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We apply experimental-mathematical principles to analyze the
integrals

c '7i OO.“ e dxidxs -+ dxy,
k= o 0 (coshxy + -+ + cosh @, )kt1"

These are generalizations of a previous integral Cy, := C', 1 rel-

evant to the Ising theory of solid-state physics [Bailey et al.
06]. We find representations of the C,,  in terms of Meijer G-
functions and nested Barnes integrals. Our investigations be-
gan by computing 500-digit numerical values of C, ; for all
integers n,k, where n € [2,12] and k& € [0,25]. We found
that some C, i enjoy exact evaluations involving Dirichlet L-
functions or the Riemann zeta function. In the process of analyz-
ing hypergeometric representations, we found—experimentally
and strikingly—that the C), x almost certainly satisfy certain
interindicial relations including discrete k-recurrences. Using
generating functions, differential theory, complex analysis, and
Wilf-Zeilberger algorithms we are able to prove some central
cases of these relations.

1. BACKGROUND AND NOMENCLATURE

The primary entities on which the present work will focus
are the n-dimensional integrals

o 1/°° /°° dxyidxsy - - - dx,
R _oo (coshxy + -+ + coshax, )kt1’

(1-1)

These integrals are well defined—in fact absolutely
convergent—for any positive integer n and any complex
k € K, where we speak of the open half-plane

K:=(z€eC: Rz >-1).

The integrals C), . can be traced back to the Ising the-
ory of solid-state physics. As summarized in a previous
work [Bailey et al. 06], there is interest in giving closed
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forms and growth bounds for n-dimensional Ising suscep-
tibility integrals

Ui —Uj 2
wituj du1 d'U;n

D - 4 /°° /°° i<j
R duy | dwn,
Moo (S )

Jj=1

(1-2)

These D,, appear—with various normalizations—in the
standard Ising literature [Orrick et al. 01, Palmer and
Tracy 81, Wu et al. 76, Zenine et al. 05a, Zenine et al.
06, Zenine et al. 05b]. The quest for closed forms for Ising
susceptibility integrals thus led to a definition in [Bailey
et al. 06] of a class of structurally similar integrals, among
which is the structure (1-2) but without the permutation
product in the integrand, namely

dun

YL L
"l 0 n 2y Up
(5o (s + 1/uy)

j:1(uj

which, as can be seen via a transformation u, — e*, is
the case C,, 1 of the key definition (1-1).

A brief digression here is worthwhile. There is an even
more general class of integrals that likewise admit of an-
alytical promise. We may define, for integer n, complex
k, and an n-vector 7 := (r1,...,r,) of complex numbers,

the entities
1 oo
cJ -0
~ T, coshirjay)

/_oo (coshzy + -+ - 4 coshzy, )F+1

dry - -dx,,.

Absolute convergence of the integral is ensured on the
condition that k lie in the translated half-plane I +
R (>_r;). Thus we can restrict indices to obtain inte-
grals of our primary interest, e.g.,

Cn;’f = Cn,k,@’

Cn =0Un1 = Cn,l,ﬁ"

One reason to contemplate these generalized C,, j 7 is
that they enjoy certain combinatorial relations when cast
in so-called Bessel-kernel form, as we shall see later, in
Section 7. In principle, one could also allow continu-
ous n, and so a prefactor 1/T'(n + 1), with a fractional-
dimensional integral defined in Bessel-kernel terms; so
there could be yet more useful generalization. We will
sometimes write n! for the analytic quantity I'(n + 1).
An outline of the paper is as follows: In Section 2 we
examine hypergeometric and related expressions for our

integrals. Then in Section 3 we describe closed forms

and series for individual C,, . In Sections 4 and 5 we
explore recurrence relations. In Section 6, related con-
tinued fractions are given, while in Section 7 we explore
further analytic properties of the C,, ;. Finally, in Sec-
tion 8 we discuss our extreme-precision numerics before
concluding with some open problems.

2.  HYPERGEOMETRIC CONNECTIONS

It turns out that the Ising-class integrals C,, ;, enjoy cer-
tain connections with hypergeometric functions and their
Such
analysis gives rise to fascinating series representations,

powerful generalization, the Meijer G-functions.

new closed forms, and rational relations between cer-
tain pairs of integrals. (We refer the reader also to our
separate work on the quest for closed Ising forms [Bai-
ley et al. 06].) Not surprisingly, the collection (C), j :
n € Z*, k € K) provides fertile ground for experimental-
mathematical discovery, not to mention clues as to what
symbolic behavior might be expected of Ising integrals in
general. In addition, we derive some evidently new exact
evaluations of Meijer G-functions themselves.
A Bessel-kernel representation we developed in [Bailey
et al. 06] likewise generalizes to
2m 1

Cn,k = ﬁm (271)

Cn,k>
where we use I'(k+ 1) = k! to emphasize that k need not
be an integer, and where the (lowercase) ¢ definition is

Crk ::/ th Ko (t)"dt (2-2)

0

(here Ky is the modified Bessel function). This repre-
sentation, as in [Bailey et al. 06], permits us to calculate
explicit values to very high precision (our 500-digit val-
ues are available online [Bailey et al. 07]). Note that in
regard to k-dependence, ¢, j, differs from C,, j, by a pref-
actor of T'(k + 1); this scaling will be convenient later,
when we analyze recurrence relations.

It is clear from the definition (1-1) that for fixed in-
teger n, C), ) is monotonic decreasing in real k. The
arguments of theorems in [Bailey et al. 06] regarding the
original C,, can be augmented to show first that for fixed
real k > 1, the set (C), ) is monotonic decreasing in n,
and that for any fixed k we have the large-n asymptote

1 2k+1+n

an _(k+1)77

KT+ 1) (k+ )+ ©

for which our original, canonical case in [Bailey et al. 06]
reads Cp, = Cp 1 ~p 2727 & 0.63047.... This asymp-
totic behavior is revealed by extreme-precision numerical
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Cn

4 0.70119986017642999981651392754834582794624200386529. . .

16 0.63050394617323726350529565756068741948431621720810. . .
64  0.63047350337438679648836208816533862535998880860015. . .
256  0.63047350337438679612204019271087890435458707871273. ..
1024 0.63047350337438679612204019271087890435458707871273. ..

TABLE 1. Extreme-precision numerical values for C,.

values for C),. Table 1 presents an example of the data
downloadable at [Bailey et al. 07], where the asymptote
2¢~27 is evident:

Another observation on the generalization Cy, j, 7 is in
order. Some idea of the power of Bessel representation
such as (2-1) can be gleaned by the observation that
for vector 7 := (p,p,...,p) = (p) we have again a one-
dimensional integral

A 1

“ > k n
. F(k+1)/0 £ (1) dt.

It is interesting that for p half an odd integer, the Bessel

Cr ko (p) =
function is elementary and we routinely obtain closed
forms. For example, for general complex k we infer

Cyk,(3/2,3/2,3/2,3/2)
_ 91-2ka2D(f — 5)

E* + 2k3 — 25k — 10k + 56
30(k+1) (K" + +56) .
of which an instance is
c - 10372
4,6,(3/2) — 552960

Though such cases do not shed much light on our main
theme—the C), ; themselves—these tractable cases do
suggest such notions as analytic continuation (in k, be-
yond the relevant half-plane) as well as the appearance
of polynomials in k.

We shall be analyzing series representations and closed
forms for various C), ;. To this end, we state some exact
integrals based on the Adamchik algorithm described in
[Adamchik 95]:

[T eip (K1 .

_ ! Val () 5
CQ’k_/o thK2(t)dt = (ng ) (2-4)
o /0 Ootng(t)dt (2-5)

1—k 1—k 1
:2]672\/%ng§ <4‘ 20a020>2 )7

where the relevant Meijer G-function here is

1 [T+ 1)/2 - s)T3(s)
_%/ T(s+1/2) A ds.

Finally, we have

o0
1 3,3 17 17 17 s
Cq .k = / tng(t)dt = gWG4:4 (1 E+1 k41 k%,-l 1 )
0 2072 0 2 132
(2-6)

where in this case the relevant Meijer G-function is

1 DD ((k+1)/2+ )
" 2mi JoT(1+ k/2+ s)L(1/2 — )

ds.

In the above cases n = 3,4, the contour C encompasses
all poles of the first I" form in the numerator, but no
other poles, as is consistent with formal definitions of the
Meijer G’s as given in [Adamchik 95, Roach 97]. In our
study, said contour can always be taken as a vertical run,
upward, and intersecting the real s-axis at an appropriate
place, say s = —%. It is unknown how to generalize such
Meijer formulas beyond the fourth power of the Bessel-K:
Once again, as happened in the work [Bailey et al. 06],
we encounter a kind of theoretical blockade for n > 5.

In spite of the blockade for n > 5 in regard to Meijer-
G representations, we shall still be able to represent, in
our Section 7, arbitrary (), via yet more complicated
structures.

3. CLOSED FORMS AND SERIES FOR
INDIVIDUAL C,,

3.1 Evaluations of Cq .

Immediately from relations (2-1), (2-3) we have

kT (L)
Clk — ( 2 )
’ I'(k+1)

The first few exact evaluations are

(C1,0,C11,C12,C13,...) = (7r,27

o
O
N——
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It is evident that for any k > 1,

Cik =pix + qLi,

where the p, ¢ coefficients are always rational, with ¢ van-
ishing for odd k and p vanishing for even k. This obser-
vation about the character of the p, ¢ is trivial, but as we
shall eventually see, such a “p + qz” pattern for larger n
becomes radically more profound.

3.2 Evaluations of C3
Next, from relations (2-1), (2-4) we obtain

VAT (41)°

s
CQ,k = % 2 )
2T (5 +1)T(k+1)

with the first few being

|

2 1?1
(C2,0,C2,1,022,Ca3,...) = ( ==, = )
In this n = 2 case we have

2
Cok = poi + Qi7"

with the same vanishing rule on the rational p, ¢ multi-
pliers as for n = 1.

3.3 Evaluations of Cs

After all C,, , for n = 1,2 have been resolved as above,
the case n = 3 on (), suddenly becomes nontriv-
ial, yet there are various approaches that yield new in-
sight: at the very least, new closed-form evaluations of
the appropriate Meijer-G. Choosing a contour and per-
forming residue calculus (we leave out the intricate de-
tails) on the Meijer-G for identity (2-5), one may obtain
quite efficient series developments. To summarize, define
w=[(k —2)/2], a polynomial

and an alternating harmonic number

11 1
-

Héfl) ::1—2 3
c

with Hé_l) := 0. Then, for odd k, the residue calculus
yields a linearly convergent series

ok /7
Cap = 31k Z

1 1P,(h)
X (HQ}H-I - ip:(h) .

I'(h+1)
4h I'(h+3/2)

Similarly, for even k, one obtains

2kt /m h)T3(h+1/2)
C3p = 34
AT }L;Z 4h T3(h+1) (3-4)
_ 1 P/ (h)
Alog2 —3H Y — ~ L .
X<°g YA
3.3.1  The Cseven integrals. Yet another surprise in

the world of Ising-class integrals is that the C3 cyen seem
to be more mysterious than the C5 oqq4. One way to think
of this dichotomy is to observe the way that gamma func-
tions appear in the respective series (3-3), (3-4). One
may employ special hypergeometric identities, which we
found in Mathematica and reconfirmed in Maple, such as

(oo}

Z I(h+1) sin2h _ 4 0
I'(h+3/2) ~ J/msin(20)

— 3 +1/2) o, 4 0
0) = — - sin®"f = —=K° | sin -
a0(0) };} 1) sin NG sing |
where in the second identity K(k) is the (complete) el-
liptic integral of the first kind with modulus k.! We may

also employ an integral identity
1 2h 1 42k
- 143t t
4log 2 —3H, ”:/ T dt =log?2 3/ dt.
©8 2h y 141 R A
Putting this all together for the special case

VA 1 T3(h+1/2)
Z hT3(h+1)

(41082 31, "),

we arrive at the peculiar elliptic representation

4 /6 K2 (sin Q) cos
= -K* log 2 —_— 2
Cao =3 (bm ) °8 +8/0 1 +2smo
(3-5)

2 V3327t f\f
27T (2/3) 24 s (3 3)

Moreover,

(i ) -
Sin 12

is the integral at the third singular value, ks [Borwein
et al. 04]. Correspondingly, the Clausen product identity
[Borwein and Bailey 03, p. 50] shows that

/6 K2 (sin ) cos6
8/ —=——df
0 1+ 2sin6

1 2
:WQ/ 3F2< 1/2,1/2,1/2 33) dx
0

1,1 "4 )zl

IHere we use the convention K(k) = fOW/Q(l — k2sin? s)~1/2 ds.
See [Borwein and Bailey 03, pp. 199-200]. One should beware:
Some symbolic systems use m := k2 as the argument; for example,
in Mathematica one has EllipticK[m] := K(y/m).



This elliptic-cum-hypergeometric form is a rather erudite
result for the relatively innocent-looking integral

1 dx dydz
0370 = 6 .
s coshx + coshy + cosh 2z

There are other attractive representations equivalent to
the elliptic form (3-5) such as

dx dy.

W//ooo Va2 +14/y? +11\/(x +y)2+1

We next observe that C3 5 possesses a corresponding
closed form that also involves the elliptic integral of the
second kind E(ks), [Borwein and Borwein 87]. This may
be similarly derived from (3-4) as follows.

Since Py(x) = 22, the building blocks for Cs 5 are

=N (4 1/2) o
o1(0) :223751](1 6
— T3 (h+1)
_ 4
- /mcosf

e ) (o ()}

2 3
fzhl“ h+1/2)Sin ng

and

\FUz

I3 (h+1
2 _
_ (cos@ +1) (cos® 6 + cosf — 1) K2 sing
cos? 0 2
~ ,(cosf+1)(2cosb — 1) 0
2 gy (EK) ( sin 5

E in— |.
+ cos? 6 <sm 2)

Thus, we may use (3-4) to write

2log 2 2
Cs9 = g Vo, ( ) - gﬁﬁ (%) (3-6)
cos
4 _ VY
+ /0 Vo2 () 1+ 2sin6

Also, for 6 = 7/6, we have
EK = (77 +(2+ 2\/§)K2) V3;

see [Borwein and Borwein 87]. Thus, using (3-6) we will
get two more-complicated terms like the ones in C'3 o but
now involving both E and K. Note that cos7/12 = (v/3+
1)/v/8 and sin /12 = (v/3—1)/+/8 are reciprocals. Thus,

i (5) = -2 sn )+ 2o

Bailey et al.: Hypergeometric Forms for Ising-Class Integrals 261

and
o (5) = (o )+ ()
woy (=) == sin — — in —
*\6/ 9 12/ 18 12
In consequence of Theorem 5.4 below, all C3 ¢yen are
superpositions of C3 and Cj 2 with polynomial (in k)
weights; thus, the C3 cven can involve only algebraic com-
binations of the numbers above, such as log2, w, and
PSLQ suggests that

no relations exist between the seven monomials implicit

n (3-6).

the elliptic evaluations/integrals.

3.3.2  The C30qq integrals. A first observation in the

cases C}, 044 is as follows. We recall the exact L-function
evaluation given in [Bailey et al. 06]:

1 1
C3:=C31=L_3(2):= mzz:o ((3m +12 (3m+ 2)2)

This knowledge about Cs; leads, via (3-3), to the re-
markable L-function identity

-is

1
(1— '+2h+1)'

Observe that via relation (2-5), this resolves the rele-

OJ\[\D
N>

X

l\')\)—l +

vant Meijer-G in terms of an L-function; we believe this
Meijer-G identity to be new.

Now, the (5 ,qq4 seem to be pairwise rationally related,
in the following sense. We discovered via numerical ex-

periments the conjectures2

? 4 2

Csg = —— 4+ “1_4(2
3,3 T 3(2),

? 92 8

= 4 L2
G5 1215 81 3(2),

and several more, suggesting rational relations aC'3 j +
bCs5 1 = c for any distinct odd pair (k, k'), with a,b,c
rational, @ # b. We will prove these (n = 3, odd k)
conjectures below. We should mention that we found no
such rational relations whatever between pairs of C3 cven
(see Conjecture 4.3).

One might conceivably use the residue expansion (3-3)
to prove our experimentally detected relations. However,
there is another route, one that leads to an efficient al-
gorithm for resolving the closed form of any C'3 5qq. We

5
2The notation = means we experimentally suspect a given equal-
ity in absence of rigorous proof. Of course, we shall prove these

? .
C3 0da closed forms, but we prefer to use = when reporting on
initial numerical discovery.
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hark back to the dimensional-reduction methods in [Bai-
ley et al. 06] and reduce to a two-dimensional integral

o VET()
HETRIT (B )

7(k+1)/2
dx d 1 1
A (R ) (R T

(k—1)/2 and write

Now for odd k we may assign m :=

—(k+1)/2

dxd 11

// my{1+x+y)<1++>}
Ty

1 [0 0

~ mi2 \0a dp

S e (3]

The integral over x, say, may then be done, after which
z/0 to reveal that, remarkably, the «, -
dependent integral is really a function only of the product
c:= af. In fact,

a,f=1

we put y =

// dx dy 1

o wy (a+z+y)(B+1/z+1/y)
7/00 log(1+1/z)+log(c+z)d
Jo 22+cz+e ‘

1
1 —2logt
0o t*—ct+c
the final integral being obtained by making the substitu-

tions 1 +1/z = 1/t and ¢ + z = ¢/t respectively in the
two parts of the preceding integral. Thus Cs j, reduces to

kL 9 9\
= — _— T —
ok = i <8a ag) @B)] oy (37)
where
T(e) = / logQ\f logtdt
0o t*—ct+c
1 1 1—-1/r_
- (-2 Ylog -—AT=
r+—r,( 2 og(rs )Ogl—l/hr
+Lia(1/r-) = Tia(1/14)),
with
ct Ve —4e
r+ i =m— .
2

Sure enough, for £k = 1, and so m = 0 and no differenti-
ation in (3-7), we obtain our original case C5 := C31 =
(2/3)T(1) = L_4(2).

More generally, our finite representation (3-7) leads
to a proof of the evaluations above for C'3 3 and C'3 5 and

indeed to a proof of our rational-relation conjecture. To
this end, note that we can use the operator identity

® _0 0
dadf  dc Oc’
valid on functions f, where ¢ = af. In expanded form
this means
9 0 - ok m+k)
(geam) 70=3 (F)zeso o

k=0

From the above relations one may now derive, for non-
negative integers m,

22m+1
Csomi1 = —————5—~ 3-8
3,2m+1 3(2m +1)(2m) (3-8)
x Z ( ) ("” ’“) (=)™ (m 4+ k),

where .
o t" logt 8
J(V)._.jg Rl (3-9)

These observations lead us to the following theorem.

Theorem 3.1. For odd k > 1, we have

Cs.r = p3k + q3,6L_3(2),

with the p,q coefficients always being rational, g3 being
given explicitly by (3-11) below.

Proof: In terms of the I function in (3-9), establishing
the recurrence

1
—3(V+1)I(l/+1)+;:0

(3-10)

vi(v—1)+ 2v +1)I(v)

is enough to prove the theorem, because

1(0) = —2L_,(2).

; 10) =~ 5L 5(2).

One may also derive
I(v) =a, +b,L_3(2)

with rational a,, b, satisfying the recurrences
1
va,—1 + (21/ + 1)041/ — 3(1/ + 1)a,/+1 =+ ; = 0’

with ag = a1 = 0, and

1
Vbl/fl + (21/ + 1)by - 3(1/ + 1)by+1 + ; = O’



with bo = —
(3-10). For

b f%. So we now prove the recurrence

%a 1=
z € (—1,1) we have

00 1
v logt
y(@) '*;I(V)x */0 TS

The recurrence (3-10) thus holds if and only if

(z+ 1)ZI(V)LEV + <x+2 - i) ZVI(I/)x”
v=0 v=0
=1(0) — 3I(1) + log(1 — ),

which is equivalent to y satisfying the differential equa-
tion

(z+ 1)y + (2% + 22 — 3)y’ = log(1 — x) — 3L_3(2),

subject to the initial condition

3
y(0) = 5L 5(2).
Maple verifies that y(x) is indeed a solution. O

It turns out to be possible to give a finite expression
for the g3 5, rational in Theorem 3.1. What may be called
the terminal term of the chain differentiation in (3-7),
namely

e () (G} (5o3s) 7

a,ﬁ:l’
gives the rational coefficient of L_3(2) as
219 9 \™ 1
=V3 -] — .
4 = V3 k! (8a 35> (aB(4— aB)/? lap=1

In particular, a finite expression for the general g coeffi-
cient is, with m := (k —1)/2,

2k 1 m m'
m+
=0

S ()66, 5)

22m=tl I (1) ()
- \/3(2m —1) 5!

><2F1<1
2

The above analysis provides closed forms for the rel-

43,k = (3-11)

!
3=0
11 1\ o /1

272 R - -
-—m—j ,4>H(2+m—|—z>.

i=0

evant Meijer G-functions. The method also provides an
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algorithm for exact evaluation of any Cj ,qq rather effi-
ciently.?> One may arrive quickly at such instances as

dxdydz

1 (o)
Cs15 := —
B15°7 3 ///_OC (cosh x 4 cosh y + cosh 2)16

11884272896 4139008

= - L_5(2).
837856594575 * 227988189 3(2)

3.4

We begin with the first case of (2-6). Residue calculus—
again we omit the intricacies—gives series such as

1 M(h+1/2)\"
04’0_242( T4(h+1) )

h=0

Evaluations of C i

(3-12)

1= T(h+1/2)
_5};) T4(h+1)

2
X (8 (— log 2 + Hé;l)) +¢2) - 2H2(h2)> :

where the double derivative

the new sum is

is with respect to h, and

1 1 1
224_?_...1?

Hl(f2) =1-

with Hé_z) := 0. However, just as with the C3cven
cases of the previous section, we know not a single closed
form for C4 even, and again, we found experimentally that
Cl40da are pairwise rationally related, meaning (see Ta-
ble 2 for Cy := C4 1) that every Cy oaqa would be p+¢¢(3)
for rational p, q.

The finite-form evaluation of any Cj qq is achieved as
follows: Define integrals

) . h
it [ sinhwt 1
Up =T [ ST ) at
g 2 /_oo cosh® 7t ( 2 )
((2-h)

= (=) h(h—1) =

This latter identity actually holds for any integer h, with
Uy = 1/(2m). Note that under the further constraint
h > 0, the quantity wUy for h > 0 is rational, as follows
from the fact of known evaluations of {(2 — h).

30ne may explicitly differentiate and simplify in (3-7), but a
faster algorithm is to use the finite expression for g3 given after
Theorem 3.1, an extreme-precision evaluation of series (3-3), then
a function such as Mathematica’s Rationalize[ ] to resolve p3 .
This amounts to an interesting, systematic use of extreme precision
within a general algorithm.
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n k Ch,k

1 any w =Dk + QT

2 any 2;@1(17% =pak + QT

3 0 Elliptic form (3-5)

3 1 C3 = L_3(2) (see [Bailey et al. 06])

3 2 Elliptic form (3-6)

3 3 Cs3=32L_3(2) — &

3 any odd p3k + q3,xL_3(2), Series (3-3)

3 any even Order-2 recurrence (Theorem 5.4), Series (3-4)

3 any complex Meijer integral (2-5)

4 0 Series (3-12)

4 1 Ca = 15¢(3) (see [Bailey et al. 06])

4 3 Cas = 5:5¢(3) — 55

4 any odd Pk + q4,6C(3)

4 any even Order-2 recurrence (Theorem 5.4)

4 any complex Meijer integral (2-6)

5 any complex Nested-Barnes integral (7-2), Series (7-3)
large fixed ~ %ﬁ%e—(k“)”

TABLE 2. Proven closed forms, series, and relations for the Cy, ;. Every p or g coefficient above is proven rational, with
the ¢ having explicit finite forms. Our searches have uncovered no other closed forms, or pairwise rational relations not
implicit above. Conjecture 4.1 gives a general recurrence relation for complex k

The relevance of the Uy, is that a Meijer contour inte-
gral as in (2-6) can be developed as follows:

_ 1 D3(=s)I3((k+1)/2 + s)
2w JoT(1+k/248)T(1/2 — s)

im [ sinh7t 1
T BT a2 i) ar,
2 J_ o cosh® 7t ( 2 )

ds

where

Fls) — D3((1+k)/2+s)T(1/2+ s)
(e) = D3(1+s)C(1+k/2+ s)

Now the key is that if we write

F(s) = f(s) + ¢(s),

where we express F(s) = > it s’/ as a polynomial and an
error term ¢(s) = o(s), then we can resolve the original
Meijer-G by employing the U}, identity on the monomials
f;87, and using residue calculus for the ¢ term, to write

C=Y LU+ ) (1)
J h=0

This analysis now leads to a proof of the experimentally
discovered conjecture on rational relations for any pair of
Cl0dd:

Theorem 3.2. For odd k > 1, we have

Cak =pak + q11¢(3),

with the p, q coefficients always being rational. In partic-
ular, a finite expression for the gemeral q coefficient is,
with m := (k —1)/2,

T emp &)
k= 19 k1 gammt 4 &

Proof: For fixed odd k the function F is indeed polyno-
mial plus a decay term, namely, set m := (k —1)/2 and
write
(1+38)3(2+s8)3-+-(m+s)3
F(s) =
(s+1/2)(s+3/2)---(s+m+1/2)

2m—1 m A

. oJ J
Z::o fis +Zs+j+1/2'

J Jj=0




Here, the coefficients (f;) and (A;) are all rational, and
can be calculated exactly, using polynomial remaindering
and partial-fraction expansion, respectively. Thus the
original Meijer G-function from (2-6) is given exactly by
the result (3-13),

2m—1

1
G= U, AiC (2
Z i + Z ]C( J+ 2>
where ((s,a) = >, 501/(h + a)® is the Hurwitz zeta
function.
Now, since each U; here is (rational)/m, each

¢ (2,7 + 3) is (rational) 4 (rational)¢(3), and each Cj oda
is (rational)7G, the theorem follows. The explicit evalu-
ation of g4 1 arises from the natural partial-fraction eval-
uation of the A; terms and the accumulation of all nor-
malizing factors. O

This result amounts to a closed-form resolution of the
Meijer G-function in (2-6) for any odd k in terms of ((3),
m, and rationals. Moreover,

m (m)4 1119
J —.F 27272 -1
Z om 3 43 —m+1 —m+1 —m+1 ’

Jj=0 (2j)3

2 ) 2 ) 2
m \3 3 m+3 m+3
(erl) F m+ m2 7m 1 . 1
T om (343 33 3 I
(2m+2) 27202

In this way, as for n = 3, polynomial-remaindering and
rational-arithmetic algorithms quickly yield exact evalu-
ations such as

dw dx dy dz

Bailey et al.:

=g [If]

1744313209 67697

~  578605547520000 * 269903462404(3)'

In general, the odd Meijer-G form for n = 4 can be

written explicitly as

1 2

2k + 1) 24 (3-14)

Ciokt1 =
k
°  sinh (7t) (t—i(j—1/2))°
X dt7
/Oo tcosh3 mt) H t—1ij

while the even form, as well as those for n = 3, offers less

purchase. In particular, integration by parts in (3-14)
yields

72 [ tanh (t)sech? (t)

Ci1=— — 2t
Y712, t
00 ¢ h2
_ T anh” (7t) it
2 J, £

cosh w + cosh z + cosh y + cosh 2)16
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We next substitute the partial-fraction expansion

tanh(wy) 2y
Y Z < dy? + (2n + 1)

and expand, then interchange integration and summation
to obtain from

o0 4y2
/O (4y2 + (2n + 1)2) (492 + (2m + 1)?)

T @2n+)@m+ 1)(2n+2m + 2)

dy

that
nzo Z 2n+1)(2m+1)(2n+2m+2)

This double sum is a Tornheim double sum or a Witten
C-value, see [Borwein 05], and equals

1 2 1 lo T
h B x
/ arctanh” (x) dm:/ e
0 r 0 €

where the first integral and penultimate sum are obtained
on integrating termwise. Thus,

7

Cit = —
4,1 12

<(3)7

as before. Similar machinations lead to a corresponding
evaluation of Cy 3.

4. RECURRENCE RELATIONS: EXPERIMENT

Based on extensive computational work we make the fol-
lowing conjecture:*

Conjecture 4.1. For givenn € Z* with M = | (n+1)/2],
the integrals (Cyp, 1) enjoy an order-M recurrence involv-
ing M + 1 terms with coefficients being integral polyno-
mials Py ; each of degree n, that is,

Po(k)Co i+ Pri(k)Ch g2+ 4 Poa(k)Chgram = 0.

this holds for all complex k in the sense
of analytic continuation (the existence of poles in the
k-plane is admitted).

Moreover,

4This conjecture has since been proved [Borwein and Salvy 07].
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We shall eventually be able to prove certain instances
of Conjecture 4.1, specifically, recurrence relations among
the C), , with fixed n = 1,2, 3,4. The first open cases of
Conjecture 4.1 are n = 5,6, specifically,

0= (k+1)5Csx — (k + 2) (35k* + 280k> + 882k
+ 1288k + 731) Cs 4o
+ (k+2)(k+3)(k +4) (4-1)
x (259k? + 1554k + 2435) Cs 44
—225(k + 2)(k + 3)(k + 4)(k + 5)(k 4+ 6)Cs 416

and

0= (k+1)%Cex — 8(k + 2)%(7k* + 56k> + 182k
+ 280k + 171) Cp o2
+ 16(k + 2)(k + 3)*(k + 4)
x (49k% + 294k + 500) Cg 44
—2304(k + 2)(k + 3)(k + 4)*(k + 5)(k + 6)Cé ot

(4-2)

where as before, the question mark is used to emphasize
the fact that we have no formal proof.

Note that on this conjecture,
(lowercase-notated) ¢, = I'(k+1)n!l27"C,, j of equation
(2-2) then satisfies a recurrence with a straightforward
polynomial adjustment:

our renormalized

M

Z(_l)ipn,i(k +i+1)cy g2 = 0.
=0

(4-3)

We write the “little-¢” recurrence in this way for conve-
nient connection with experimental results; for example,
we have always encountered natural alternating signs,
and some obvious factors of the polynomials p implicitly
defined by (4-3). Note, for instance, that the experimen-
tal recurrences (4-1) and (4-2) can be recast compactly
in the form of (4-3) by defining

pso(z) =27, pe,o(z) =,

psa(x) = 352" +422° +3, peq(z) = 2(562" + 1122% 4 24),
ps.2(x) = 25927 + 104, pe.2(z) = (7842 4 944),
ps,3(x) = 225, pe,3(z) = 2304z.

Table 3 has many other p,, ; polynomials that we have
found experimentally.

There is actually a substantial literature on such re-
currences. Most authors abide by the nomenclature, as
we do, that the order of the recurrence is M, meaning
there are M + 1 different C' terms (and M + 1 polyno-
mial coefficients). Some researchers refer to any sequence
such as C, satisfying such a recurrence, as holonomic, and
observe that a generating function will satisfy a similar
recurrence relation in its derivatives [van der Poorten and
Shparlinski 05, Zudilin 97, Flajolet et al. 05].

We make two more conjectures that are experimen-
tally motivated:

Conjecture 4.2. Fiz n and a complex rational ko. Then
for k lying in the arithmetic progression ..., kg — 4, ko —
2, ko, ko + 2, ko +4,..., the set (Ch i = k € ko + 2Z) is
rationally generated by any M = |(n + 1)/2| distinct
elements, but no fewer.

Conjecture 4.3. For a distinct complex pair (k, k'), the
rational relation pCi, 1, + qCp jy = 1 with p,q,v complex
rationals, p # q, is impossible for n > 5. For n = 3,4
the rational relation is possible only for both k, k' odd
integers.

Since all of these conjectures have been experimentally
motivated, we hereby start our recurrence discussion in
the historical spirit, with experimental results first (and
knowing that some of the tabulated recurrences in the
present section are proven and some are not). We give
our substantial evidence in Table 3, where ¢, 5, (lowercase
notation) is defined in (2-2), and in Table 4.

An example of our experimental forays runs as follows.
The form of the nontrivial coefficients for a possible re-
currence for the C3 ;, and Cy ;, was assisted by consulting
Sloane’s Online Encyclopedia,” which for Cy j, connected
the coefficients to the sequence A063495.5 Having found
these recurrences, it was then reasonable to assume that
the coefficients were polynomials of the conjectured de-
gree; and the tables were then built by numerical interpo-
lation after the use of PSLQ. The predicted recurrences
were then numerically checked to extreme precision at
various values of k.

Table 3 shows recurrences for the renormalized ¢,, ;, :=
En!27"C,, 1, for 1 <mn <12 and integer k. Using the re-
currence form (4-3) we end up with simple (odd or even,
positive) polynomials p,, ;. The explicit polynomials p,, ;
that we have found experimentally are shown in Tables 3

5See www.research.att.com/~njas/sequences/index.html.
6Consult A063495, which makes reference to equation (10) in
[Martin 96].
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n =1
1 1
2 4x
3 2 + 102>
4 x(12 + 202%)
5 3 + 42z + 352*
6 (24 4+ 11222 4 562*)
7 4 + 10822 + 2522* + 84x°
8 (40 4 36022 4 504z + 1202°)
9 5 4+ 22022 + 990z* + 92425 + 1652°
10 2(60 4 88022 + 23762* 4 158425 + 2202°)
11 6 + 39022 + 2860z + 514825 + 25742° 4 2860
12 2(84 4 182022 + 8008x* + 1029625 + 40042° + 36421°)
n =2
3 9
4 64z
5 104 + 259>
6 x(944 + 7842%)
7 816 + 475222 4 19742
8 (9024 + 175202 + 4368z")
9 5376 + 54384x% + 52800z + 87782°
10 2(70144 + 2365442 + 137808z* + 163682°)
11 32000 + 49254422 + 8305442 + 3226082° + 287432°
12 | (481280 + 24693762 + 24984962 + 6932642° + 480482%)
n 1 =3
5 225
6 2304
7 7796 + 1291622
8 (94976 + 52480z7)
9 170298 + 62519622 + 172810z
10 x(2409216 + 29490562 + 489280z%)
11 2999076 + 1823218822 + 111614362* + 123494825
12 2(48354048 + 9800044812 + 360039682 + 28462722°)
n i1 =4
7 11025
8 147456
9 851976 + 105722122
10 2(13036544 + 53954562%)
11 39605040 4+ 106102880z + 21967231z
12 (683253760 + 610355200z 4 758517762*)
n i=25
9 893025
10 14745600x
11 129879846 + 1288167662>
12 (2393358336 + 7916912642%)
n 1=206
11 108056025
12 2123366400z

TABLE 3. Experimental polynomials p, ; for 1 <i <6 and 1 <n < 12.
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n|i=0 i=1 i=2 i=3

1| 2? 1

2| 8 4z

3| ot 2 + 10z 9

4| o (12 + 202?) 64z

5| af 3 4 4222 + 352° 104 + 2592° 225

6| 27 x(24 + 1122° 4 561%) (944 + 784x%) 2304x

7| a8 44 108z2 + 252" + 84z° 816 + 47522% 4 1974z* 7796 + 129162°

8 | ¥ | (40 4 36022 + 5042 4+ 12025) | (9024 + 1752022 4 43682) | (94976 + 5248027)

TABLE 4. Polynomials p,; for 0 < ¢ < 3 and 1 < n < 8 Note that the coefficient of the rightmost polynomial

s (1-3---n)? or (2-4---n)? respectively. Correspondingly, the bold numbers are of the form (g), while the overlined

numbers are of the form 2(?), etc. Generally, MacMahon’s numbers, see Sloane’s A008955, seem closely related: T'(n, k) =
T(n,k—1)+Kk*T(n—1,k—1).

and 4. In particular, we conjecture from Table 4 that obtaining
x
Pno(z) =2""", o(z,y) T
M
nt2\ a1 G !
= " 1\, Y) = )
Pra(@) s (2j+1>x (=.9) = (zy+y—1)*(ay —y—1)°
71_ 41 GZ(xu y)
=1 (n+l+a)(z—1) Y3 ( (1 —2y)® +10(1 — 2y)? + 49%(1 — zy) — 8y2)
e+ )™ it 1—-a) (zy +2y — 1)3(1 — 2y)3(zy — 2y — 1)?
4 )
M=1 . i 1. ) However, we have no idea what the general pattern
Pno(T) = g4 (2J+3)(n+2)+j+1 should be.
(n + 2) -2 5. RECURRENCE RELATIONS: THEORY
2j+3
7% 5.1 Direct Methods
1 ™ 11(x + 2) . . )
32 (n+x+2)° - o T T 4 An immediate but demonstrative result that does not
" o+ require experimental mathematics is the following:
T —
1 ™ 1l(x —2) : ; _
+—((n—z+2?2- =+ Theorem 5.1. Conjecture 4.1 is true forn = 1,2. In fact,
32 2 4 for any complex k,
((E + 2)n+1
1, (k+1)C1k — (k+2)C1 42 =0
6% +1 (mQ (n+2) ) ,
v and
_ _9:)\2 n—2M
P (@) = on(n 207 e (k +1)Ca s, — 4(k +2)°Cy 10 = 0.

Proof: The desired recurrences follow immediately and

Recall that M := [(n + 1)/2] is the recurrence order, analytically from (3-1) and (3-2) respectively. -

and we set p,, ; = 0 for ¢ > M. If we consider the graded

| ] 3 i As intimated in Section 4, PSLQ in tandem with
generating function, we equivalently conjecture that

Sloane suggests that the C's j satisfy a definite recurrence,
at least for integers k. We can get a foothold on this, with
)= an,i(x)y", a view to the general analytic Conjecture 4.1, with the
following theorem.



Theorem 5.2. Set n = 3, whence for positive odd integers
k we have

0=(k+1)%Csp —2(k+2) (5(k +2)> +
+9(k 4+ 2)(k+ 3)(k +4)C3 jya.

1) Cspot2

Remark 5.3. We shall eventually prove the recurrence for
general complex k; however, the two “direct” methods of
proof here for odd k are instructive and have indeed led
us into the more general analytical forays to follow.

Proof (first method): For nonnegative integer m, we be-
gin with the formulas for C3 2,41 and I(v), namely (3-8),
(3-9) respectively. We now make the crucial observation
that

n n n+k)tn+k; logt

Z

=0

t - t2 n+k+1

2 n
(i t " log t
—t+t2+1) (t—12—

1)n+1 ?

and so
1 22m+1

3(2 +1) (*™)

1
2t t™ logt
></ Pm<1 2 > = w4t
0 2—t+1) (t—2_1)

where P, is the nth Legendre polynomial with ordinary
generating function, see [Abramowitz and Stegun 70],

C3omi1 = (5-1)

Z P, ; (5-2)
V1—2xy+y?

Let J,, denote the integral on the right-hand side of
(5-1). From (5-1) and (5-
of sum and integral, we obtain that the generating func-
tion for J,, is

) = ZJWC” =

n=>0

2), on justifying the exchange

/l logt
0 \/(—t+t2+1+t33)2 — A2

Now, our hypothesized recurrence, when written for J,,,

dt.

is
2 2 2 _
m? Jpm—1— (3+10m? 4+ 10m) Jp, + 9 (m + 1)” Jyypq = 0.
(5-3)
Thus it suffices to show that J = v satisfies the ODE

(z —3)v+ (32® — 20z +9) v/ + (2 — 102® + 9z) v"'= 3.

(5-4)

This is indeed the case. Maple easily confirms that the
value of the left-hand side of (5-4) is 3. 0
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Proof (second method): Alternatively we observe that
(3-8) can be written as C3 2m+1 = Amdm, where a (0) =

2
3 and

(=2m —2)a(m) +
while J,,, satisfies (5-3), or via the proven recurrence,
(n+1)*u(n)
—3(n+2)(n+1u

2m+3)a(m+1)=0,

+(n+1)(2n+3)u(n+1)
(n+2)=-1,

for I. The INRIA-designed Maple package gfun pro-
vides an algorithm that will then produce a recurrence
for C'3 2,41 that simplifies to the vanishing of

4(m —1)° Jneo —2(2m — 1) (3 + 10m? — 10m) Jp—1

+90@2m+1)(2m —1)md,,

which Maple easily confirms to be as claimed. This
proof also can be obtained in Mathematica using Carsten
Schneider’s Sigma package available from Risc-Linz,
[Schneider 06]. Both programs can certify the result, for
example in Mathematica using CreativeTelescoping.

O

The coefficients J,,, are interesting in their own right.
In fact,
Jm - QmL73(2) —Pm —m 07

where for m > 1,

m—1
1 ., Lk —k
m=35" ;19 (2 1,2

The first six values of p,, and ¢,, respectively are

1 23 145 1331
37108 972’ 11664

242353 5495507
2624400 70858800’

<p07 e ap5)

and

13 3171 517 11723

195) = 313" 162" 186 4374’ 118098

(q07--~

5.2 Analytic Method

Presumably there are direct methods, analogous to those
used for Theorem 5.2, that would establish the experi-
mentally motivated recurrence for the C4 oqq. However,
it turns out that an analytic approach handles both Cs
and Cly j, recurrences and moreover, does this for general
complex k. Incidentally, by “general complex k” here
and elsewhere, either we mean that C,, ;, is defined as its
original integral (1-1) and all k£ € K are being considered,

or we are contemplating the analytic continuation C, 4



270  Experimental Mathematics, Vol. 16(2007), No. 3

over the entire complex k-plane (and at poles recurrences
still make divergent sense).

The following method of proof, relying on a contour-
integral application of the Zeilberger algorithm [Wilf and
Zeilberger 92, Bedirovié et al. 06, Zudilin 04], was sug-
gested to us by W. Zudilin [Zudilin 06].

Theorem 5.4. The recurrence in Theorem 5.2 for Cs oda k

extends to complex k; moreover, there is a recurrence of
the same order (M = 2) for the Cy . Explicitly, both of
the recurrences

(k+1)2Cs 6 —2(k+2) (5(k +2)> + 1) Cs 1o
+9(k+2)(k+3)(k+4)Cs 444 =0

and

(k+1)*Cur — 4(k +2)%(5(k +2)* + 3)Cyp 12
+ 64(k +2)(k +3)*(k +4)Cypya =0

hold for general complex k.

Proof: (i) We focus on the n = 4 case—the n = 3 case
follows the same logic—using a representation based on
the Meijer form (2-6) and its associated contour integral.
Contemplating ¢ as a complex variable, we have

2 —1/241400
m COSTS
Ciot—1=— / Fy(t,s) ds,

2410 J 1200 sin® s

with the definition

[ (s+3)D(s+1)?
F@HOC(s+1)30 (5 +s+1t)

F‘zjl(lf7 S) =

If one then employs the Zeilberger algorithm,” one finds
that the definition

1
(t—1)(2s+2t — 1)

x (12¢% 4 16t — 2 + 265t — 26t> — 37ts
+ 11s + 185t + 4s® — 125%) Fy(t, s)

Gy(t,s) :=s*

leads to

16t%(2t + 1) (2t — 1) Fy(t + 1, 5)
— (2t — 1)%(5t% — 5t + 2)Fy(t, s)
+(t—1)*Fy(t—1,s)
= Gy(t,s+1) — Gu(t, s).

7Say, by calling in Maple zeil (F4(t-1,s),s,t,N,2).

Inserting this F,G relation into the contour integral
yields

16t2(2t + 1)(2t — 1)04,2t+1
— (2t — 1)2(5t% — 5t + 2)Cy9¢ 1

+(t—1)*Cya—3
2

T COSTS
= - | G4(t,s)——ds,
24mi /C al )sin3 T8
where now the contour C is an infinitely tall, thin rect-

angle running vertically through —% + 07 and % =+ 0:.
However, this rectangular integral is zero, since the

(5-5)

only singularity is at s = 0, and as we saw in our previ-
ous Meijer analysis for Cyj, the residue contribution is
proportional to 9?Gy(t, s)/0s?|s—o, which is zero. Thus,
the recurrence (5-5) holds in an analytic sense, and upon
t — (k + 3)/2 becomes the order-2 recurrence desired.
(ii) For n = 3, the same procedure goes through; we
first hark back to Meijer representation (2-5), then define

I'(s+1/2)[(s+1)2
r2or(s+1)3 °

Fs(t,s) :=

then run the Zeilberger algorithm to achieve

GS(t7 5)
g 1263 — 17t% + 14st? — 10st + 6t + 4s%t — s> +2s — 1
N 2t(t — 1)
X Fg(t, 8)
and

(4t + 1)(2t + 1)(2t — 1) (4t — 1) F5(t + 1, 5)
—t(2t — 1)(10£* — 10t + 3) F5(t, s) + t(t — 1)° F3(t — 1, )
= Gs(t,s+ 1) — Gs(t, s).

Then, as with the n = 4 case above, we observe the
vanishing of the relevant contour integral and arrive at
the correct recurrence involving C3 ¢ 1. O

6. CONTINUED FRACTIONS

It will have occurred to many readers that the order-
M = 2 recurrences, namely for the Csj and Clyy,
should give rise to continued fractions, since such frac-
tions are also governed by order-2 recurrences. The clas-
sical Pincherle theorem [Lorentzen and Waadeland 92,
Theorem 7, p. 202], [Bowman and McLaughlin, 02] runs
thus:



Theorem 6.1. (Pincherle.) Let (ay: N € Z1),(by : N €
Z1),(Gy : N = —1,0,1,2,...) be sequences of complex
numbers related for all N € Z™ by

Gy =byvGn-1 +anGn-2,

with each ay # 0. Denote by Pn/Qn the convergents to
the continued fraction

o— al
T bl + b;f--- -
Iflimy GN/Qn = 0, then the fraction converges and has
the value
T = o

Pincherle’s theorem may be applied to recurrences of
the form in Conjecture 4.1 when n = 3 or 4, as established
in Theorem 5.4. For these n we have order-2 recurrences:

Pn,O(k)Cn,k + Pn,l(k)cn,k+2 + Pn,2(k)cn,k’+4 =0.

If we identify G := C;, a2, Pincherle’s theorem ap-

plies with
P,1(2N —2)
by = ————=
P,2(2N —2)
and
P, o(2N —2)
aN 1= =
P,2(2N —2)

and we obtain a continued fraction with value x =
—Cy2/Cp . Similarly, setting Gy := Cp, 2n+3 and suit-
ably modifying the definitions of an, by gives us a frac-
tion with value —C,, 3/Ch, 1.

These machinations result in at least four attrac-
tive continued fractions having integer elements. Even
though we do not know a single individual value of
C3.cven, We nevertheless have a fraction for the ratio
C3.2/Cs 0; specifically,

9.14
1892 _ - :
Cs,0 d(1) — 9-3
9. (2N —1)4
d(N) — -

where d(N) := 40N? + 2. The very form of the fraction
elements suggests that this ratio could well be a rational
multiple of some brand of L-function, but we have not
extensively searched for such.

For the L-function that appears in C3 ,qq evaluations,
we obtain

2 4 9.1%
-3 —
R (VR
) =
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with f(N) := 10N% + 10N + 3, and so f(0) = 3.
Along the same lines one derives a fraction

16
16242 — - :
0470 3
e(l) - (2N — 1)°
e(N) -

where e(N) := N(20N?2 + 3).
Finally, for the Cy oqq we arrive at a fraction for ¢(3):

12 16 - 16
7¢(3) - 16 - 26 ’
g 16 N©
g(N)_...

where g(N) := (2N +1)(5N? + 5N +2), and so g(0) = 2.
This fraction is structurally reminiscent of the Apéry con-
tinued fraction for ¢(3). (See [Borwein et al. 00] and the
references therein.) However, the arguments presented in
[Zudilin 03a]—where are derived Catalan-constant and
¢(4) fractions structurally similar to our L and ¢(3) frac-
tions above—suggest that irrationality proofs using such
fractions are rare. Typically, certain number-theoretic
properties of a recurrence must be satisfied for an irra-
tionality proof to be achievable.

Indeed, there are many literature connections in-
volving recurrences, continued fractions, and irrational-
ity [Apéry 79, McLaughlin and Wyshinski 04, Zudilin
02a, Prévost 96, van der Poorten 78, Zudilin 02b, Zudilin
04]. Our recurrence for Cy  in Theorem 5.4 (essentially
a recurrence relevant to (3)) can be found in the liter-
ature [Almkvist and Zudilin 04, p. 23], and another one
for the Cf , and so relevant to L_3(2), can be found also
[Zudilin 03b]. We note that irrationality proofs of Apéry
type do not appear to arise from the recurrences of the
present paper. To our knowledge the number L_5(2) has
never been proven irrational.

7. FURTHER ANALYTIC PROPERTIES OF THE C,, .

We have investigated interindicial relations of k-variant
form, i.e., recurrence relations, but now we turn to rela-
tions in which the first index, n, varies.

7.1

Based on another idea of W. Zudilin [Zudilin 06], we
sought relations on the first index, namely the n of C;, 4.

Analytic Convolution

One result is an analytic convolution theorem, where we
recall the definition of the half-plane I from Section 1,
and the renormalization ¢, j = I'(k 4+ 1)27"nlC), j:
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Theorem 7.1. For complex k € K, positive integer n, and
integer g € [1,n — 1] we have

1

Cn.k =

Cn—q,k+sCq,—1—s dS,
2w Je

where the contour C runs vertically over (A —ico, A+ 1i00)

with R(\) € (~1,0).

Remark 7.2. There are at least two remarkable features
of this result. First, this is a kind of recurrence on the
first index of the ¢, in contrast to the k-recurrences;
and second, the convolution surprisingly takes the same
form for any (legal) indicial offset g.

Proof: Write our original definition (1-1) in the form

Cog = %/dwlmdxn(A—kB)_k_l

1 o B\ k1
:a/dxl---dan <1+A> ,

where A is the sum of the first (n — ¢) cosh terms, and
B is the sum of the remaining ¢ cosh terms. We then
invoke the hypergeometric form of the binomial theorem,
namely

B\ F1
(1 n A)

We can then contemplate integration of A terms over

dxy---dx,—g, and B terms over dx,_q41 - --dxy,, to ob-
tain
1 1 1
Cn k

PO Tk + 1) 2m
X / F(k+14 s)I'(—5)Cpnqk+sCq,—1-sds.
C

But on renormalization to the little-c forms, this is the
statement of the theorem. O

We have not explored all of the implications of this
theorem. However, we can use it to extend the reach, if
you will, of Meijer-G analysis. Though we encountered
in Section 2 a certain blockade at n = 5—mamely, we
“ran out” of Meijer representations—we can nevertheless
cast Cy, i, as an order-|(n —1)/2| nested-Barnes integral.
Evidently, then, the Meijer representations (2-5), (2-6)
can be considered in the larger scheme of things as the

nested-Barnes cases for n = 3,4.

The first nontrivial case of this “Meijer—Barnes exten-
sion” uses Theorem 7.1 with n = 5,¢ = 2 to yield

Cs.k = 7/ €2 k45C3,—1—sd5

= 47r2/ / Cokt5C2,—1—-s+1C2,—1-tds,  (T-1)
Cy

using the contours

Cs := (N —ioco, A+ ic0) and C;:= (p—ioco,p+ ico),

where conditions simultaneously sufficient for these con-
tours are

RE)+A>-1, —1+AX+pe(-1,0),
-1+ p€e(-1,0).

Using the explicit resolutions (3-1), (3-2) we arrive at
the following twofold nested-Barnes integral (we also here
have transformed (s,t) — (2s,2t) for notational conve-
nience, and intentionally reverted back to “big-C” nota-
tion):

Cr1 = — ds dt
S,k 2407'(' /ZC LC y
T3(

3(s+ (1+k)/2)T3(t — s)
D(s+14+k/2)T(t—s+1/2)

(7-2)

472 (—t).

It is of interest that another two-dimensional integral—
but evidently of markedly different character—was deriv-
able for C5 := C5 1 in the separate treatment [Bailey et
al. 06].

7.2 Measure-Theoretic Representation

Again starting from the original definition (1-1) we de-
note the sum of cosh terms by U, and develop a measure-
theoretic form,

1 [ dU 0
Onyk:m\/,,; Uk+lal]\/2(:osh:1:k<del.‘.

or, on integration by parts,

k+1 V()
07 2n+2 /
vk = o (2r2 4 n)k+2

dzy,

dr,

where the volume V,, is that of a “hyperellipsoid” of “ra
dius” r:

Vn(r) = / dyldyn
Zsinh2 yr <r?

A test case is n = 1, for which V;(r) = 2arcsinhr, and
this measure-theoretic form agrees with (3-1).



This approach has not been taken further; however,
note that we always have a one-dimensional integral for
any n, an advantage shared by the Bessel-kernel represen-
tations. In the measure-theoretic case here, though, all
involved functions are elementary. It is also interesting
that if we had omniscience in regard to the properties of
the hyperellipsoid, we would settle many questions about
the Cn,k~

7.3 An n-Variant Recurrence and the Elusive Cjy

Presumably the convolution Theorem 7.1 could be in-
voked, the resulting residue calculus giving us relations
between the ¢, ; and entities ¢, ; with p < n. However,
there is a much more direct way to establish an n-variant
recurrence (i.e., now we have the first index n changing
on ¢y, ;). The Bessel-kernel representation (2-1) together
with the insertion of one copy of Ky in the form of an
ascending series

t2k

Z AR 12 {Hy —

k>0

K§&9(t) = —log(t/2)},

see [Abramowitz and Stegun 70, Bailey et al. 06], imme-
diately yields an n-variant recurrence (recall that c,, j :=
I(k+1)27"nlC,, 1)

1 1
Cnk = Z 47’”@

m>0

X {(anl) — v +1og2)en—1ktom — 0271,k+2m} )

(7-3)

where the derivative is with respect to the second index,
ie, ¢,
Ising integral C5 := C51 = ¢5,1/450, we actually know
all of the c42m+1 in principle, from Theorem 3.2 and

= 0cp,q/0q. Interestingly, for the problematic

the resulting algorithm. Unfortunately, we still do not
have a convenient representation for c} 5, ;, but at least
we have derived a computational series involving, say,
numerical differentiation, for C'.

7.4 Bessel-Moment Relation

Using an integration by parts, namely

1 > k n
T /0 D ()t

_ # /OO tk+2 (Kn(t))// dt

L(k+3) Jo 0
in the original definition (1-1), we can iterate in view
of the recurrence Conjecture 4.1 to write an equiva-
lent conjecture as a Bessel-moment phenomenon, with
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M := |(n+1)/2] as in the conjecture

O;/ tk+2M<pM(kz)K6L+PM—1(1€)(K6L)’/+
0

+ Po(k)(Kg)<2M>) dt.

It is remarkable that polynomials Py, ..., Py exist such
that this moment integral appears to vanish for general
complex k € K (of course, the equivalent recurrence rela-
tions are likewise remarkable). Note that the suspected
vanishing of the above moment integral has been proven
for n = 1,2, 3,4 and appropriate respective polynomials.

We have not taken this moment relation any fur-
ther than to make the following observation. Using the

asymptotic series [Abramowitz and Stegun 70]

\/7 B Z m'3 32t A : (7-4)

one may ask how the Bessel-moment integral abo