
Fast Searching for Andrews–Curtis Trivializations
R. Sean Bowman and Stephen B. McCaul

CONTENTS

1. Introduction
2. Breadth-First Search
3. Experiments and Discussion
4. Conclusion
Acknowledgments
References

2000 AMS Subject Classification: 20-04, 20F05

Keywords: Andrews–Curtis conjecture, computer search

A high-performance computer program for searching a tree of
words in the group generated by Andrews–Curtis transforma-
tions is presented. The program enumerates words in this group
using a disk-based hash table to store words already seen. We
discuss several issues that affect the performance of the program
and examine the growth of the size of the Cayley graph being
searched.

1. INTRODUCTION

The Andrews–Curtis conjecture states that every bal-
anced presentation of the trivial group can be trans-
formed to the presentation 〈x1, . . . , xn |x1, . . . , xn〉 by a
sequence of certain moves. We present a program that
searches for sequences of these moves and applies them to
some presentations that are particularly tough to reduce.
Our program makes effective use of disk-based memory
in order to scale to larger searches and relies on a con-
cept of “canonical form” in order to reduce the size of
the search space.

Let P = 〈x1, . . . , xi | r1, . . . , rj〉 be a group presenta-
tion. We say that P is balanced if i = j. The trivial
presentation of the trivial group is the balanced presen-
tation 〈x1, . . . , xn |x1, . . . , xn〉.

The group of Andrews–Curtis transformations on bal-
anced presentations with n generators, ACn, is the group
generated by the following transformations:

1. replace ri with rirj for some j �= i,

2. replace ri with r−1
i , and

3. replace ri with grig−1, where g is a generator or its
inverse.

There are n2 − n moves of the first kind, n of the second
kind, and 2n2 of the third kind. The group ACn acts
on the set of balanced presentations with n generators
in the obvious way. Two balanced presentations on n

generators P1 and P2 are AC-equivalent if there is an
element σ ∈ ACn such that σP1 = P2. Andrews and

c© A K Peters, Ltd.
1058-6458/2006 $ 0.50 per page

Experimental Mathematics 15:2, page 193

194 Experimental Mathematics, Vol. 15 (2006), No. 2

Curtis [Andrews and Curtis 65] conjectured that every
balanced presentation of the trivial group on n generators
is AC-equivalent to the trivial presentation. Another way
of saying this is that the orbit of the trivial presentation
of the trivial group under ACn includes every balanced
presentation of the trivial group with n generators.

In this paper, we present software for finding
Andrews–Curtis trivializations of balanced presenta-
tions of the trivial group. The software is available
at http://www.math.utexas.edu/users/sbowman/ac-bfs
.tar.gz and is licensed under the GNU GPL.

Using breadth-first search to search for Andrews–
Curtis trivializations is a technique first investigated by
Havas and Ramsay [Havas and Ramsay 03]. They were
able to verify that the Akbulut–Kirby presentation of the
trivial group for n = 2 is AC trivial. Miasnikov [Mias-
nikov 99] used a genetic programming approach to elim-
inate potential counterexamples to the Andrews–Curtis
conjecture.

Casson [Casson 03] described a set of programs to ex-
amine equivalence classes of group presentations modulo
Andrews–Curtis transformations. We adapted his ideas
on using a “canonical form” for presentations in order to
make it easier to determine which have been seen before.

2. BREADTH-FIRST SEARCH

One way to show that a balanced presentation on n gen-
erators P is AC-equivalent to the trivial presentation is
to enumerate words in ACn, apply them to P , and see
whether the result contains the trivial presentation. In
order to enumerate words of ACn, we use a breadth-first
search. Breadth-first search is a technique for searching
a graph for some distinguished vertex. In this case, the
graph is a tree with the identity transformation at its root
and all words of lengthm at themth level. Since some se-
quences of transformations yield the identity transforma-
tion (for example, inverting r1 twice), the tree contains
redundant words.

Two presentations may differ by a cyclic permutation
of one or more relators. In order to know when two pre-
sentations are the same, equivalence classes of presenta-
tions under cyclic permutation of relators are represented
by a presentation in canonical form. Generators are or-
dered and assigned a numerical value. A relator can then
be represented as a tuple of numbers. For example, if
a = 1 and b = 2, the word abab−1a−1b−1 is represented
by the tuple (1, 2, 1,−2,−1,−2). We examine the rela-
tor’s cyclic permutations and select the lexicographically
largest one as the canonical representative. To get the

canonical presentation, we sort the relators lexicographi-
cally, padding with zeros when the tuples are of different
sizes. For example, the canonical representative of

〈a, b | abab−1a−1b−1, a2b−3〉

is
〈a, b | a2b−3, bab−1a−1b−1a〉.

The algorithm begins by inserting the presentation to
be checked for reducibility into a queue. This presenta-
tion, which represents the identity transformation, is the
root of the tree that will be constructed. The algorithm
loops by taking a presentation off the queue, applying
each of the 3n2 generators of ACn to it, and putting the
presentations that haven’t been seen before back on the
queue. To tell which presentations have been seen before,
we use a hash table.

Our hash table uses a multiplicative hash scheme
[Knuth 73] based on canonicalized presentations. This
hash scheme produces a number based on the tuple rep-
resentation of a group presentation P as discussed above.
The hash value is used to index an array of indices to lists
of presentations on disk. There is one list for every hash
value so that all presentations with identical hash val-
ues can be quickly compared with P . If no presentation
matches P then P is not in the hash table, and P can
be added to the hash table by appending it to the list of
other presentations with the same hash value.

In order to search large trees, the hash table is kept on
disk. Since disk IO is much slower than memory, some
performance aspects of the hash table merit attention.
The index of presentation lists is in memory and can
determine without any disk access whether P is not a
member when no presentation with the same hash value
of P has been added to the hash table. When a pre-
sentation is added it is cached in RAM and written to
disk in large groups to reduce the number of separate
disk accesses. This cache also functions as a read cache
when a presentation list has a member that has not yet
been written to disk. When a search starts running, the
majority of membership tests take no disk access, since
most presentation lists are empty. During this phase the
main use of time is in computing the hash values. As the
search progresses more time is spent reading in presen-
tation lists from disk. This is the dominant time use for
the majority of a large search.

The algorithm emits a proof when it has reduced all
but one relator to a single letter. This means that our
algorithm doesn’t actually find a word σ ∈ ACn such
that σP is the trivial presentation. A word that reduces

Bowman and McCaul: Fast Searching for Andrews–Curtis Trivializations 195

all but one relator to one letter can be easily extended
to a word that does trivialize P by repeated conjugation
and multiplication by the single-letter relators. This op-
timization greatly reduces the size of the search space
(especially for the case n = 2). Note that this optimiza-
tion also makes the forward search for the word in ACn

that trivializes a presentation much more practical than
the backward search for the inverse of this word.

3. EXPERIMENTS AND DISCUSSION

The presentation 〈a, b | abab−1a−1b−1, anb−(n+1)〉 for n ∈
N is a balanced presentation of the trivial group due
to Akbulut and Kirby. This presentation for n = 3 is
the smallest potential counterexample to the Andrews–
Curtis conjecture [Havas and Ramsay 03]. We ran a series
of experiments in which we searched for trivializations of
the Akbulut–Kirby presentations for n = 2, 3, 4, and 5,
varying the maximum relator length. We searched the
tree for n = 2 from maximum relator length 10 to 25,
the n = 3 tree from 10 to 17, n = 4 from 10 to 16, and
n = 5 from 11 to 18. In each case the program was to
stop if a trivialization was found, but trivializations were
found only for the n = 2 case.

The computer used for exploring the Akbulut–Kirby
presentations is an IBM z800 mainframe with a Sharc
disk array. The IBM mainframe is a class of computers
well known for its high-performance disk. This is due to
the use of dedicated processors for performing disk op-
erations, high-speed communications between CPU and
disk, and the extensive use of cache. The Sharc array
used during our research had 8 GB of cache and the op-
erating system had access to 1 GB of system RAM. The
software was run under Linux for z/Series.

Even when duplicate presentations are eliminated, the
number of presentations in the tree of AC moves gener-
ated by breadth-first search grows exponentially at first,
as shown in Figure 1. As the search continues, many of
the presentations are found in the hash table, and so the
number of presentations eventually reaches a plateau.

With two relators constrained to a length of fewer than
17 generators, a typical modern computer with 1 GB of
RAM can hold a hash table with about 32 million entries.
To compute the Akbulut–Kirby tree for n = 3 with rela-
tors constrained to a length of fewer than 17 generators,
85 million presentations must be searched (see Figure 2).
The large size of the tree necessitates the use of disk-
based storage.

The n = 3 run with maximum relator length 17 was
the longest run, taking 93 hours. Approximately 41 GB

1

100

104

106

108

0 10 20 30 40 50

number of presentations by depth

number of presentations

FIGURE 1. Number of presentations by depth for AK n = 3
with relator length less than 18.

00

2.5 · 1072.5 · 107

5 · 1075 · 107

7.5 · 1077.5 · 107

1 · 1081 · 108

00 2.5 · 1072.5 · 107 5 · 1075 · 107 7.5 · 1077.5 · 107 1 · 1081 · 108

presentations removed from queuepresentations removed from queue

duplicate presentations foundduplicate presentations found
presentations in hashtablepresentations in hashtable

FIGURE 2. Queue statistics for AK n = 3, maximum relator
length 17.

of disk space was used. Figure 3 shows that the search
space grows exponentially with increasing maximum re-
lator length.

100100

103103

106106

109109

7.57.5 1010 12.512.5 1515 17.517.5 2020

nodesnodes

FIGURE 3. Number of presentations for AK n = 3 by relator
lengths.

Although we couldn’t crack the Akbulut–Kirby pre-
sentation, our software is able to find relatively lengthy
trivializations of a sequence of presentations due to Gor-
don; see [Brown 84]. These presentations have the form
〈a, b | a = [am, bn], b = [ap, bq]〉 for m,n, p, q ∈ N.

196 Experimental Mathematics, Vol. 15 (2006), No. 2

Our software showed that all ten presentations
in this sequence whose total relator length is 14
are AC-trivializable, and most of these have rel-
atively short proofs. However, the presentation
〈a, b | aba−2b−1, ab3a−1b−4〉 shows the advantages of disk-
based storage. Its trivialization consists of 20 moves and
was found using the heuristic of expanding the presenta-
tion with smallest total relator length after 6 moves.

Beginning with the presentation

〈a, b | aba−2b−1, ab3a−1b−4〉

we obtain

〈a, b | ba2b−1a−1, ab3a−1b−4〉 (invert r0)

〈a, b | b2a2b−1a−1b−1, ab3a−1b−4〉 (conjugate r0 by b)

〈a, b | ba2b−1a−1, ab3a−1b−2a2b−1a−1b−1〉
(multiply r1 = r1r0)

〈a, b | ba2b−1a−1, b2a−1b−2a2b−1a〉 (multiply r1 = r1r0)

〈a, b | ba2b−1a−1, ab2a−1b−2a2b−1〉 (conjugate r1 by a)

〈a, b | ba2b−1a−1, ba−1b−2a4〉 (multiply r1 = r1r0)

〈a, b | ba2b−1a−1, aba−1b−2a3〉 (conjugate r1 by a)

〈a, b | ba2b−1a−1, b−2a3ba〉 (multiply r1 = r1r0)

〈a, b | ba2b−1a−1, a3bab−2〉 (conjugate r1 by b2)

〈a, b | ba2b−1a−1, a2bab−1a2b−1〉 (multiply r1 = r1r0)

〈a, b | ba2b−1a−1, abab−1a4b−1〉 (multiply r1 = r1r0)

〈a, b | ba2b−1a−1, ab−1a6〉 (multiply r1 = r1r0)

〈a, b | ba2b−1a−1, a7b−1〉 (conjugate r1 by ba−1)

〈a, b | a2b−1a6, a7b−1〉 (multiply r0 = r0r1)

〈a, b | a−6ba−2, a7b−1〉 (invert r0)

〈a, b | a−6ba−2, ab−1a6〉 (conjugate r1 by ab−1)

〈a, b | a−6ba−2, a−1〉 (multiply r1 = r1r0)

The importance of maximum depth and maximum re-
lator length to computer optimization should be obvious.
However, these factors play a crucial role in the viability
of the conjecture itself, as embodied in Lemma 3.3 below.

Definition 3.1. Let P consist of all balanced presenta-
tions of the trivial group on n generators. Let

c(P) = max
i

{|ri| : ri is a relator of P}

denote the complexity of a balanced presentation on n

generators P . Define Pi = {P ∈ P : c(P) ≤ i}, the set of
balanced presentations on n generators with complexity

at most i. Let δ, γ : N → N be defined by

δ(m) = max{|σ| : P ∈ Pm, σ ∈ ACn,

σ is the shortest word trivializing P}

and

γ(m) = max{|ri| : P ∈ Pm, t = τ1τ2 . . . τj ∈ ACn,

t is the shortest word trivializing P and

ri is a relator of one of

P, τjP, τj−1τjP, . . . , tP .}

Given a presentation P ∈ P, δ(c(P)) is an upper
bound on the length of a sequence of Andrews–Curtis
moves needed to trivialize P if it is trivializable. Cor-
respondingly, γ(c(P)) is the maximum amount by which
any relator grows when such a P is trivialized. If P is
not AC-trivializable, we can discover this by noting that
no word σ ∈ ACn where |σ| ≤ δ(c(P)) trivializes P . In
other words, δ represents searching the tree of AC moves
to a certain depth, and γ represents searching this tree
subject to the constraint that all searched nodes have a
certain maximum complexity.

Definition 3.2. The Andrews–Curtis decision problem
asks whether there is an AC-trivialization of a given pre-
sentation P ∈ P.

Note that the Andrews–Curtis conjecture implies that
this decision problem is decidable, and the answer is al-
ways yes.

Lemma 3.3. If either δ or γ is computable, then the
Andrews–Curtis decision problem is decidable.

Proof: Given P ∈ P, there is a finite number of pre-
sentations with complexity at most δ(c(P)) or γ(c(P))
reachable from P by Andrews–Curtis moves. If any of
these presentations is the trivial presentation, then P is
AC-trivializable. Otherwise, it is not.

4. CONCLUSION

We have presented a program that enumerates words in
ACn. The program makes effective use of disk-based stor-
age to ensure scalability, but the longer access times for
disk-based storage mean that performance must receive
careful consideration. In order to reduce the size of the
search space (and thus increase performance), a notion

Bowman and McCaul: Fast Searching for Andrews–Curtis Trivializations 197

of “canonical presentation” was introduced. This con-
cept simplifies the hash table used to keep track of which
presentations have been visited.

We applied the program to the search for AC triv-
ializations of the smallest potential counterexample of
the AC conjecture, the Akbulut–Kirby presentation for
n = 3. We showed that some presentations in a sequence
due to Gordon are AC-trivializable and demonstrated
that disk-based storage is useful for finding long trivi-
alizations that would not fit in the memory of a typical
computer. Finally, we discussed some connections be-
tween computability and the Andrews–Curtis conjecture.

ACKNOWLEDGMENTS

Time on the mainframe was graciously donated by Rocket
Software, Inc. Thanks to Yo’av Rieck and Chaim Goodman-
Strauss for many valuable discussions on this topic.

REFERENCES

[Andrews and Curtis 65] J. Andrews and M. Curtis. “Free
Groups and Handlebodies.” Proceedings of the American
Mathematical Society 16 (1965).

[Brown 84] R. Brown. “Coproducts of Crossed P -Modules:
Applications to Second Homotopy Groups and to the Ho-
mology of Groups.” Topology 23:3 (1984), 337–345.

[Casson 03] A. Casson. “The Poincaré Conjecture and the
Andrews–Curtis Conjecture.” Lectures given at the Spring
Lecture Series, University of Arkansas, 2003.

[Havas and Ramsay 03] G. Havas and C. Ramsay. “Breadth-
First Search and the Andrews–Curtis Conjecture.” Inter-
national Journal of Algebra and Computation 13:1 (2003).

[Knuth 73] D. E. Knuth. The Art of Computer Programming.
Vol. 3: Sorting and Searching. Reading, MA: Addison-
Wesley, 1973.

[Miasnikov 99] A. D. Miasnikov. “Genetic Algorithms and
the Andrews–Curtis Conjecture.” Internat. J. Algebra
Comput. 9:6 (1999), 671–686.

R. Sean Bowman, Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701
(sean@rootnode.com)

Stephen B. McCaul, Rocket Software, Inc., Bentonville, AR 72712 (stephen@gizmoworks.com)

Received November 7, 2005; accepted December 5, 2005.

