢ has the
same axis or fixed point at co as a and b, so it commutes
with them. O

Lemma 4.3. Let M be an orientable finite-volume hyper-
bolic 3-manifold. Then 7 (M) cannot have a presenta-
tion of the form

(i) {(a,b | a™(aPb?)* = 1), where k,n,p,q are integers
with k,n,q # 0, or

(ii) (a,b|a?b~ta"tb%2a= b=t = 1).

Proof. (i) If a™(aPb?)* = 1, then [a",aPb?] = 1 by part
(i) of Lemma 4.2. Hence [a™,b?] = 1 and [a, b] = 1, again
by part (i) of Lemma 4.2. So the group would have to be
Abelian, which is impossible.

(ii) The group has a presentation

(a,b,z,y |z =ab"'y=a""b[z,y] =1).
We can rewrite this as
(@, 2,y z=ay o™ [z,y] =1).

Hence x = y~! by part (ii) of Lemma 4.2, and [a, z] = 1.
So the group would have to be Abelian, which is again
impossible. O

Among the knots and links up to complexity 4 for
which ORB did not find a hyperbolic structure, all but
one of the complements had a fundamental group with
presentation of the form (a,b | [a™,b™] = 1), or {(a,b |
a™(aPb?)k = 1). These all correspond to nonhyperbolic
links by the lemmas above. The one remaining knot had
a presentation as in part (ii) of Lemma 4.3, so it is also
nonhyperbolic.

4.4 Nonhyperbolic Graphs

For graphs with at least one vertex, we first eliminated all
triangulations whose dual spines had nonminimal com-
plexity and hence either were reducible or occurred ear-
lier in our list. This left a handful of examples for which
ORB failed to find a hyperbolic structure. These were
first examined using SNAPPEA, by constructing trian-
gulations of the manifolds with torus cusps obtained by
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doubling along the 3-punctured sphere boundary compo-
nents.

We used SNAPPEA’s splitting function to look for
incompressible Klein bottles and tori in the doubles. This
suggested that incompressible Klein bottles were present
in the original graph complements. We then verified this
and showed that these examples were indeed nonhyper-
bolic by theoretical means, as explained below in Sec-
tion 6.

5. HYPERBOLIC CENSUS DETAILS

In this section we will expand on the information given
in Table 1, providing details of all 123 hyperbolic graphs
up to complexity 5. Pictures of the hyperbolic graphs up
to complexity 4 will be shown in Section 7.

5.1 Name Conventions

For future reference, we have chosen a name for each of
the graphs we have found. The name has the form

ng_c_1,

where n is the number of vertices of the graph, g is a
string describing the abstract graph type, c is the com-
plexity, and ¢ is an index (starting from 1 for any given
ng-c). We have found in our hyperbolic census only six
graph types, described above in Figure 2, so a string of
one letter only (or the empty string, for knots) was suf-
ficient to identify them. For graphs with two vertices,
the letters ¢t and h were suggested by the common names
“fG-graph” and “handcuffs.” The choice of letters was
arbitrary for graphs with four vertices.

5.2 Organization of Tables

We will give separate tables for #-graphs, handcuffs, 4-
vertex graphs, and knots. Within each table, graphs are
always arranged in increasing order of their hyperbolic
volumes. For graphs having vertices, the columns of the
tables respectively contain:

1. The name of the graph (M, G).

2. The volume of the hyperbolic structure with
parabolic meridians on M \ G.

3. A description of the cells of the Kojima canonical de-
composition for this structure. When all these cells
are tetrahedra we simply indicate their number; oth-
erwise, we add an asterisk in the table and provide
additional information separately.

4. The symmetry group of (M,G), with D,, denoting
the dihedral group with 2n elements.

5. Whether (M, G) is chiral (c) or amphichiral (a).

6. The name of the underlying space M. This is al-
most always a lens space; otherwise, it is a Seifert
fibered space that we describe in the usual way (as
in [Matveev 03, p. 406]).

7. The degree of the invariant trace field.”
8. The signature of the invariant trace field.
9. The discriminant of the invariant trace field.

10. Whether all traces of group elements are algebraic
integers.

11. Whether the group is arithmetic (after doubling to
obtain a finite-covolume group).

5.3 Table of Knots

As already mentioned, we have classified hyperbolic
knots only up to complexity 4, finding five of them. The
table containing their description differs from the previ-
ous ones only in that the third column gives the number
of cells in the Epstein—Penner canonical decomposition
[Epstein and Penner 88] (the Kojima decomposition is
not defined). We also provide an additional table show-
ing the name of each knot complement in the SNAPPEA
census [Callahan et al. 99], and either the name of the
knot in [Rolfsen 76] (for the knots in S®) or the surgery
coeflicients on one of the components of the Whitehead
link (5% in [Rolfsen 76]) yielding the knot.

As shown in the introduction and in Section 6 below,
there are many (0, 1,2)-irreducible knots in complexity
up to 3, and most of them are not hyperbolic: this phe-
nomenon can be understood using spines; see Proposi-
tion 3.9.

5.4 Compact Totally Geodesic Boundary

The three graphs referred to in Proposition 1.2 are
2t_5_45, 2t_5_46, and 2¢_5_47 in Table 5; these are
shown in Figure 4. (In particular, Thurston’s knotted
Y [Thurston 79, pp. 133-137] is 2t_5_45.) Their hy-
perbolic structures were constructed using OrRB. They
all have the lowest possible volume (= 6.45199027) for
hyperbolic 3-manifolds with genus-2 boundary (see [Ko-
jima and Miyamoto 91]), but they can be distinguished
by their Kojima decompositions or symmetry groups.

"Details of minimal polynomials for the fields are available
online(www.ms.unimelb.edu.au/~snap/knotted_graphs.html.)
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name volume (K) | sym | a/c | space | deg | sig disc int | ar
26.2.1 | 5333489567 | 3 | D2 | ¢ 5° 2 10,1 —7 Y | Y
2t_2_2 | 5.333489567 3 Ds c L(3,1) 2 0,1 -7 Y Y
2t_3_1 | 6.354586557 4 Do c P3 3 1,1 —44 Y N
2t_3-2 | 6.354586557 4 D c L(4,1) 3 1,1 —44 Y N
2t_3-3 | 6.551743288 7 Do c S3 3 1,1 —-107 Y N
2t_3-4 | 6.551743288 7 D c L(5,2) 3 1,1 —107 Y N
2t_4_1 | 6.755194816 5 Do c L(3,1) 4 0, 2 2917 Y N
2t_4_2 | 6.755194816 5 D c L(5,1) 4 0,2 2917 Y N
2t_4_3 | 6.927377112 11 D c S3 4 0, 2 1929 Y N
2t_4_4 | 6.927377112 11 D c L(7,3) 4 0,2 1929 Y N
2t_5_1 | 6.952347978 6 Do c L(4,1) 5 1,2 7684 Y N
2t_5.2 | 6.952347978 6 Do c L(6,1) 5 1,2 7684 Y N
2t_4_5 | 6.987763199 7 Do c L(3,1) 5 1,2 77041 Y N
2t_4_6 | 6.987763199 7 D c L(7,2) 5 1,2 77041 Y N
2t_4_7 | 7.035521457 8 D c P3 5 1,2 5584 Y N
2t_4_8 | 7.035521457 8 Do c L(8,3) 5 1,2 5584 Y N
2t_5_3 | 7.084790037 15 Do c s? 5 1,2 49697 Y N
2t_5_4 | 7.084790037 15 D c L(9,2) 5 1,2 49697 Y N
2t_5.5 | 7.142157274 9 Do c L(5,2) 7 1,3 | —123782683 | Y N
2t_5.6 | 7.142157274 9 Do c L(9,2) 7 1,3 | —123782683 | Y N
2t_5_7 | 7.157517365 8 D c L(4,1) 7 1,3 —2369276 Y N
2t_5_8 | 7.157517365 8 Do c L(10,3) 7 1,3 —2369276 Y N
2t_5_9 | 7.175425922 9 Do c L(3,1) 7 1,3 | —88148831 Y N
2t_5_10 | 7.175425922 9 Do c L(11,3) 7 1,3 | —88148831 Y N
2t_5_11 | 7.192635929 11 D c L(5,2) 8 0,4 | 5442461517 Y N
2t_5_12 | 7.192635929 11 D c L(11,3) 8 0,4 | 5442461517 Y N
2t_5_13 | 7.193764490 12 D c P? 7 1,3 —1523968 Y N
2t_5_14 | 7.193764490 12 D c L(12,5) 7 1,3 —1523968 Y N
2t_5_15 | 7.216515907 11 D c L(3,1) 8 0,4 | 3679703653 Y N
2t_5_16 | 7.216515907 11 Do c L(13,5) 8 0,4 | 3679703653 Y N
2t_4_9 | 7.327724753 | 4 Dy a | 82 xSt 2 101 —4 Y | Y
2t_4_10 | 7.517689896 6 Do c L(3,1) 3 1,1 —104 Y N
2t_4_11 | 7.706911803 5 Do c 3 3 1,1 —59 Y N
2t_4_12 | 7.706911803 5 D c L(5,1) 3 1,1 —59 Y N
2t_4_13 | 7.867901276 7 L c L(7,2) 5 3,1 —112919 Y N
2t_4_14 | 7.940579248 9 Do c L(8,3) 3 1,1 —76 Y N
2t_4_15 | 7.940579248 9 Ds c S3/Qs 3 1,1 —76 Y N
2t_4_16 | 8.000234350 4 Do c P3 2 0,1 -7 Y Y
2t_5_17 | 8.087973789 5 Zio c S3 4 2,1 —6724 Y N
2t_5_18 | 8.195703083 7 Zio c L(5,2) 5 1,2 65516 Y N
2t.5.19 | 8.233665208 6 Zia c L(6,1) 6 2,2 1738384 Y N
2t_5_20 | 8.338374585 8 L c L(9,2) 6 2,2 2463644 Y N
2t_5_21 | 8.355502146 8 L c S3 4 0,2 3173 Y N
2t_4_17 | 8.355502146 6 L c S3 4 0,2 3173 Y N
2t_5_22 | 8.372209945 8 L c L(10,3) 7 3,2 87357184 Y N
2t_5_23 | 8.388819035 10 L c L(4,1) 5 1,2 26084 Y N

TABLE 4. Information on hyperbolic #-graphs up to complexity 5, table 1 of 2. Here Qs denotes the quaternionic group
of order 8 and 5*/Qs is the Seifert fibered space (S%; (2, 1), (2,1),(2,1)).

All the other graphs were shown not to have such a hence the complement has no hyperbolic structure with

structure by studying spines for their complements con- geodesic boundary by Remark 3.10. For the two remain-
structed as in the proof of Proposition 3.9. ing cases, we found a spine having two vertices but not
In all but two cases, this produced a spine for the com- dual to a triangulation. It again follows that these mani-

plement of complexity having fewer than two vertices; folds are not hyperbolic with geodesic boundary, because
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name volume (K) | sym | a/c | space | deg | sig disc int | ar
2t.5.24 | 8.403864479 10 Yoo c L(11,3) 7 3,2 186794473 Y N
26525 8.487060022 8 Yoo c L(9,2) 8 4,2 17112324248 Y N
2t_5.26 | 8.527312899 10 oo ¢ L(11,3) 9 5, 2 | 5328053407637 Y N
26527 | 8.546347793 11 Yoo c L(12,5) 8 4,2 2498992192 Y N
2t_5_28 | 8.565387019 12 Zo ¢ L(13,5) 9 5,2 | 1944699708173 | Y | N
2t_5.29 | 8.612415201 1* Do ¢ L(4,1) 4 2,1 —400 Y N
2t_5_30 | 8.778658803 9 Do ¢ P? 5 1,2 15856 Y | N
2t_5_31 | 8.778658803 9 Do ¢ S%/Q12 5 1,2 15856 Y | N
2t_5_32 8.793345604 7 Do ¢ S3 4 0, 2 257 Y N
2t_5_33 | 8.806310033 8 Do ¢ L(8,3) 4 2,1 —1968 Y | N
2t_5_34 | 8.908747390 11 Do ¢ L(3,1) 5 1,2 31048 Y | N
2t_4_18 | 8.929317823 6 Do ¢ S3 3 1,1 —116 Y N
2t_5_35 | 8.967360849 7 Do ¢ S3 4 0, 2 697 Y | N
2t_5_36 | 8.967360849 7 Do ¢ L(7,2) 4 0, 2 697 Y | N
2t_5_37 | 9.045557688 5 oo ¢ L(3,1) 5 1,2 73532 Y N
2t_5_38 | 9.272866192 7 Zo ¢ S3 6 0,3 —4319731 Y | N
2t-5.39 | 9.353881135 7 oo ¢ L(3,1) 6 0,3 —2944468 Y N
2t_5.40 | 9.437583617 9 oo ¢ P3 4 0, 2 2312 Y N
2t_5_41 | 9.491889687 5 D ¢ S3 4 0, 2 257 Y | N
2t_5_42 9.491889687 5 Do ¢ L(3,1) 4 0, 2 257 Y N
2t_5_.43 | 9.503403931 9 Zoo ¢ I 4 0, 2 788 N N
2t_5_.44 | 10.149416064 1* Do c x S* 2 0,1 -3 Y Y
2t_5_.45 | 10.396867321 6* D3 ¢ S3 3 1,1 —139 Y N
2t_5_.46 | 10.666979134 6 Zoo a 3 2 0,1 -7 Y Y
2t_5_47 | 10.666979134 6 Zo ¢ S3 2 0,1 -7 N | N
2t_5_.48 | 10.666979134 5 Zoo ¢ L(3,1) 2 0,1 -7 Y Y
2t_5.49 | 10.666979134 5 Zoo ¢ L(3,1) 2 0,1 -7 Y Y
TABLE 5. Information on hyperbolic §-graphs up to complexity 5, table 2 of 2. Here Q12 denotes the generalized

quaternionic group of order 12 and S*/Q12 is the Seifert fibered space (52; (2,-1),(2,1),(3, 1)) The Kojima canonical
decompositions of 2¢t_5_29 and 2t_5_44 consist of a cube; the decomposition of 2¢_5_45 is the union of five tetrahedra

and an octahedron.

a minimal simple spine of a hyperbolic manifold is always
dual to a triangulation [Matveev 03].

6. IRREDUCIBLE NONHYPERBOLIC GRAPHS

This section is devoted to a description of the (0,1, 2)-
irreducible but nonhyperbolic graphs we have found in
our census, including the proof that indeed they have
these properties.

6.1 Knots and Links

As already stated in the introduction, we have shown
that if a graph (M,G) with ¢(M,G) < 4 is (0,1,2)-
irreducible but nonhyperbolic, then G has no vertices.
More precisely, G is either empty, or a knot, or a two-
component link. Since this paper is chiefly devoted to
the understanding of graphs with vertices, we will only
very briefly describe our discoveries for the case without
vertices. In particular, we will not refer to the case of
empty G (i.e., to the case of manifolds), addressing the

reader to [Matveev 03], and we will describe the following
nonhyperbolic knots and links:

e up to complexity 2, in general manifolds;
e in complexity 3, in S3.

To proceed we will introduce some general machinery.

6.2 Torus Knots in Lens Spaces

Consider the solid torus T and the basis of H;(0T) given
by a longitude A and a meridian . These elements are
characterized up to symmetries of T by the property that
the restriction to (A) of the map 4, : H1(9T) — Hq(T)
is surjective, while (u) is the kernel of this map.

For coprime ¢,m € Z we will denote by K(¢,m) a
simple closed curve on 0T (unique up to isotopy) repre-
senting £ - A +m - p in H(OT). For n > 2 we will also
denote by K(n-¥¢,n-m) the union of n parallel copies of
K(t,m).

We will assume from now on that the lens space
L(p, q) is obtained from T by Dehn filling along K (p, q).
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name volume (K) | sym | a/c | space | deg | sig disc int | ar
2h_1_1 | 3.663862377 1 D, a S3 2 10,1 —4 Y | Y
2h_2_1 | 5.074708032 2 Dy a P3 2 0,1 -3 Y | Y
2h_3_1 | 5.875918083 3 Do c L(3,1) 4 10,2 656 Y | N
2h_3.2 | 6.138138789 5 Dy c s3 4 10,2 320 Y | N
2h_4_1 | 6.354586557 4 Do c L(4,1) 3 11,1 —44 Y | N
2h_4_2 | 6.559335883 5 Do c L(3,1) 6 |03 —382208 Y | N
2h_5_1 | 6.647203159 5 Dy c L(5,1) 6 |03 —242752 Y | N
2h_4_3 | 6.784755787 9 Do c s3 6 |03 —108544 Y | N
2h_4_4 | 6.831770496 6 Do c P3 4 10,2 892 Y | N
2h_5_.2 | 6.854770090 7 D, c L(5,2) 8 0,4 502248448 Y | N
2h_5_3 | 6.952347978 6 Do c L(4,1) 5 11,2 7684 Y | N
2h_5_4 | 6.969842840 5 74 a L(5,2) 6 |03 —179776 Y | N
2h_5_5 | 7.008125009 9 D, c L(5,2) 10 | 0,5 | —1192884600832 | Y | N
2h_5_6 | 7.020614792 13 Do c s3 8 |04 89276416 Y | N
2h_5_7 | 7.056979121 7 Do c L(3,1) 10 | 0,5 | —586177642496 | Y | N
2h_5_8 | 7.136868364 | 10 Dy c P3 6 |03 —682736 Y | N
2h_5_9 | 7.146107337 9 Do c L(3,1) 12 | 0,6 | 8746362208256 | Y | N
2h_3.3 | T7.327724753 4 Do a s3 2 |01 —4 Y | Y
2h_4_5 | 7.327724753 4 D, a | S?xS'] 2 |01 —4 Y | Y
2h_5_10 | 7.731874058 5 Zo c L(4,1) 6 |03 —96512 Y | N
2h_5_11 | 8.140719221 6 Zo c s3 6 |03 —382208 Y | N
2h_5_12 | 8.140719221 5 Zs c s3 6 |03 —382208 Y | N
2h_4_6 | 8.738570409 4 Zo a P? 4 10,2 144 Y | N
2h_5_13 | 8.997351944 | 3* Zo c s3 4 10,2 784 Y | N
2h_4_7 | 8.997351944 4 {id} | ¢ s3 4 10,2 784 Y | N
2h_4_8 | 8.997351944 4 Zo c L(3,1) 4 10,2 784 Y | N
2h_5_14 | 9.539780459 5 {id} | ¢ L(3,1) 4 10,2 656 Y | N
2h_5_15 | 9.539780459 5 D, c s3 4 10,2 656 Y | N
2h_5_16 | 9.592627932 6 Do c P? 4 10,2 1436 Y | N
2h_5_17 | 9.802001166 5 {id} | ¢ s3 4 10,2 320 N | N
2h_5_18 | 9.876829057 5 Zos c s3 6 |03 —239168 Y | N
2h_5_19 | 10.018448934 | 5 {id} | ¢ P? 6 |03 —30976 N | N
2h_5_.20 | 10.018448934 | 5 {id} | ¢ L(4,1) 6 |03 —30976 Y | N
2h_5_21 | 10.018448934 | 5 Zs c L(4,1) 6 |03 —30976 Y | N
2h_5_22 | 10.069070958 | 7 Zo c P3 4 10,2 1384 Y | N
2h_5_23 | 10.149416064 | 4* Zs c | 8?xst| 2 |01 -3 Y | Y
2h_5_24 | 10.215605665 | 5 {id} | ¢ s3 6 |03 —732736 N | N
2h_5_25 | 10.215605665 | 5 {id} | ¢ L(5,2) 6 |03 —732736 Y | N
2h_5_26 | 10.215605665 | 5 Zs c L(5,2) 6 |03 —732736 Y | N
2h_5_27 | 10.408197599 | 5 {id} | ¢ P3 4 10,2 441 N | N

TABLE 6. Information on hyperbolic handcuff graphs up to complexity 5. The Kojima canonical decomposition of 2h_5_13
is the union of a tetrahedron and two pyramids with square base; the decomposition for 2h_5_23 is the union of two
tetrahedra and two pyramids with square base.

name volume (K) sym a/c | space | deg | sig | disc | int | ar
4a_2_1 | 7.327724753 2 Zo x O a S5 2 0,01 4 | Y |Y
4a_5_1 | 11.751836165 6 Dy c s3 4 0,2 | 656 Y N
4a_5_2 | 12.661214320 5 L c 93 4 0,2 | 784 Y N
4b-4_1 | 10.149416064 4 Zo x Dy a S3 2 0,1 -3 Y Y
4c_4_1 | 10.991587130 4 Do a S 2 0,1 —4 Y Y

TABLE 7. Information on hyperbolic 4-vertex graphs up to complexity 5. Here O denotes the group of orientation-
preserving symmetries of the regular octahedron, isomorphic to the full group of symmetries of the regular tetrahedron.
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name volume (K) | sym | a/ space | deg | sig | disc | int | ar
0-3-1 | 2.029883213 2 Dy a S3 2 0,1 -3 Y | Y
0-4-1 | 2.029883213 2 D c L(5,1) 2 0,1 -3 Y Y
0-4-2 | 2.568970601 4 Do c L(3,1) 3 1,1 | =59 Y N
0-4_3 | 2.666744783 3 Do c P3 2 0,1 -7 Y | Y
0-4.4 | 2.828122088 | 4 | Dy | ¢ 5 3 111 59| Y |N

TABLE 8. Information on hyperbolic knots up to complexity 4.

name | in [Callahan et al. 99] | in [Rolfsen 76]
0-3_1 m004 44

0.4.1 m003 53(—5,1)
0.4.2 m007 53(—3,2)
0.4.3 m009 5%(2,1)
0-4_4 m015 52

TABLE 9. Other names for hyperbolic knots up to complexity 4.

Therefore, any K (¢, m) can be viewed as a torus knot on
the Heegaard torus OT in L(p,q). An easy application of
the Seifert—Van Kampen theorem implies the following
result.

Proposition 6.1. For {,m coprime integers, m (L(p, q)\
K(l,m)) = (z,y| * = y°) witha = |{| and b = |pm—q/|.

Remark 6.2. The curves K (¢, m) and K (m,¢) coincide as
knots in L(1,0) = S3. For instance, K(2,3) and K (3,2)
are equivalent trefoil knots in L(1,0) = S3. This is, of
course, consistent with the computation of the funda-
mental group.

Proposition 6.3. If ({,m) = (p,q) 1, then
(L(p,q), K(¢,m)) is a (0,1,2)-irreducible pair except in

the following cases:
e (=0o0rpm—ql=0,and q#0 (ie., L(p,q) # S3);
o [{|<2andp=0 (ie., L(p,q) = S*x S1).

Proof. If¢ = 0 or pm—gl = 0, then K := K (¢, m) bounds
a meridian disk of either T or the complementary solid
torus attached to OT. Therefore K is the unknot, and the
pair is not O-irreducible when L(p, q) # S*. If L(p,q)
5% x S, the knot K intersects the sphere S x {pt} in |¢|
points. Therefore, if |¢| < 2, the pair is not |¢|-irreducible.

Conversely, let us assume that there exists an essential
sphere S in L(p, q) meeting K := K (¢, m) transversely in
t < 2 points. Suppose first that ¢ = 0. If |¢| and |pm — g/
are nonzero, the complement of K in L(p, ¢) has a Seifert
fibration over the disk with two singular fibers of orders
[¢] and |pm — gf|: such a manifold is irreducible, so S
cannot be essential, a contradiction. So either £ = 0 or

pm—qf = 0, which implies that K is the unknot in one of
the solid tori and S is the boundary of a ball containing
K. Since S is essential, it follows that M # S3, namely
q # 0. (This argument shows in particular that when
L(p,q) = S? x St (ie., p = 0), the pair (L(p,q), K) is
0O-reducible only for ¢ =0.)

Suppose now t # 0 and assume, after an isotopy, that
S is transverse to the Heegaard torus 0T. Considering
this transverse intersection on S, we see that there must
be at least two innermost disks. Moreover, any innermost
disk belongs to one of the following types:

(I) Its boundary is inessential on 9T and disjoint from
K.

(II) Its boundary is inessential on 0T and meets K trans-
versely in two points.

(IIT) It is a meridian disk of either T or the complemen-
tary solid torus.

Disks of type (I) can be removed by an isotopy. If
there is a disk of type (II), then doing surgery close to
it, we can replace S by an essential sphere disjoint from
K, so we are led back to the case t = 0. Therefore, we
can assume that all the disks are of type (III). If £ = 0 or
pm—ql = 0, we can again reduce to the case t = 0. So we
can assume that all the innermost disks meet K, which
easily implies that there are only two of them, either
sharing their boundary or separated by an annulus. In
the first case we see that M = S% x St (i.e., p = 0) and
1 < |¢] < 2. In the second case we deduce that S is
actually inessential, which is absurd. This concludes the

proof. O



>>

FIGURE 11. A 1-tetrahedron triangulation of the solid
torus. The back two triangles are glued together to
form a Mobius strip. The front two triangles form the
boundary torus.

6.3 Layered Triangulations

A layered triangulation (see [Jaco and Rubinstein 06]) of
a lens space L(p,q) is constructed as follows. We start
with a solid torus triangulated using one tetrahedron as
in Figure 11. The boundary torus is triangulated by two
triangles, three edges, and one vertex. A change of the
triangulation on the boundary by a diagonal exchange
move (“flip”) can be realized by adding one tetrahedron.
After a series of these moves, the resulting triangulation
can be closed up by adding another 1-tetrahedron trian-
gulation of a solid torus to produce a lens space.

Such a layered triangulation of L(p, ¢) with one vertex
and one marked edge always gives rise to some torus knot
K(¢,m) C L(p,q). Using the Farey tessellation of the
hyperbolic plane H?, we will now prove the converse;
namely, for every torus knot (L(p,q), K(¢,m)) we will
construct a layered triangulation.

Recall that the Farey tessellation of H? is constructed
in the half-plane model by joining with a geodesic every
pair (p/q,/s) of rational ideal points in QU{oc} C OH?,
where p,q,r, s are integers with ps — qr = +1. After
fixing some basis for H1(T"), every slope (i.e., unoriented
essential simple closed curve) on a torus 7" is represented
by a rational number p/q € OH?, and two such numbers
are connected by an edge of the tessellation when they
have geometric intersection number 1.

Every triangle of the tessellation represents three
slopes with pairwise intersection 1, and hence a 1-vertex
triangulation of T'. Dually, they represent a 6-graph in T’
as in Figure 12(1), top. Moreover, every edge of the tes-
sellation represents a flip relating the 6-graphs of T' corre-
sponding to the adjacent triangles as in Figure 12(2), (3).

A layered triangulation of a lens space L(p, q) is easily
encoded via a path of triangles of the tessellation con-
necting the rational numbers 0/1 and p/q, i.e., a sequence
fi,--., fr of k> 4 triangles such that f;_; and f; share
an edge for ¢ = 2,... k, the vertex of f; disjoint from
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f2 is 0/1, and the vertex of fj, disjoint from fi_1 is p/q.
The path need not be injective, i.e., there may be rep-
etitions. Such a path is similar to the one defined in
[Jaco and Rubinstein 06, Martelli and Petronio 04] for
layered solid tori. It determines a layered triangulation
of L(p, ¢) with k—3 tetrahedra, k—2 edges, and 1 vertex,
as described in Figure 12.

The k — 2 edges of the layered triangulation become
torus knots, and they correspond to all the slopes ¢/m
contained in some f; except 0/1 and p/q. (There are k
different such slopes, but the two in f; different from 0/1
give isotopic links in L(p, ¢), and in fact the same edge in
the layered triangulation, and similarly for the two slopes
in fi different from p/q, whence the number k — 2.) See
Figure 13 for some examples.

Let then A(¢, m, p, q) be the length of the shortest path
of triangles from 0/1 to p/q that contains ¢/m. By what
we have just said, we have

c(L(p7 q), K(¢, m)) < max {A(&m,p, q) — 3, 0}.

It was conjectured in [Matveev 90] that every L(p,q) =
(L(p, q), @) with ¢ # 0 has a minimal triangulation that
is layered, namely that c(L(p7 q)) = max {/\(p7 q) — 3, O},
where A(p, q) is the length of the shortest path of triangles
from 0/1 to p/q. We now propose the following extension.

Conjecture 6.4. The complezity of a (0,1,2)-irreducible
torus knot in a lens space is

c(L(p7 q), K(¢, m)) = max {A(&m,p, q) — 3, 0}.

As the census in Table 10 shows, the conjecture holds
for complexity up to 2.

6.4 Nonhyperbolic Knots and Links

The nonhyperbolic knots and links up to complexity 2,
and those having complexity 3 contained in S3, are de-
scribed in Table 10. They are all torus links in lens
spaces, except for a knot in the elliptic Seifert space
S3/Qs, whose exterior is the twisted interval bundle over
the Klein bottle. This pair is pictured in Figure 14.

Note that L(7,2) is the only lens space in the table
not admitting a symmetry switching the two cores of the
Heegaard solid tori, and that both these cores appear in
the list.

6.5 0-Graphs with Klein Bottles

In complexity 5 we have investigated only pairs (M, Q)
such that G is nonempty and all its components have
vertices. As mentioned above, we have found here five
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FIGURE 12. A path of triangles fi,...

3 “)

, [x in the Farey tessellation determines a layered triangulation of a lens space, as

follows. We describe the dual special spine. The vertices of fs are 1, 2, oo, and they determine the #-graph in 9T shown
in (1), top. We take a portion of spine, made of a M&bius strip and one disk, bounded by this #-graph, (1), bottom. Each
step from f; to fit1 for 2 < ¢ < k — 2 corresponds to a diagonal flip of the #-graph (2), (3), which expands the portion
of spine by creating a vertex (4). Finally, we close the spine at f;_1 by adding an analogous Mdébius strip for the other
Heegaard torus. There are k — 3 flips and hence k — 3 vertices in the spine.

FIGURE 13. Two paths of triangles. The first gives a triangulation of L(8,3) containing the torus knots K(1,0) and
K(2,1), and other torus knots equivalent to these. The second path is not injective and gives a triangulation of L(1,0)
containing K (5,2), i.e., the (5,2) torus knot in S*. Both triangulations contain 5 — 3 = 2 tetrahedra.

o—

O -2/1

FIGURE 14. A surgery presentation of the pair
(M, K), where K is a singular fiber of the fibration
and M = S°/Qs = (5%;(2,-1),(2,1),(2,1)).

2/1

very interesting pairs, where G is a #-graph and the pair
(M, G) is (0,1, 2)-irreducible, but nonhyperbolic because
M \ G contains an embedded Klein bottle, so it is not
atoroidal.

Proposition 6.5. There are five (0,1, 2)-irreducible non-
hyperbolic pairs (M, G) such that ¢c(M,G) =5 and G has
no knot component. They are described as follows:

(i) Let KK be the twisted interval bundle over the Klein
bottle.

(ii) Let (T,0) be the solid torus with the embedded 0-
graph shown in Figure 15.

(iii) Then (M, Q) is obtained by gluing K to (T,0) so
that M is one of the manifolds S* x S, S3/Qs,
L(8,3), L(4,1), RP*#RP>.

This result was proved as follows. We first analyzed
the triangulations of the five pairs (M, G) produced by
our Haskell code on which ORB failed to construct a hy-
perbolic structure. This allowed us to show that the five
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c | type space description of knot or link

0 | knot S8 K(1,0) = unknot

0 | knot P3 K(1,0) = core of Heegaard torus

0 | knot | L(3,1) | K(1,0) = core of Heegaard torus

1| knot s3 K (3,2) = trefoil

1| link 3 K (2,2) = Hopf link

1| knot | L(4,1) | K(1,0) = core of Heegaard torus

1| knot | L(5,2) | K(1,0) = core of Heegaard torus

2 | knot S3 K(5,2) = 51 [Rolfsen 76]

2 | knot | L(5,1) | K(1,0) = core of Heegaard torus

2 | knot | L(7,2) | K(1,0) = core of one Heegaard torus
2 | knot | L(7,2) | K(3,1) = core of other Heegaard torus
2 | knot | L(8,3) | K(1,0) = core of Heegaard torus

2 | knot | L(5,1) | K(2,1)

2 | knot | L(7,2) | K(2,1)

2 | knot | L(8,3) | K(2,1)

2 | knot | S?xS' | K(3,1)

2 | knot | L(3,1) | K(3,2)

2 | knot P3 K(4,1)

2 | link P? K (2,2) = union of cores of Heegaard tori
2 | knot | S%/Qs | singular fiber of (5'2; (2,-1),(2,1), (2, 1))
3 | knot S3 K(4,3) = 819 [Rolfsen 76]

3 | knot s3 K(5,3) = 10123 [Rolfsen 76]

3 | knot S3 K(7,2) = 71 [Rolfsen 76

3| link s3 K (4,2) = 41 [Rolfsen 76]

TABLE 10. Information on nonhyperbolic knots and links.

described. In the description of torus knots, we set S® = L(1,

FIGURE 15. The theta graph 6 in the solid torus T.

pairs are those described in points (i)—(iii) of the state-
ment, whence to see that they are not hyperbolic. We
then proved that they are indeed (0, 1, 2)-irreducible by
classical topological techniques, the key point being that
a compressing disk of (T, #) must intersect 6 in at least
two points.

Here are the details of the argument. Suppose there
is a sphere S intersecting G transversely in at most two
points, and isotope S to minimize its intersection with
OT. Now consider an innermost disk D on S bounded
by a simple closed curve in S N JdT. Since there is no
compressing disk in K, such a disk must be a compressing

In complexity 3, only knots and links in the 3-sphere are

0), P? = I(2,1), and S% x S* = L(0,1).

disk in T, so it must intersect 6 at least twice. But if
SNAIT # @, then there are at least two innermost disks
on S, whence SNG contains at least four points, which is
impossible. This shows that S is disjoint from 0T, so it is
contained either in IK or in T'. However, IK is irreducible,
and (T, 0) is (0, 1, 2)-irreducible (in fact, it is easy to see
that it is hyperbolic with parabolic meridians). Therefore
S must bound a trivial ball in (M, G).

7. FIGURES

This section contains pictures of the hyperbolic graphs up
to complexity 4, given in the form of a surgery description
when the underlying space is not S3. For each graph, we
give the name and the volume of the hyperbolic structure
with parabolic meridians.

The figures were produced using ORB and the cen-
sus of knotted graphs in [Chiodo et al. 10]. Most of the
graphs in S% occurred in [Chiodo et al. 10]; the graphs
not in S generally arose as Dehn surgeries on knot com-
ponents of disconnected graphs in [Chiodo et al. 10].
There were a couple of remaining examples that were
constructed by hand. In all cases, we used ORB to iden-
tify the graphs by matching triangulations.
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