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We develop a rather elaborate computer program to investigate
the jointly periodic points of one-dimensional cellular automata.
The experimental results and mathematical context lead to ques-
tions, conjectures, and a contextual theorem.

1. INTRODUCTION AND CONJECTURES

In this paper we consider the action of a surjective one-
dimensional cellular automaton f on jointly periodic
points. Detailed definitions are recalled below.

This paper is primarily an experimental mathemat-
ics paper, based on data from a program written by the
second-named author to explore such actions. The exper-
imental results and mathematical context lead us to ques-
tions and a conjecture on the growth rate of the jointly
periodic points.

We approach our topic from the perspective of sym-
bolic dynamics, which provides some relevant tools and
results. However, almost all of this paper—in particular
the questions and conjectures—can be well understood
without symbolic dynamics. We do spend time on con-
text, and even prove a theorem (Theorem 3.2), for two
reasons. First, we believe that experimental mathemat-
ics should not be too segregated from motivating and
constraining mathematics. Second, workers on cellular
automata have diverse backgrounds, not necessarily in-
cluding symbolic dynamics. (Similarly, perhaps a tech-
nique or example unfamiliar to us could resolve one of
our questions.)

To express our questions and conjectures clearly, we
must suffer some definitions. We let X denote the set
of doubly infinite sequences x = ...x_jxgx7 ... such that
each x; lies in a finite “alphabet” A of N symbols; usu-
ally A = {0,1,...,N — 1}. A one-dimensional cellular
automaton (CA) is a function f : Xy — Xx for which
there are integers a < b and a function F : Ab—atl g
(F is a “local rule” for f) such that for all 4, (f(x)); =
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F(xiyq - xitp). The shift map o on a sequence is de-
fined by (ox); = x;41. We let Sy denote the shift map
on Xy.

For any map S, we let Py (.S) denote the points of (not
necessarily least) period k of S, i.e., the points fixed by
Sk and let Per(S) = UpPy(S). Thus, Per(Sy) is the
set of “spatially periodic” points for a one-dimensional
cellular automaton on N symbols. The jointly periodic
points of a cellular automaton map f on N symbols are
the points in Per(S) that are also periodic under f, that
is, the points that are “temporally periodic” as well as
spatially periodic.
play, this would mean vertically as well as horizontally

(In the usual computer screen dis-

periodic.) There is by this time a large amount of work
addressing periodic and jointly periodic points for linear
one-dimensional CA; we refer to [Chin et al. 01, Cordovil
et al. 86, Jen 88, Lidman and Thomas 06, Martin et al.
84, Misiurewicz et al. 06, Sutner 01] and their references.
Also see [Miles 06] regarding the structure of periodic
points for these and more general algebraic maps in the
setting of [Kitchens 97, Schmidt 95].

A subset E of Y is dense if for every point z in ¥y
and every k € N there exists y in E such that z; = y;
whenever [i] < k. We say that E is m-dense if every
word of length m on symbols from the alphabet occurs
in a point of F.

We can now state our first conjecture.

Conjecture 1.1. For every surjective one-dimensional cel-
lular automaton, the jointly periodic points are dense.

Conjecture 1.1 is a known open question [Blanchard
00, Blanchard and Tisseur 00, Boyle and Kitchens 99],
justified by its clear relevance to a dynamical systems
approach to cellular automata. (Whether points that
are temporally but not necessarily spatially periodic for
a surjective CA must be dense is likewise unknown [Blan-
chard 00].) That this question, also open for higher-
dimensional CA, has not been answered reflects the diffi-
culty in saying anything of a general nature about CA,
for which meaningful questions are often undecidable
[Kari 05].

It is known that the jointly periodic points of a one-
dimensional cellular automaton map f are dense if f is a
closing map [Boyle and Kitchens 99] or if f is surjective
with a point of equicontinuity [Blanchard and Tisseur 00].
We justify our escalation of Conjecture 1.1 from question
to conjecture by augmenting earlier results with some
experimental evidence. In particular: for every span-
4 surjective one-dimensional cellular automaton on two

symbols, the jointly periodic points are at least 13-dense
(Proposition 5.1).

Now we turn to more quantitative questions. Letting
for the moment P denote the number of points in P (Sy)
that are periodic under f as well as Sy (i.e., P = | Per(f |
P.(SN))|), we set vi(f,Sn) = PY/* and then define

V(f) SN) = limksupl/k(f, SN)

Question 1.2. Is it true for every surjective one-
dimensional cellular automaton f on N symbols that

v(f,Sn) > VN?

Question 1.3.
dimensional cellular automaton f on N symbols that
V(f, SN) > 17

Is it true for every surjective one-

We cannot answer Question 1.3 even in the case that
f is a “closing” map and we know that there is an abun-
dance of jointly periodic points [Boyle and Kitchens 99].

Conjecture 1.4. There exists N > 1 and a surjective cel-
lular automaton f on N symbols such that v(f,Sn) < N.

Conjecture 1.4 is a proclamation of ignorance. From
the experimental data in our tables, it seems perfectly
clear that there will be many surjective cA f with
v(f,Sn) < N. However, we are unable to give a proof
for any example. With the additional assumption that
the cA is linear, it is known that Conjecture 1.1 is true
and the answer to Question 1.2 is yes (Section 3).

The relation of Questions 1.2-1.4 to Conjecture 1.1 is
the following: if a CA map f on N symbols does not have
dense periodic points, then v(f, Sy) < N.

Here is the organization of the sequel. In Section 2,
we give detailed definitions and background. In Section
3, we establish some mechanisms by which one can prove
lower bounds for v(f,Sy) for some f. We also prove
(Theorem 3.2) that no property of a surjective CA consid-
ered abstractly as a quotient map without iteration can
establish v(f,Sy) < N. We also support Question 1.2
with a random-maps heuristic. (The potential analogy
of cA and random maps was observed earlier by Martin,
Odlyzko, and Wolfram [Martin et al. 84, p. 252] in their
study of linear CA.) A list of cA used for the computer
explorations is given in Section 4.

Our computer program consists of three related sub-
programs: FDense, FPeriod, and FProbPeriod. We use
these respectively in Sections 5, 6, and 7. FDense probes
approximate density of jointly periodic points of a given
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shift period. FPeriod provides exact information on
jointly periodic points of a given shift period. FProbPe-
riod provides information on jointly periodic points for
a random sample from a given shift period, and thus
provides some information at shift periods for which the
memory demands of FPeriod are too great for it to suc-
ceed.

In Sections 5, 6, and 7, we give more information
on the algorithms and discuss the many tables of out-
put data in the appendices. The tables, along with the
program itself, are available as an online supplement at
the Experimental Mathematics web site (http://www.
expmath.org/expmath/volumes/16/16.3/), and also at
the web site of the first-named author.

2. DEFINITIONS AND BACKGROUND

Let A = {0,1,...,N — 1}, a finite set of N symbols,
with the discrete topology. Let X be the product space
AZ, with the product topology. We view a point x in
Yy as a doubly infinite sequence of symbols from A,
r = ...Tr_1x9%1.... The space Xy is compact and
metrizable; one metric compatible with the topology is
dist(z,y) = 1/(|n| + 1), where |n| is the minimum non-
negative integer such that x, # y,. A set E is dense in
3y in this topology if for every k and every word W in
A+ there exists z in E such that z[—k, k] = W.

The shift map o sends a sequence = to the sequence
ox defined by (oz); = x;+1. The shift map defines a
homeomorphism Sy on Y. The topological dynamical
system (X, Sw) is called the full shift on N symbols, or
more briefly, the N-shift.

A map f : ¥y — Xy is continuous and shift-
commuting (fo = of) if and only f is a block code, i.e.,
there exist integers a,b and a function F : A'=e+1 — A
such that (f(x)); = F(x[i + a,i + b]) for integers 4, for
all z € Y. Such a map f is called a one-dimensional
cellular automaton. There is a well-known dichotomy for
such maps f: either (i) f is surjective and for some inte-
ger M every point has at most M preimages, or (ii) image
points typically have uncountably many preimages, and
f is not surjective [Hedlund 69, Kitchens 98, Lind and
Marcus 95]. In case (i), almost all points have the same
number of preimages; this number is the degree of f.

We restrict our attention to surjective maps in this
paper because we are interested in periodic points of
f, which must be contained in N~ f*Sy, the eventual
image of f. We separate our ignorance about periodic
points from additional difficulties involving the passage
to the eventual image [Maass 95].

Polynomials can be used to define cellular automata;
for example, if we refer to the cA f defined on the N-
shift by the polynomial 22_; + x¢(22)?, we mean that f
is defined by the block code (fz); = 22; 1 + zi(2i42)>,
where the arithmetic is interpreted modulo N. The span
of such a code is 1 plus the maximum difference of co-
ordinates with nonzero coefficients; in this example, it is
142—(—1) = 4. The code is left permutative if for every
x, permuting inputs to the leftmost variable, with inputs
to other variables fixed, permutes the outputs. Likewise,
there is the notion of right permutativity. The previous
example is left permutative and it is not right permu-
tative. When the number N of symbols is prime, every
cA map f has such a polynomial representation [Hed-
lund 69]. (For general N, there is a representation by
a product of polynomial representations over finite fields
[Martin et al. 84].)

A block code on Sy depending on coordinates [0, j —1]
can be described by a “lookup code,” a word W of length
NJ on the alphabet {0, ..., —1} defined as follows. List
the N7 possible blocks of length j in lexicographic order;
then the ith symbol of W is the output symbol under
f for the ith input block. For example, for the code
xg + x1x2 on Ss, the input words in lexicographic or-
der are 000, 001, 010, 011, 100, 101, 110, 111, and the
corresponding word W is 0001 1110.

For the IV shift, the number of coding rules of span at
most j is N, If inj(j, N) denotes the number of these
that define injective (and thus surjective [Hedlund 69])
codes, then we still [Kim and Roush 90] see a superexpo-
nential growth rate in j,

1
lim - loglog(inj(j, V)) = log N,
iJ

even though surjective span-j maps become very sparse
in the set of all span-j maps as j increases.

A block code f: Xy — Xy is right closing if it never
collapses distinct left-asymptotic points. This means
that if f(z) = f(2') and for some I it holds that z; = z
for all ¢ in (—o0, I], then = /. Any right-permutative
map is right closing. The definition of left closing is given
by replacing (—oo, I] with [I,00). The map f is closing
if it is either left or right closing. An endomorphism
of a full shift Sy is constant-to-one if and only if it is
both right and left closing (i.e., it is biclosing). A clos-
ing map is surjective. Closing maps are important in the
coding theory of symbolic dynamics [Ashley 93, Kitchens
98, Lind and Marcus 95]. They also have a very natural
description from the viewpoint of hyperbolic dynamics
[Brin and Stuck 02]: right-closing maps are injective on
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unstable sets, while left-closing maps are injective on sta-
ble sets.

We now discuss some previous work involving periodic
points and cellular automata. We let P,(S) denote the
points of period n of S, and P2(S) the points of least
period n. These finite sets are mapped into themselves
by any CA map f; thus any periodic point of S is at least
preperiodic for f. For a preperiodic (possibly periodic)
point z, the preperiod of x is the least nonnegative integer
j such that f7(z) is periodic, and the period of x is its
eventual period, the smallest positive integer k£ such that
frtE(z) = fm(x) for all large m. A point is jointly
periodic if it is periodic under both f and Sy.

In the case that f is linear (f(z) + f(y) = f(z +v)),
Martin, Odlyzko, and Wolfram [Martin et al. 84] (see also
the further work in [Chin et al. 01, Cordovil et al. 86, Jen
88, Lidman and Thomas 06, Misiurewicz et al. 06, Sutner
01] and their references) gave an algebraic analysis of f-
periods and preperiods for points of a given shift period,
and also provided some numerical data. One key feature
for linear f is an easy observation: among the jointly
periodic points of shift period k, there will be a point
(generally many points) whose least f-period will be an
integer multiple of all the least f-periods of the jointly
periodic points of shift period k.
special case of a powerful theorem of Ashley [Ashley 93]
has the following statement: for any K, N and any shift-
commuting map ¢ from Ui<p<rx Pr(Sn) to itself, there
will exist surjective cA on N symbols whose restriction
to Uy <p<x Pe(Sn) equals g.

The following remark is another indication of the diffi-
culty of understanding joint periodicity of even injective
CA. For amap T, Fix(T') denotes P;(T), the set of fixed
points of T

In contrast, a very

Remark 2.1. Given N > 2, let S denote Sy, and suppose
¢ is an injective one-dimensional CA on N symbols. Sup-
pose N is prime. Then there will exist some integer m,
depending on ¢, and some k > 0 such that for all £ € N,

‘Fix ((Sa¢b)k)‘ — Nla+mb)k _ ‘Fix ((Sa(Sm)b)k)‘
- ’ Fix ((5°0)")|

whenever |b/a| < k (this follows from [Boyle and Krieger
87, Theorem 2.17]). That is, for the two Z? actions gen-
erated respectively by S, ¢ and S, S™, the periodic point
counts for actions by individual elements (a, b) of Z? are
the same for all (a, ) in some open cone around the pos-
itive horizontal axis. However, despite the agreement in
that open cone, the sequences (|Py(¢)|) and (| P (S™)])

can be very different. (For a dramatic example of this
sort in the setting of shifts of finite type, see [Nasu 95,
Example 10.1].)

Lastly, we note that the invariant v, defined in the
introduction, has an unusual robustness, as follows.

Remark 2.2. Fix N and let S = Sy. Suppose z €
Per(Sy) and f is a cA on Y. Then z is in Per(f) if and
only if for some i > 0, f'z and x are in the same S-orbit.
It follows that for all integers i, j, k with k, 4 positive and
j nonnegative, we have vy (f,S) = vi(f*S7,S), and thus
v(f.5) = U(f'57,9).

3. SOME MECHANISMS FOR PERIODICITY

Throughout this section f denotes a CA map on N sym-
bols. In this section, we discuss four ways to prove that
v(f,Sn) is large:

1. Find a large shift fixed by f (or more generally by a
power of f).

2. Let f be linear (i.e., a group endomorphism of Xy,
where addition on the compact group X is defined
coordinatewise mod N).

3. Use the algebra of a polynomial presenting f.
4. Find points of equicontinuity.

After discussing these, we offer a random-maps heuristic
and a question.

(1) We will exhibit the first mechanism in some general-
ity. Two CA f, g are isomorphic if there is an invertible
CA ¢ such that f = ¢gop~! (where, for example, ¢g is
the composition, (¢g)(x) = ¢(g(x))). The ca f,g are
equivalent as quotient maps if there are invertible CA
¢, such that f = 1g¢p. We prove Theorem 3.2 below to
show that for a CA f, no property defined on equivalence
classes of quotient maps can prevent v(f,Sy) from be-
ing arbitrarily close to N. To avoid a lengthy digression
to background, we give a proof assuming some familiar-
ity with symbolic dynamics; however, the statement of
Theorem 3.2 is self-contained. Below, h(T) denotes the
topological entropy of T

Lemma 3.1. Suppose (X, S) is a mizing shift of finite type
(SFT) of positive entropy, [ : ¥ — X is a surjective block
code, and § > 0. Then there are an automorphism ¢ of
(%,8) and a mizing SFT (X', 5") such that the following
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hold: X' C X; the fized point set of ¢f contains X'; and
h(S") > h(S) — 4.

Proof: In this proof, we will consider only SF'Ts that are
restrictions of S to subsets of 3. For a lighter notation,
we will let the set name also denote the SFT that is the
restriction of S to the set.

Our first task is to find a mixing SFT X in ¥ such
that h(X) > h(X) — 0 and the restriction of f to X is
injective. For this, pick a periodic orbit Z in ¥ such that
f(Z) is an orbit of equal period. (Such Z must exist:
otherwise, f would map the periodic points of prime pe-
riod to fixed points, and this would imply that f(X) is
a single point.) As a surjective endomorphism of a mix-
ing SFT, the map f must be finite-to-one, so f~1(f(Z))
is a finite set. Using [Denker et al. 76, Lemma 26.17],
find in ¥ a mixing SFT ¥; disjoint from the subshift
Y f(2))\ Z such that h(31) > h(X) — §. Then, using
[Denker et al. 76, Lemma 26.16], find in ¥ a mixing SF'T
Y5 containing Z U ¥ but disjoint from f=1(f(2)) \ Z.
Now h(32) > h(X) — d and the finite-to-one map f | 3o
is injective on Z. Thus the restriction of f to ¥, has
degree 1. Let W be a magic word for this degree-1 map
(see [Kitchens 98] or [Lind and Marcus 95, Section 9.1]
for background on magic words and degree). Define

Yy ={z € f(32):Vi e Z,W is a subword of z[i,i+M]}.

Any point of Y, will have a unique preimage in ¥5. Asin
[Marcus 85], limh(Yy) = h(f(22)). Fix M sufficiently
large that Y}, is a mixing SF'T with entropy close enough
to that of f(Xs3) to guarantee h(Yar) > h(X) — 0. Let X
denote Yo N f~1(Yas). Then X is a mixing SFT with
h(X) > h(X) — 0 and f | X is injective.

Now fix K such that for every n > K, ¥ has at least
two orbits of length n that are not in X. Find a mixing
SFT ¥ in X such that ¥’ (and consequently also f(3'))
has no point of period less than K, and still h(¥X') >
h(X) — §. The point of the passage from X to ¥’ is that
by [Boyle and Krieger 93, Theorem 1.5], the periodic-
point condition on ¥’ guarantees that the embedding

(fIZ)f(E) -2

can be extended to an automorphism ¢ of S. Clearly the
restriction of ¢f to X' is the identity map. |

Theorem 3.2. Suppose f is a surjective CA on N symbols
and € > 0. Then there is an invertible CA ¢ such that
l/((,bf, SN) > N —e.

Proof: If T is a mixing shift of finite type with h(T) =
log \, then limy | Fix(T*)|'/* = X. If this T is a set of
fixed points for a CA ¥ on N symbols, then v(¢, Sy) > A.
Now the theorem follows from Lemma 3.1. |

Remark 3.3. The statements of Lemma 3.1 and Theo-
rem 3.2 remain true if ¢f is replaced by f¢. One way
to see this is to notice that the systems (f¢,S) and
(o(fp)p~ Y, 0Sp~t) = (¢f,S) are topologically conju-
gate.

(2) Now we turn to algebra. We observe that Xy is a
group under coordinatewise addition (mod N), and some
CA are group endomorphisms of this group; these are
the linear cellular automata whose jointly periodic points
were studied in [Martin et al. 84] and later in a number
of papers (see [Chin et al. 01, Cordovil et al. 86, Jen
88, Lidman and Thomas 06, Misiurewicz et al. 06, Sutner
01] and their references). The algebraic structure allowed
a number-theoretic description of the way that f-periods
of jointly periodic points of Sy period n vary (irregularly)
with n. We show now that when f is a linear cA, it is
easy to see that v(f,Sy) = N.

Proposition 3.4. Suppose a CA map f is a surjective lin-
ear map on Sy. Then for all large primes p, vp(f, Sn) >
NP~ Therefore v(f,Sn) = N.

Proof: We use an argument from the proof of a related
result, Proposition 3.2 of [Boyle and Kitchens 99]. Let M
be the cardinality of the kernel of f. Suppose p > M and
p is prime; then f must map orbits of length p to orbits
of length p (otherwise, some orbit of length p would be
collapsed to an orbit of length dividing p, i.e., to a fixed
point, which would contradict the fact that every point
has M preimages). Let H denote P,(Sn), the set of
fixed points of (Sy)P; H is a subgroup that is mapped
into itself by f. Pick k& > 0 such that the restriction of
f to f¥H is injective; then f*H is the set of points in H
that are f-periodic. The kernel of f* contains no point
in an orbit of length p, so ker(f* | H) C Fix(Sx). Thus

vp(f:Sn) = |f*H| = |H/ ker(f* | H)| > |H/ Fix(Sn)|
= NP/N = NP1
which completes the proof. O

(3) Algebra can be used in another way. Frank Rhodes
[Rhodes 88], using properties of certain families of poly-
nomials presenting CA maps, exhibited a family of non-
invertible cA f for which there exists & € N such that
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f is injective on Py, (Sx) for all n € N. Clearly, in this
case v(f,Sn) = N. We will not review that argument.

(4) We now turn to equicontinuity. A point z is
equicontinuous for f if for every positive integer M
there exists a positive integer K such that for all points
y, if 2[-K,K] = y[-K,K], then (f"z)[-M,M] =
(f"y)[—M, M] for all n > 0. If the surjective cA f has x
as a point of equicontinuity, and M is chosen larger than
the span of the block code f, and W is the correspond-
ing word z[—K, K], then the following holds: if z is a
point in which W occurs with bounded gaps, then z is
f-periodic. Thus lim,(1/n)logv,(f, Sy) = log(N), and
moreover, the convergence is exponentially fast [Blan-
chard and Tisseur 00]. Points of equicontinuity may oc-
cur in natural examples [Blanchard and Maass 96, Kurka
77).

For many (probably “most”) surjective CA, the criteria
above are not applicable. This leads to the experimen-
tal investigations discussed in the next section, and to
the possibility raised in Questions 1.2 and 1.3 of a gen-
Question 1.2
arises because in the experimental data, the restrictions
of the cA f to Pi(Sn) are somewhat reminiscent of a
random map on a finite set. Since f is a surjective one-
dimensional CA map, there is an M such that no point
has more than M preimages under f. Suppose, for ex-
ample, that & is a prime greater than M and let Ok (Sy)
denote the set of Sy orbits of size k. Then f defines an at
most M-to-1 map fi from Ok (Sy) into itself, and we see
a possible heuristic: (1) in the absence of some additional
structure, the sequence (fj) will reflect some properties
of random maps, and (2) an “additional structure” such
as existence of equicontinuity points for f will tend to
produce more rather than fewer periodic points. The
beautiful and extensive theory of random maps on finite
sets contains precise asymptotic distributions answering
various natural questions [Sachkov 97]. Here we simply
note that for a random map on a set of K elements,
asymptotically on the order of K of the elements will
lie in cycles (whether the map is bounded-to-one [Grusho
72, Theorem 2] or not [Sachkov 97]), and there will be
few big cycles.

The maps fj derived from the surjective CA f are non-

eral plenitude of jointly periodic points.

random not only in being bounded-to-one, but also in
that most points have the minimal possible number of
preimages [Hedlund 69, Kitchens 98, Lind and Marcus
95]. To the extent it matters, this seems to work in favor
of the random-maps heuristic behind Question 1.2. In
particular, it seems that the qualification to the random-

maps analogy offered in [Martin et al. 84, p. 252], regard-
ing large in-degrees for cellular automata, does not hold
for the class of surjective CA.

4. THE MAPS

We examine with our programs several cellular automata
on N symbols, having or not having various properties
as indicated below. Except for Tables 15 and 16, all cA
examined are on N = 2 symbols.

The cA A is the addition map zo + 1 (mod N). This
CA is linear, bipermutative, and everywhere N-to-one.

The cA B is xg + x1x2. This CA is left permutative,
of degree 1, and not right closing.

The cA C'is BoByey, Where B,oy = xg2x1+2. This CA
is of degree 1, and it is nonclosing, since it is the compo-
sition of a non-left-closing CA and a non-right-closing CA.

The cA D is the map C' composed with (S3)72, i.e.,
D is the composition of zg + 122 with z_sx_1 + 2. All
periodic points for the golden-mean shift (the sequences
2 in which the word 11 does not occur) become fixed
points for D (as opposed to being periodic of varying
periods for C).

The cA FE is the composition A followed by B. This cA
on N = 2 symbols has degree 2, and is left permutative
but not right closing.

The cA J on two symbols is A precomposed with the
automorphism U of S5 that applies the flip to the symbol
in the * space of the frame 10x11. This U is zo+x_o(1+
x_1)x129, which equals xg+x _ox 20+ _9x_1x129. The
CA J has degree N and is biclosing, but is neither left
permutative nor right permutative.

The cA G is x_1 +xpx1 +22. This CA on two symbols
is bipermutative, of degree 2, and is not linear.

The cA H is the composition Ao Ao U. It has the
properties of .J, except that the degree is now 2% = 4.

The cAa K is the composition B o U. This CA is left
closing of degree 1; it is not left permutative and it is not
right closing.

In addition, we use a library of surjective span-4 and
span-5 CA due to Hedlund, Appel, and Welch, who con-
ducted the early investigation [Hedlund et al. 63] in which
they found all surjective CA on two symbols of span at
most five. (This was not trivial, especially in 1963, be-
cause there are 232 CA on two symbols of span at most
five.) Among these onto maps of span four, there are
exactly 32 that are not linear in an end variable (i.e.,
neither left nor right permutative) and that send the
point ...0000... to itself. These 32 are listed in Ta-
ble 1. Any other span-four onto map that is not linear in
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an end variable is one of these 32 maps g precomposed
or postcomposed with the flip map F' = g + 1. Because
gF = F(Fg)F = F~Y(Fg)F, the jointly periodic data
for Fg and gF will be the same. Altogether, then, we
can handle all surjective span-4 maps not linear in an
end variable by examining 64 maps.

According to [Hedlund et al. 63], there are 141,792
surjective CA of span 5. These are arranged in [Hed-
lund et al. 63] into classes: linear in end variables, com-
positions of lower-span maps, and the remainder. The
remainder class (11,388 maps) is broken down into sub-
classes by patterns of generation, and a less-regular resid-
ual class of 200 maps. These 200 are generated by 26
maps [Hedlund et al. 63, Table XII] and various op-
erations. We list the codes for this irregular class of
26 maps in Table 2, and use it as a modest sample of
span-5 maps.

5. FDENSE

The program FDense takes as its input a CA f, an in-
teger N > 2. a positive integer m, and a finite set IC
of positive integers k. (FDense can also handle sets of
maps as inputs, producing output for all the maps and
suppressing various data.) The input f can be given by a
polynomial or a tabular rule. For a given f and each k in
K, FDense determines whether the set Per(f) N Px(Sw)
is m~dense (in which case we say that f is m-dense at k).
If not, then FDense will separately list all the Sy words
of length m that do not appear in any periodic point of
f in Pi(Sy), in a lexicographically truncated form po-
tentially useful for seeing patterns. (For example, if m
is ten and the word 011 does not occur in the exam-
ined points, then FDense would list 011* as excluded
rather than listing all words of length ten beginning
with 011.)

The underlying algorithm for FDense lists all words of
length m and k in tagged form and operates on tags as it
moves through the words of length m with f. Memory is
the fundamental constraint on FDense. With m consid-
erably smaller than k, the essential demand on memory
is the tagged list of N¥ words of length k. With N = 2,
roughly m = 13 and k = 27 was a practical limit for our
machine, and this was also quite slow. We restricted our
investigations almost entirely to the case of N = 2 sym-
bols for two reasons: with N = 2 we can examine longer
periods; and we would be astonished to find any relation
between the questions at hand and V.

The following proposition follows from the data of Ta-
bles 3 and 4.

Proposition 5.1. For every span-4 surjective cellular au-
tomaton on two symbols, the set of jointly periodic points
is (at least) 13-dense.

In Tables 57, we applied FDense, for N = 2 symbols,
to check for which k < 24 various other surjective CA f
are 10-dense at k.

Table 5. After postcomposition with the map A = z¢ +
x1, the 32 onto span-4 cA of Table 1 remain 10-dense at
some k < 24.

Table 6. The 26 irregular span-5 maps of Table 2 are
10-dense at some k < 24.

Table 7. For each of the 32 span-4 maps j of Ta-
ble 1, let p;(xo,x1,x2,23) denote its defining polyno-
mial.  Construct a cA f; with defining polynomial
xo + pj(x1,22,23,24). These f; are demonstrated to be
10-dense at some k < 24.

For the cA in Tables 5-7, often the least k& at which
10-density is achieved lies in the range 19-24. (This is the
point of Table 7, since we know already from [Boyle and
Kitchens 99] that the jointly periodic points of permuta-
tive CA are dense.) This is consistent with the heuristic
that apart from possible extra structure, the CA map on
points of least period k looks something like a random
map. For a random map f from a set of 2¥ points into
itself, on the order of V2k points are expected to lie in
f-cycles. For k = 20, we have V28 = 219, (Of course,
10 < 24/2. A point of Sy-period 20 will contain up to
20 distinct words of length 10; the words aren’t expected
to occur with complete uniformity; specific codes are not
random. For the heuristic of randomness, it is perhaps
striking to find the rough agreement we do see.)

We also checked 10-denseness for several CA on two
symbols with specified properties, described in Section 4.

Example 5.2. (Linear.) The cA A = x + z; is 10-dense
at k=11, 13-24 out of [10, 24].

Example 5.3. (Permutative, not biclosing.) The cA B is
10-dense at k = 22-24 out of [10,24]. It is 13-dense at
only k = 25 out of [13,25].

Example 5.4. (Not closing.) The ca C' (and likewise D)
is 10-dense at k = 17-24 out of [1,24], and 13-dense for
k = 23,24 out of [13,24].

Example 5.5. (Degree 2, biclosing, not permutative.) The
CA J is 10-dense at k = 23-25 out of [10,25]. It is 13-
dense at only k = 25 out of [13,25].
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In summary, there is reasonable supporting evidence
for Conjecture 1.1, and the counts seen seem consistent
with the random-maps heuristic.

6. FPERIOD

Recall that Py (Sy) denotes the set of points fixed by the
kth power of the full shift on IV symbols. Each such point
x is determined by the word xoz1...2TE_1.

The FPeriod program takes as input a CA f, an integer
N > 2, and a finite set of positive integers k. For each k,
the program then determines data including the following
(included in tables cited below):

e P:= the number of points in Py (Sy) that are peri-
odic for f.

e L:= the length of the longest f-cycle in Py (Sn).

The program does much more; for the points in Py (Sy),
it can produce a complete list of f cycle lengths and
preperiods with multiplicities, and related data such as
vk, and averages. It can also do this for points in P2(Sy)
rather than Py (Sn) (i.e., for points of least shift period
k). The program also has an option for producing trun-
cated and assembled data for a collection of maps.

The basic algorithmic idea of FPeriod is the follow-
ing. FPeriod takes the given cA f and a given shift-
period length k, stores all 2¥ words of length 2%, and then
changes various tags on these words as f moves through
the corresponding periodic points. The tags in particular
are changed to keep track of how long f iterates before
returning. When the program returns to a previously
visited point, it can deduce the corresponding f period
and preperiod. The essential limit of FPeriod is that for
large k it becomes a horrendous memory hog. We could
conveniently reach period k = 23, and with patience we
could reach k = 25 or 26, before our memory resources
were exhausted. In practice, running the program using
N =2 and k = 26 required 1.8 gigabytes of memory.

In this section we apply FPeriod to various maps from
Section 4 with specific properties, and also to many maps
of span 4 and 5. The main message is that for nonlin-
ear maps, we generally see v (f, Sy) compatible with
affirmative answers to Questions 1.2 and 1.3, and fre-
quently the data suggest strongly that the limit v(f, Sy)
is smaller than N. Below, unless otherwise indicated, f is
defined on the full shift Sy with N = 2, and the symbol
set is {0,1}.

Table 8 [Linear]. We exhibit results for the cA A =
xo + x1; here v (A, So) is large, consistent with the fact
V(A, SQ) =2.

Table 9 [Biclosing]. We exhibit results for the ca J, which
is A composed with an invertible cA The composition
significantly reduces the numbers vy.

Table 10 [Linear composed with degree-1 permutative].
We exhibit results for the ca E.

Table 11 [Bipermutative]. We exhibit results for the

CcA G.

Table 12 [Permutative, not biclosing]. We exhibit results
for the ca B.

Table 13 [Closing, not permutative, not biclosing]. We
exhibit results for the ca K.

Table 14 [Not closing]. We exhibit results for the ca C.

Tables 15 and 16. We give our only examples for a CA on
more than two symbols (they are CA on three symbols).
The pattern is the same, but we are able to investigate
only up to shift period 13.

Tables 17 and 18 [Span 5 irregular]. We display data
for the 26 irregular maps of span 5 given in Table 2 and
discussed in Section 4.

Tables 19 and 21 [Span 4]. We exhibit data for the 32
maps ¢g of Table 1. (This addresses all span-4 surjec-
tive CA on two symbols not linear in an end variable, as

discussed in Section 4.)

Tables 20 and 22. [Span 4 composed with flip]. We ex-
hibit data for the 32 maps of Table 1 postcomposed with
the flip involution F' = z¢ + 1.

Table 23 [Permutative comparison]. Here v} is computed
for 16 left-permutative span-5 maps, to make a rough
comparison of a sample of maps that are and are not
linear in an end variable. We see no particular difference.

Table 24. For B = xqg+x1x2, complete data for B-periods
with multiplicity are found by FPeriod (not FProbPe-
riod) for points in Py (S3) for k < 22.

7.  FPROBPERIOD

The k for which the program FPeriod can explore f-
periodicity of points in Pg(Sy) is limited on account
of the memory demands of FPeriod. This begs for a
probabilistic approach. For large k, it is generally use-
less to sample points of shift period k for f-periodicity
(commonly, this will be a fraction of the shift-periodic
points exponentially small in k). Instead, FProbPeriod
randomly samples points of period k£ and computes for
them the length of the f-cycle into which they eventually
fall. This extends the range of k that can be investigated,
depending on the map; for different maps we have seen
practical limits at k = 33 to k = 37 (typical), to past 50
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(for the linear xy + x1 on two symbols). In any case, we
can search larger k than are accessible to us with FPe-
riod. The program FProbPeriod again works by listing
and tagging, but now needs to keep words in memory
only for the points visited along an iteration. As long as
the preperiod and period of the forward orbit aren’t too
large, the program won’t crash.

The input data for FProbPeriod then are the cA f, a
finite set of periods k, the number NV of symbols, and the
number m of points to be randomly sampled for each k.
The program will, for each k, take m random samples of
points from P, (Sy) and find the corresponding periods
and preperiods with multiplicity. Given k, L denotes the
largest f-period found in the sample. For any sequence of
samples, clearly limsup, L'/* < limsup, v (f, Sy) < N,
and inequalities must become sharp in some cases (f lin-
ear or f of finite order). Still, the data we see seems
consistent with positive answers to Question 1.2 and
Question 1.3.

The specific maps cited below are described in
Section 4.

Table 25. For sample size m = 10, for the (degree-one,
left-permutative, non-right-closing) map B = x¢ + z1x2,
the (eventual) periods are listed with their multiplicities
in the sample, for 1 < k < 37.

Table 26. For the map B, periods with multiplicity are
probed for k£ < 30 for two samples, of size 10 and size 30.
The maximum period is the same except for two values of
k. By comparison with Table 24, one sees that the size-
30 sample in Table 26 found the largest period except at
kE = 12 (where it found period 56 but not the maximum
period 60).

Table 31. For the linear cA A, periods with multiplicity

are probed for £ < 49 for two sample sizes, 10 and 30.
The results are almost identical.

Table 27. For sample size m = 10, for 1 < k < 37,
the numbers L'/* are computed for several ca described
in Section 4: A, B,C,E,G,H,J, K. The corresponding
preperiod data are displayed in Table 28.

Table 29. For sample size m = 10, for 1 < k < 32, the
sampled periods for the nonclosing cA C' are listed with
their multiplicities in the sample.

Table 30. For sample size m = 10, for 1 < k < 32, the
sampled periods for the nonclosing CA D are listed with
their multiplicities in the sample.

Table 32. This table lists the preperiods found for B by
FProbPeriod for the sample size 10 in the range 18 <
k < 35.

Table 33. This table lists the preperiods found for C' by
FProbPeriod for the sample size 10 in the range 18 <
kE < 35.

For the cA maps f on N = 2 symbols explored by
FProbperiod, perhaps the most striking feature observed
is the exponential size of Ly (f) (the length of the largest
f-cycle found). For example, for the eight maps sam-
pled in Table 27, at k = 37, Li(f) is approximately
o with o = 1.49,1.60,1.55,1.46,1.30,1.44,1.45,1.57.
These long cycles are compatible with the heuristic that
we should, for arbitrarily large k, see at least as much pe-
riodicity as we would expect from a random map (but not
necessarily more). A random map on 2% points would,
for large k, produce a longest cycle of size on the order

of V2k ~ 1.4F,

8. ONLINE TABLES

The tables referred to in the paper are available in the on-
line supplement to this paper at the Experimental Math-
ematics web site (http://www.expmath.org/expmath/
volumes/16/16.3/), and are also at the web site of the
first-named author (http://www.math.umd.edu~mmb).
The tables are organized into four groups:

e Tables of some span-4 and span-5 CA (Tables 1
and 2);

e FDense Tables (Tables 3-7);
e F'Period Tables (Tables 8-24);

e FProbPeriod Tables (Tables 25-33);
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