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This article furthers the study of nonlinear elliptic partial differ-
ence equations (PdE) on graphs. We seek solutions u : V → R to
the semilinear elliptic partial difference equation −Lu+ f(u) =

0 on a graph G = (V,E), where L is the (negative) Laplacian
on the graph G. We extend techniques used to prove existence
theorems and derive numerical algorithms for the partial differ-
ential equation (PDE) ∆u+f(u) = 0. In particular, we prove the
existence of sign-changing solutions and solutions with symme-
try in the superlinear case. Developing variants of the mountain
pass, modified mountain pass, and gradient Newton–Galerkin
algorithms for our discrete nonlinear problem, we compute and
describe many solutions. Letting f = f(λ, u), we construct bi-
furcation diagrams and relate the results to the developed theory.

1. INTRODUCTION

This paper considers nonlinear partial difference equa-
tions (PdE) on graphs. In particular, we prove existence,
nodal structure, and symmetry theorems and develop
new algorithms for semilinear elliptic PdE. Our efforts
parallel recent advances in the study of related partial
differential equations (PDE). The survey article [Neu-
berger 97a] summarizes many of the most relevant PDE
results and provides a list of open problems in that area.
PdE are generated whenever PDE are discretized via a
grid, which is reason enough to be interested in their so-
lution, but not all PdE arise from PDE. One expects the
study of PdE to be as rich, varied, and deep as the study
of graph theory, symmetry, and PDE, and the analysis
and algorithms used to investigate those fields.

Let G = (V,E) be a simple connected graph, with
m = |V | and n = |E| finite. For our numerical exper-
iments, we typically take f : R → R to be defined by
f(s) = s3 + λs, where λ is a real parameter. Our the-
orems are generalized to the much wider class of super-
linear nonlinearities considered in [Ambrosetti and Rabi-
nowitz 73] and [Castro et al. 97a]; in particular, f need
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not be odd. For this example, the primitive F : R → R is
F (s) =

∫ s

0
f(t) dt = 1

4s
4 + 1

2λs
2. Arbitrarily, we make a

choice of orientation for G in order to define D ∈Mn×m

so that for an edge ek = (vi, vj) ∈ E we have Dki = −1,
Dkj = +1, and Dkp = 0 for p �∈ {i, j}. Then indepen-
dently of any choice of orientation, we define the (neg-
ative) Laplacian L : R

m → R
m to be the linear map

represented by the matrix L = DTD ∈ Mm×m. Num-
bering our vertices V = {v1, . . . , vm} and taking di to be
the degree of the ith vertex, we see that Lii = di and
Lij = −1 if (vi, vj) ∈ E or (vj , vi) ∈ E, and Lik = 0 oth-
erwise. Identifying R

m with the set of real-valued func-
tions with domain V , we use the terms “function” and
“vector” interchangeably and seek u ∈ R

m satisfying

−Lu+ f(u) = 0. (1–1)

Our study of the finite-dimensional semilinear elliptic
PdE (1–1) closely follows the related works concerning
the PDE

∆u+ f(u) = 0 in Ω, (1–2)
∂u

∂η
= 0 in ∂Ω,

as well as the similar zero-Dirichlet problem.
The linear operator L has been the object of intense

study and much is known about its spectrum. One of
the first articles on the subject and an excellent intro-
duction is [Bapat 96]. Additional references are [Chung
97], where an alternative definition of the Laplacian on
graphs results in a bounded spectrum, and [Biggs 93],
whose definition coincides with ours. Most of the PdE
literature concerns linear problems and/or positive solu-
tions, e.g., works by S. S. Cheng, S. T. Liu, C. V. Pao,
and G. Zhang (see [Cheng 00, Cheng 99, Cheng and Lin
99, Cheng and Liu 97, Cheng and Pao 02, Liu and Chen
04, Liu et al. 00, Pao 95, Zhang and Cheng 02], and
references therein). The papers [Zhang and Cheng 06]
and [Zhang 05] consider very similar problems to ours,
wherein analytic existence results are provided for one-
sign and sign-changing solutions to certain nonlinear el-
liptic PdE for graphs corresponding to regular grids. In
general (but not always), nontrivial solutions of (1–1) are
saddle points of (1–4), whereby neither minimization nor
maximization suffices. As in PDE, the method of super-
sub solutions seems best suited for obtaining positive so-
lutions. There are some monotone iteration schemes that
can be used for approximating sign-changing solutions,
but their application to nonlinear elliptic PdE appears
to be unconsidered at this point. We seek sign-changing

solutions (and information about the symmetry of these
solutions) for nonlinear problems. The closest works ap-
pear to consider PdE that arise from the regular dis-
cretization process required in approximating solutions
to PDE via finite differences. See also [Ambrosetti and
Rabinowitz 04], [Marchuk 82], and [Strikwerda 89] for
more on finite difference schemes for PDE that generate
PdE. In particular, [Marchuk 82] discusses variational-
difference techniques. Many of the cited PdE papers
consider linear difference operators that are not quite the
Laplacian on a graph. Our results could easily apply to
nonlinear problems using instead those operators, by first
finding a basis of the correspondingly different eigenfunc-
tions using, say, ARPACK (see [Lehoucq et al. 90] and
Section 3 of this paper). Many other interesting papers
consider related PDE, PdE, and even ODE on graphs; for
example, [Pokorny̆ı and Pryadiev 04] presents a system of
conventional ODE on a network, treating the equations
at the vertices in a novel way. The article [Kevrekidis et
al. 02] contains an example related to the time-dependent
PdE found in our concluding section. None of the cited
references appear to consider symmetry of nonlinear PdE
solutions in conjunction with their nodal structure, and
very few of the references use methods inspired by estab-
lished PDE variational techniques. A thorough review of
the literature together with the new ideas of this paper
will undoubtedly lead to many additional noteworthy re-
sults. In particular, alternative boundary conditions and
weighted Laplacians should be a fruitful area for future
research.

It is well known that there is a natural zero-Neumann
boundary condition enforced on solutions to the eigen-
value problem

−Lu+ λu = 0. (1–3)

This condition also applies to (1–1). The eigenvalues
{λi}i=1,...,m satisfy λ1 = 0 < λ2 ≤ · · · ≤ λm; we take
{ψi}i=1,...,m to be the corresponding eigenvectors, chosen
to be orthonormal with respect to the standard Euclidean
norm ‖u‖ =

√
u · u in R

m. The constant eigenvector with
eigenvalue 0 can be taken to be ψ1 = ( 1√

m
, . . . , 1√

m
).

In [Castro et al. 97a], a variant of the mountain pass
lemma (MPL) is used to duplicate the one-sign existence
results of [Ambrosetti and Rabinowitz 73], and then ex-
tended to prove the existence of a sign-changing exactly-
once solution. We apply those ideas to our elliptic dif-
ference equation. In special cases, we can prove the exis-
tence of solutions via more elementary techniques. In
[Neuberger 97b], we developed an algorithm for find-
ing certain low-energy solutions of equations such as



Neuberger: Nonlinear Elliptic Partial Difference Equations on Graphs 93

(1–2) using the constructive proofs found in [Castro et
al. 97a]. The one-sign algorithm (essentially the moun-
tain pass algorithm, MPA, see also [Choi and McKenna
93]) is adapted without difficulty; the sign-changing al-
gorithm (modified mountain pass algorithm, MMPA, see
also [Costa et al. 01]) requires a significant modifica-
tion. This difficulty is paralleled in considering existence
proofs of sign-changing solutions to (1–1). In [Neuberger
and Swift 01], the gradient Newton–Galerkin algorithm
(GNGA) was developed to investigate (1–2) using a basis
of eigenfunctions of the corresponding (continuous) lin-
ear problem to span a suitably large finite-dimensional
subspace. We adapt this algorithm in an obvious way,
although for small finite m we can use the entire basis.
In the spirit of [Costa et al. 01], we use knowledge of
the symmetry group of G to modify our existence theo-
rems and numerical algorithms to obtain solutions with
symmetry.

Let J : R
m → R be defined by

J(u) =
1
2
Du ·Du−

m∑
i=1

F (ui) (1–4)

(
=

1
2
Du ·Du− 1

4
u2 · u2 − 1

2
λu · u

)
,

where given a function g : R → R and u ∈ R
m, we take

the composition g ◦u to mean g(u) = (g(u1), . . . , g(um)).
It is easy to see that

J ′(u)(v) = −(−Lu+ f(u)) · v (1–5)(
= Du ·Dv − u3 · v − λu · v),

so that critical points of J are solutions to (1–1). Figure
1 depicts typical profiles of J(tu) and J ′(tu)(tu).

The parallels to the variational setting for the con-
tinuous problem (1–2) are clear. For example, for the
zero-Dirichlet version of (1–2) and under certain assump-
tions on a subcritical nonlinearity f (see Section 2), the
functional J : H1,2

0 (Ω) → R defined by

J(u) =
∫

Ω

{
1
2
|∇u|2 − F (u)

}
dx

is C2 and has directional derivative

J ′(u)(v) = 〈∇J(u), v〉 =
∫

Ω

{(∇u · ∇v − f(u)v)} dx,

for all v ∈ H. In [Castro et al. 97a] we define the Nehari
manifold

S = {u ∈ R
m − {0} : J ′(u)(u) = 0} (1–6)

t

J (tu ), J ′(tu )(tu )
uεS

FIGURE 1. The “Volcano” shape of J drives all superlinear
elliptic PDE variational arguments. The same holds for our
difference equations on graphs. This diagram is for a random
nonzero element of R

3, viewed as a function on the vertices
of the complete graph G = K3, but qualitatively one gets
the same picture for other graphs or in the continuous case,
for any superlinear f with f(0) = 0 and f ′(0) < λ1.

and an important subset of sign-changing elements

S1 = {u ∈ S − {0} : J ′(u)(u− − u+) = 0}, (1–7)

where u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}
for x ∈ V . For the continuous problem, an equivalent
definition (and the one found in [Castro et al. 97a]) is

Ŝ1 = {u ∈ S − {0} : u+ ∈ S, u− ∈ S}. (1–8)

For our discrete problem, the two definitions of S1 are
not equivalent. Indeed, the latter set may be empty or
at least fail to have the useful properties exploited in
[Castro et al. 97a]. For both the discrete and continuous
problems, u ∈ S1 implies that

J(u)(u− − u+) = J ′(u)(u−) − J ′(u)(u+) = 0

and
J ′(u)(u) = J ′(u)(u−) + J ′(u)(u+) = 0,

whence J ′(u)(u−) = J ′(u)(u+) = 0. For our discrete
problem and in light of (2–4), for u ∈ S (regardless of
whether u ∈ S1),

0 = J ′(u)(u±) = J ′(u±)(u±) + Lu± · u∓ ≥ J ′(u±)(u±),

whence we have J ′(u−)(u−) = J ′(u+)(u+) yet we may
not have J ′(u−)(u−) = J ′(u+)(u+) = 0. That is, in
contrast to the continuous case, u ∈ S1 does not imply
that u± ∈ S. In any case, we will use (1–7) in our ef-
forts to find sign-changing solutions to PdE (1–1). See
Section 2 for discussions of the behavior of J acting on
or near these sets and the exact hypothesis on f lead-
ing to these properties. We will see that S is a manifold
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(and in fact closed, bounded, and hence compact in this
finite-dimensional case). In [Castro et al. 97a], for the
superlinear problem and if f ′(0) < λ1, we have the fol-
lowing theorem:

Theorem 1.1. There exist positive and negative solu-
tions to (1–2) that are local minimizers of J |S, and a
sign-changing exactly-once solution that is a minimizer
of J |S1 .

In that work and here, nonzero functions have a unique
ray projection onto S, i.e., given u �= 0 there exists a
unique α > 0 such that αu ∈ S. For convenience, we
refer to this sign-changing exactly-once solution as the
CCN solution.

Generalizations of our previous theories and algo-
rithms to nonsuperlinear problems have been moderately
successful (see for example [Castro et al. 97b, Castro et
al. 99, Castro et al. 03, Neuberger 98]). One might expect
that task to be somewhat easier in the finite-dimensional
setting of this paper.

Understanding the implications of symmetry is essen-
tial in our investigations. In this paper, we demonstrate
where such knowledge is useful, leaving deeper graph-
theoretic applications and discoveries for subsequent ef-
forts. In particular, consideration of the innovations of
[Neuberger et al. 05a] and [Neuberger et al. 05b] will be
of immediate benefit to follow-up research done in this
new setting of nonlinear elliptic PdE on graphs.

The paper is organized as follows. In Section 2 we
state and prove existence, nodal structure, and symmetry
theorems. These results generally follow our prior semi-
linear elliptic PDE arguments, taking care to incorporate
our new definition for S1 (1–7) and to deal with the dif-
ficulties implied by Lemma 2.6. In Section 3 we provide
some basic variational formulations and the numerical al-
gorithms used in our experimental investigations. These
algorithms are variants of the GNGA (see [Neuberger
and Swift 01, Neuberger et al. 03, Neuberger et al. 05b]),
the MPA (see [Choi and McKenna 93] and [Neuberger
97b]), and the MMPA (see [Costa et al. 01, Cossio et
al. 00, Neuberger 97b, Neuberger 98]). Many of these
iterative schemes were inspired by constructive proofs,
while others provided the insight that led to new proofs.
In Section 4 we analyze several examples of lower-order
graphs, chiefly the complete graph K3. In particular, we
introduce ideas for investigating the symmetry of solu-
tions. We close the section with some results from new
algorithms that suggested the techniques of proof used in
Section 2. Finally, we provide a section containing some

concluding remarks and results from considering linear
parabolic and hyperbolic PdE.

2. EXISTENCE OF SOLUTIONS

We wish to emphasize that many of the elements of the
theorem statements and proofs found in this section were
understood only after certain key numerical experiments
were designed and performed. In particular, the new def-
inition for S1 (1–7) was a consequence of nearly success-
ful but ultimately failed numerical simulations using the
previous definition found in (1–8). Diagnosing the prob-
lem in these experiments led to the statement and proof
of Lemma 2.6, which led the way to the proofs as one
now sees them. Thus, we find that the sections following
this one that contain variational equations, algorithms,
and experimental results are particularly interesting and
relevant.

The proofs in this section hold for a more general class
of nonlinearity than those typically used in our numerical
experiments. We assume essentially the same hypothesis
found in [Ambrosetti and Rabinowitz 73, Castro et al.
97a, Choi and McKenna 93, Rabinowitz 86]. In partic-
ular, we take f ∈ C1(R,R) such that f(0) = 0 and the
following conditions hold. Our key assumption is that f
is superlinear, i.e.,

lim
|u|→∞

f(u)
u

= ∞. (2–1)

We also make use of the convexity assumption

f ′(u) >
f(u)
u

for u �= 0. (2–2)

We assume that f ′(0) < λ1 = 0, although as in [Castro
et al. 03] it is almost ensured that one could relax this
condition to f ′(0) < λ2 and still obtain sign-changing
solutions (the proofs in that paper deal with technical
difficulties due to the lack of compactness and infinite-
dimensionality that are not likely to arise here).

In the continuous case (1–2) one must make additional
assumptions. For completeness we include them here. In
[Castro et al. 97a], we additionally assume that there
exists m ∈ (0, 1) such that

m

2
f(u)u ≥ F (u) (2–3)

(in fact this need hold only for |u| > ρ for some ρ > 0).
This condition implies the coercivity of J on S and is used
to make up for the loss of compactness in proving conver-
gence of minimizing sequences. Analysis of the PDE also
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requires that we assume that there exist constants A > 0
and p ∈ (1, N+2

N−2 ) such that |f ′(u)| ≤ A(|u|p−1 +1) for all
u ∈ R. It follows that f is subcritical, i.e., there exists
B > 0 such that |f(u)| ≤ B(|u|p + 1). For N = 1 this
condition is omitted, while for N = 2 it suffices to have
p ∈ (1,∞) (see [Ambrosetti and Rabinowitz 73]). In our
finite-dimensional setting the coercive and subcritical as-
sumptions appear unnecessary, but might come in handy
if one attempted to get a “convergence result,” i.e., look
at a family of graphs increasing in order and try to say
something about a continuous problem that was being
approximated.

We are not concerned with loss of compactness, sub-
critical growth, or the Sobolev embedding theorem in
our finite-dimensional setting. Clearly our functional J
is well defined and twice differentiable on all of R

m. In
this section and under the above hypotheses, we state
and prove the following theorems.

Let f be a superlinear function, not necessarily odd,
with f(0) = 0 and f ′(0) < λ1 = 0. Then for a connected
finite graph G we have the following results:

Theorem 2.1. There exist positive and negative solutions
to (1–1) that are local minimizers of J |S.

Theorem 2.2. There exists a solution to (1–1) that is a
global maximizer of J |S.

We say that a function on G changes sign exactly once
if the subgraphs induced by {v ∈ V : u(v) > 0} and
{v ∈ V : u(v) < 0} are connected.

Theorem 2.3. There exists a solution to (1–1) that
changes sign exactly once and is a minimizer of J |S1 .

If m ≥ 3, we can demonstrate that there exists a solu-
tion (distinct from the minimizer) that is a maximizer of
J |S1 . It seems true that the maximizer of J |S1 and J |S
are one and the same, but we do not have a proof of that
fact.

Let Q be the symmetry group of G. If f is odd, de-
fine Q = Q × Z2; otherwise, take Q = Q. The possible
symmetries of solutions correspond to conjugacy classes
of maximal isotropy stabilizer subgroups of Q (see [Neu-
berger et al. 05b] for more details). Let χ be a fixed-point
symmetry subspace of R

m corresponding to a given sym-
metry, that is, there exists a subgroup in such a conjugacy
class whose elements fix χ pointwise. Then we also have
the following:

Theorem 2.4. There exists a solution to (1–1) that is a
minimizer of J |S∩χ. If dim(S ∩ χ) ≥ 1, then there exists
a second (distinct) solution that is a maximizer of J |S∩χ.

It has not been proved that S1 is a manifold. If it were,
and low-dimensional numerical experiments indicate that
it can be, the sign-changing proof could be simplified.
Nevertheless, we still have the following:

Theorem 2.5. Given a fixed-point symmetry subspace χ
such that for all u ∈ χ with u+, u− �= 0 we have u+, u− ∈
χ, there exists a solution to (1–1) that is a minimizer of
J |S1∩χ. Given a fixed-point subspace χ such that u ∈ χ

implies u+, u− �= 0, there exists a solution to (1–1) that
is a minimizer of J |S∩χ.

Apparently, all possible sign-changing solutions fall
into one of the two cases. Again, if dim(S1 ∩ χ) ≥ 1,
we can demonstrate that there exists a second (distinct)
solution that is a maximizer of J |S1∩χ. It seems true
that the maximizers of J |S1∩χ and J |S∩χ are one and
the same.

The ability for us to distinguish two solutions as two
distinct solutions will depend to some extent on the ap-
plication. For instance, some solutions will belong to
two different fixed-point subspaces χA and χB , whereby
it cannot be known without additional information that
the same solution u does not satisfy minS∩χA

J =
minS∩χB

J = J(u). For other fixed-point spaces, it will
be clear that χA ∩ χB = {0} �⊂ S, so that the corre-
sponding minimizers (and maximizers) will be distinct
solutions. In Section 4, we present an example in which
minimizers and maximizers of J |S , JS1 , JS∩χ, and JS1∩χ

are explicitly and/or numerically found.
We first present a lemma, which represents something

of an obstacle toward applying the techniques from [Cas-
tro et al. 97a]. We note that in the continuous case, the
equivalent equation is

∫
Ω
∇u+ · ∇u− dx = 0, which im-

plies the nice additivity properties J(u) = J(u+)+J(u−),
J ′(u)(u) = J ′(u+)(u+) + J ′(u−)(u−), and so on. There
are elementary examples of functions on graphs for which
these equalities do not hold, i.e., the inequality in the
lemma is strict.

Lemma 2.6. Given u ∈ R
m we have

Lu+ · u− = Lu− · u+ ≥ 0.

Proof: Using the notation that kx is the degree of vertex
x ∈ V and that xi, i = 1, . . . , xk, are the neighbors of x,
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we see that

Lu+ ·u− =
∑
x∈V

{kxu+(x)−
kx∑
i=1

u+(xi)}u−(x) ≥ 0, (2–4)

since the only possible nonzero terms are the result of
positive neighbors u+(xi) multiplying the negative value
u−(x).

We now state some of the useful properties of the Ne-
hari manifold S defined in (1–6) and of the functional J
acting on or near S. We take λ < λ1 = 0; otherwise, S
is degenerate and fails to be a manifold.

1. S is a closed (m − 1)-dimensional C1 manifold in
R

m.

2. J ′′(0)(u, u) > 0 for all u ∈ R
m, 0 �∈ S, and J ≥ c > 0

on S.

3. S is bounded (in contrast to the infinite-dimensional
case).

4. J is bounded above on S (in contrast to the infinite-
dimensional case).

5. Given u �= 0 ∈ R
m there exists a unique α > 0 such

that αu ∈ S.

6. For u ∈ S, J(u) > J(tu) for all t ∈ [0,∞)− {1} and
J ′′(u)(u, u) < 0.

7. u is a nontrivial solution to (1–1) if and only if u is
a critical point of J |S .

These facts follow from arguments that are virtually
identical to those found in [Castro et al. 97a]. The
fact that S is closed (0 is not a limit point of S) was
claimed in [Castro et al. 97a] and later proved in [Neu-
berger 98]. In this finite-dimensional setting, this is ob-
vious. That S is a manifold follows from the implicit
function theorem. Observe that S is the zero set of
γ(u) = J ′(u)(u) = Lu · u − u · f(u). Then by (2–2)
and for u ∈ S we have

J ′′(u)(u, u) = Lu · u− u2 · f ′(u) < Lu · u− u · f(u)

= γ(u) = 0. (2–5)

That is to say, the gradient of γ is nonvanishing on its
zero set, which is thus a manifold. Note that

J ′′(0)(u, u) = Lu · u− f ′(0)u · u > 0

by the Poincaré inequality (or characterization of the
smallest eigenvalue λ1 = 0). Since 0 is a local mini-
mum and f superlinear implies that for u �= 0 we have

J(αu) → −∞ as α → ∞, we see that there must exist
an α > 0 such that αu ∈ S. This α is unique, since
(2–5) says that every critical value in the ray direction
must be a maximum. By Lagrange multipliers, u is a
nontrivial critical point of J if and only if it is a crit-
ical point of J |S . Indeed, if u is a constrained critical
point then ∇J(u) = t∇γ(u) for some multiple t of the
normal vector to S, ∇γ(u). This implies that t = 0, and
hence ∇J(u) = 0, since (2–5) gives γ(u) · u < 0; yet
∇J(u) · u = 0 (by virtue of u ∈ S). Since S is closed and
bounded, hence compact (due to the finite dimension of
R

m), the continuous function J must be bounded on S.
In this discrete case it is not hard to see that there exists
δ > 0 such that J(u) ≥ δ > 0 for all u ∈ S. Some of these
facts are less useful than in the continuous case, since we
are now dealing with a compact manifold and do not, for
example, have to worry whether bounded sequences have
only weakly convergent subsequences.

We now prove Theorem 2.1.

Proof: Let {un} ⊂ S be a minimizing sequence, i.e.,
J(un) ↓ minS J . Since S is a compact set, there exists
a subsequential limit u ∈ S satisfying J(u) = minS J .
By the above discussions, the constrained minimum is in
fact a critical point of J , hence a solution to (1–1). Sup-
pose that u were sign-changing. Since u is a solution and
hence J ′(u)(u±) = 0, Lemma 2.6 implies that γ(u±) ≤ 0.
Without loss of generality, let 0 < c ≤ d ≤ 1 be such that
cu+, du− ∈ S. Then

J(u) ≥ J(cu) ≥ J(cu+) + J(cu−) > J(cu+),

since γ(du−) = 0 and c ≤ d implies that J(cu−) > 0.
This is a contradiction, since cu+ ∈ S yet J(u) = minS J .
Thus, u is a one-sign solution to (1–1). If f is odd, −u
is automatically a critical point of the even functional J ,
hence a one-sign solution of the opposite sign. Suppose
that f is not odd and without loss of generality assume
that the solution we just found is positive. Then, we can
repeat the above argument using f̃ defined by f̃(u) =
−f(−u) for u > 0 and f̃(u) = f(u) for u ≤ 0 to get a
pair of one-sign solutions. Since we are using the other
branch of f , the negative solution is in fact a negative
solution to the original problem.

The proof of Theorem 2.2 is almost a corollary.

Proof: Let {un} ⊂ S be a maximizing sequence, i.e.,
J(un) ↑ maxS J . Since S is a compact set, there exists
a subsequential limit u ∈ S satisfying J(u) = maxS J .
By the above discussions, the constrained maximum is
in fact a critical point of J , hence a solution to (1–1).
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If nondegenerate, the minimizers are of Morse index
(MI) 1 and the maximizer is of MI m. It seems almost
ensured that the maximizer is a sign-changing solution,
but we have not proved this. One need show only, to
confirm this conjecture, that given u ∈ S of one sign,
there exists v ∈ S1 with J(u) < J(v), which seems likely
in light of Figure 6.

We now prove Theorem 2.3.

Proof: As in [Castro et al. 97a], the separation property
of S1 is key. Accordingly, let u ∈ S1 and consider z(t) =
PS((1 − t)u+ + tu−) = α(t)((1 − t)u+ + tu−), for some
smooth function α : [0, 1] → (0, 2]. Clearly α(1

2 ) = 2, so
that z( 1

2 ) = u ∈ S1. Now suppose that d
dt (J(z(t))) = 0

for some t = t∗. Since z ∈ S, 0 = J ′(z)(z) = J ′(z)(z+) +
J ′(z)(z−), so that J ′(z)(u−) = t−1

t J ′(z)(u+). Since

0 =
d

dt
(J(z(t))) =

α′

α
J ′(z)(z) + αJ ′(z)(u− − u+)

= αJ ′(z)(u− − u+),

we have

J ′(z)(u−) = J ′(z)(u+) =
t− 1
t

J ′(z)(u+).

This implies that J ′(z)(u−) = J ′(z)(u+) = 0, hence
γ(z±) ≤ 0, since t−1

t �= 1. By (2–2),

J ′′(z±)(z±, z±) = Lz± · z± − z2
± · f ′(z±)

< Lz± · z± − z± · f(z±) = γ(z±) ≤ 0.

Now, using Lemma (2.6) we obtain

d2

dt2
(J(z(t))) = α′J ′(z)(u− − u+)

+ α2J ′′(z)(u− − u+, u− − u+)

= α2j′′(z)(u− − u+, u− − u+)

=
1
t2
J ′′(z+)(z+, z+)

+
1

(1 − t)2
J ′′(z−)(z−, z−) − 2α2Lu+ · u−

< 0.

Hence, the critical point of J◦z for t ∈ (0, 1) is unique and
a maximum, For this value t∗, we have J(z)(z− − z+) =
0 and so u = z(t∗) ∈ S1 and J(u) > J(z(t)) for all
t ∈ [0, 1] − {1

2}. In fact, S1 separates any v > 0 and
w < 0 on S. Let z : [0, 1] → S now denote any path on
S so that z(0) = v and z(1) = w. For 0 < t � 1

2 , one
sees that γ(z) = 0, γ(z−) > 0, and γ(z+) < 0 (see Figure
1). Similarly, for 1 > t � 1

2 , we have that γ(z) = 0,
γ(z−) < 0, and γ(z+) > 0, implying that

J ′(z)(z− − z+) = γ(z−) − γ(z+)

changes sign for some t = t∗ ∈ (0, 1). For u = z(t∗) we
have that J ′(u)(u− − u+) = 0, and hence u ∈ S1.

Proceeding as in the one-sign existence proof, we find
a minimizer u ∈ S1 satisfying J(u) ≥ J(v) for all v ∈ S1.
We do not know that S1 is a manifold and so cannot apply
Lagrange multipliers. However, if we suppose that u is
not a solution we can find a contradiction. As in [Castro
et al. 97a], take the path z(t) = PS((1− t)u+ − tu−) and
in a neighborhood about u apply the deformation lemma.
As a result, we would follow the negative gradient flow
(projected tangent to S; we know that a nonzero gradient
cannot be orthogonal to S) and obtain a deformed path
that (a) still connects positive to negative elements of S
and hence intersects S1 by the above separation property,
and (b) has a strictly smaller maximum J value along it.
This cannot be, since we started the flow with a path
through the minimizer of J |S1 . Thus, we have a solution
that necessarily changes sign by virtue of membership in
S1. An argument very similar to the one-sign case shows
that the solution must change sign exactly once. If not,
we could construct an element of S1 with strictly smaller
J value, another contradiction.

We conclude with the proofs of Theorems 2.4 and 2.5.

Proof: If {un} is a minimizing (maximizing) sequence in
S∩χ, then as above we get a subsequential limit. The re-
sulting minimizer (maximizer) u is in S∩χ. By Lagrange
multipliers, we know that ∇J(u) cannot be nonzero and
normal to S. By invariance, the gradient lies in χ. Thus,
the constrained critical point of J |S∩χ is a critical point
of J and hence a solution to (1–1) with the symmetry
type corresponding to the fixed-point subspace χ.

Let χ be a fixed-point subspace with the property that
if u ∈ χ with u+, u− �= 0 then also u+, u− ∈ χ. If
{un} is a minimizing sequence in S1 ∩ χ, then as above
we get a subsequential limit. The resulting minimizer
u is in S1 ∩ χ. Now, the path z(t) = PS((1 − t)u+ +
tu−) ∈ S ∩ χ as well, since u+, u− ∈ χ. Again using
the invariance of the gradient, we see that assuming that
∇J(u) �= 0 leads to a contradiction. This follows from
the fact that the deformed path will also lie in χ, so
that the separation property of S1 yields an element of
S1 ∩ χ with strictly lower J value than the minimum
value J(u). Necessarily, this solution changes sign and
is of a symmetry type corresponding to the fixed-point
subspace.

Finally, let χ be a fixed-point subspace with the prop-
erty that if u ∈ χ then u+, u− �= 0. Using above argu-
ments, we get a convergent minimizing sequence of J |S∩χ.
Using the symmetry invariance of the gradient, we see
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that the minimizer is a solution without the need to ap-
peal to the deformation lemma. This follows since S ∩ χ
is a manifold. In hindsight, this solution belongs to S1

since it is a solution that changes sign. It is of a symme-
try type corresponding to the fixed-point subspace.

All of the above proofs can be seen in action by study-
ing the simple example G = K3 in Section 4. For exam-
ple, consider the sign-changing branch of symmetry type
B corresponding to ψ3. Any sign-changing vector u of
the form (b, b, a) (without loss of generality assume that
b < 0) has u+ = (0, 0, a) and u− = (b, b, 0) of type B
as well. Thus, the paths on S connecting αu+ ∈ S to
αu− ∈ S (which must pass through S1) are composed of
elements also of type B. Minimization in S1 ∩ χB nec-
essarily results in a sign-changing solution of symmetry
type B. Additionally, consider the type D branch that
also bifurcates from λ2 = λ3 = 3. It is not true that
elements of this symmetry type have positive and neg-
ative parts of the same symmetry type, but by virtue
of the symmetry type, such elements are already sign-
changing if nontrivial. Thus, minimization in S ∩ χD

results in a sign-changing solution of symmetry type D.
In both cases for this low-dimensional example we in fact
obtained isolated points on intersecting an invariant sub-
space with either S or S1. Thus, minimizing sequences
are constant in χB ∩ S1 �= ∅ and χD ∩ S �= ∅, since
dim(χB ∩ S1) = 0 and dim(χD ∩ S) = 0.

As a final comment, there is much that could be proved
concerning bifurcation. Our automated code in [Neu-
berger et al. 05b] relies on developed theory of symme-
try, fixed-point subspaces, and bifurcation (see for exam-
ple [Golubitsky et al. 88]). The equivariant branching
lemma (EBL) is perhaps the core tool we use to predict
bifurcation. The EBL is useful to ponder when one is
writing code to find new bifurcation branches, and should
prove equally useful in proving theorems concerning the
existence of such branches. The EBL implies the “bi-
furcation from simple eigenvalues” results used so heav-
ily by nonlinear functional analysts studying variational
functionals for elliptic PDE (see for example [Rabinowitz
86]).

3. VARIATIONAL ALGORITHMS

We began our foray into this relatively new field by ex-
tending GNGA to investigate problem (1–1). For more
complicated graphs of higher order, finding the canoni-
cal basis of eigenfunctions may entail modification of the

ARPACK code found in [Neuberger et al. 05a], and def-
initely will require extending and automating the sym-
metry analysis and branch-following techniques found in
[Neuberger et al. 05a] and [Neuberger et al. 05b].

We assume that u =
∑m

i=1 ciψi and seek coeffi-
cients c ∈ R

m such that the coefficient vector of
the standard gradient’s eigenfunction expansion g =
(J ′(u)(ψi))i=1,...,m is zero. Note that

gi = Du ·Dψi − f(u) · ψi =
(
L

∑
cjψj

)
· ψi − f(u) · ψi

= ciλi − f(u) · ψi. (3–1)

For small m, the equivalent expression gi = Lu ·
ψi − ψi · f(u) can be computed efficiently without ref-
erence to the eigenfunction expansion coefficients ci.
Similarly, the Hessian h ∈ Mm×m defined by h =
(J ′′(u)(ψi, ψj))i,j=1,...,m can be computed as

hij = Dψi ·Dψj − f ′(u)ψi · ψj (3–2)

= λiδij − f ′(u)ψi · ψj ,

where δij is the Kronecker delta. Applying Newton’s
method with step size δ ∈ (0, 1] to find zeros of g results
in our algorithm:

1. Initialize c = c0 ∈ R
m and set u = u0 =

∑
ciψi.

2. Loop until ‖∇J(u)‖ =
√
g · g is small:

(a) Compute the gradient vector g ∈ R
m.

(b) Compute the Hessian matrix h ∈Mm×m.

(c) Solve for the search direction χ that satisfies
hχ = g.

(d) Step c = ck+1 = ck − δχ.

(e) Update u = uk+1 =
∑
ciψi.

(f) Output data, compute norm of gradient.

The output data can vary depending on the experiment;
typical choices include the value of J(uk), calculated sim-
ilarly to the gradient and Hessian, and the signature
sig(uk), which we take to be the number of negative
eigenvalues of h = h(uk). If u is a nondegenerate so-
lution to (1–1), then sig(u) equals the Morse index (MI)
of u. The MI can be thought of as the number of “down”
directions of the critical point, e.g., MI = 0 for minima,
MI = m for maxima, and MI ∈ {1, . . . ,m− 1} for saddle
points in between. The search direction χ can be solved
using any number of linear solvers, even dealing with pos-
sibly noninvertible Hessians h. Noninvertible Hessians
inevitably occur at boundaries of basins of attraction of
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Newton’s method, fractal when taking discrete steps, and
at degenerate critical points. This is good news actually,
since the first situation can be avoided by knowing good
guesses and the second can lead to interesting symmetry-
breaking bifurcations.

We also present a few experimental results relating
to adaptations of the MPA and MMPA from [Neuberger
97b]. In part, we do so because their operation exposes
the existence theory. In [Castro et al. 97a] and [Neu-
berger 97b], we see that given u �= 0 there exists α > 0
such that αu ∈ S. This holds true for our current (dis-
crete) problem as well. In [Castro et al. 97a] and [Neu-
berger 97b], one sees that S1 has the property that given
a sign-changing function u there exist α, β > 0 such that
αu+ ∈ S, βu− ∈ S, and as a result, αu+ + βu− ∈ S1.
For our current (discrete) problem, we see that given a
sign-changing function u there exist α > 0 and t ∈ (0, 1)
such that with z defined by z = α((1 − t)u+ + tu−), we
have J ′(z)(z− − z+) = 0 and hence z ∈ S1. Combining
these constraints with Sobolev gradient steepest descent
(see also [Neuberger 97c]) results in the MPA for finding
MI 1 one-sign solutions and the MMPA for finding MI 2
sign-changing solutions of (1–2). In the PDE case, using
the “correct” Hilbert space and the associated gradient
leads to good numerical performance; one may view the
resulting search direction as a preconditioned version of
the poorly performing (and only densely defined) L2 gra-
dient. The “Sobolev gradient” appears to perform in a
similarly advantageous fashion when one is seeking crit-
ical points of the action functional for finite-dimensional
PdE as well. The brief pseudocode is as follows:

1. Choose u = u0 as a one-sign element of the function
space.

2. Project u onto S by doing steepest ascent in the ray
direction.

3. Compute an approximation of ∇J(u) by solving an
appropriate linear system.

4. Loop until the approximation of ∇J(u) is small:

(a) Take the gradient descent step: uk+1 = uk −
δ∇J(uk).

(b) Project u onto S by doing a steepest ascent in
the ray direction.

(c) Compute an approximation of ∇J(u) by solv-
ing the linear system.

Here, δ ∈ (0, 1] is the step size, and the linear system
in question (for the continuous zero-Dirichlet problem

(1–2)) satisfies −∆(∇J(u)) = ∇2J(u), where ∇2J(u)
is the “usual” Euclidean gradient. Borrowing from the
method used in [Cossio et al. 00], we can construct a
Sobolev gradient for our discrete Neumann problem that
has the good performance indicative of using the proper
norm (see Figure 5). Defining gi as in (3–1), we obtain
the Sobolev gradient

∇SJ(u) = g1ψ1 +
m∑

i=2

gi

λi
ψi. (3–3)

The MMPA requires one to start with a sign-changing
initial guess and to project iterates onto S1 as opposed to
S. For the continuous problem, this can be accomplished
by

PS1(u) = αu+ + βu−,

where α, β ∈ (0,∞) are chosen such that αu+ = PS(u+)
and βu− = PS(u−) are on S. Projecting functions onto
S is just steepest ascent in the ray direction (see Fig-
ure 1 and Section 2). Briefly, starting with u0 = u and
iterating

uk+1 = uk + δ
J ′(uk)(uk)

|uk|2 uk

results in convergence to PS(u). The term J ′(uk)(uk)
can be approximated in several ways of varying degrees
of numerical complexity, efficiency, and accuracy, includ-
ing using the eigenfunction expansion ideas from [Cossio
et al. 00]. For our discrete problems, the projections
of iterates onto S1 must be accomplished via a different
method. We saw in Section 2 that given a sign-changing
vector u ∈ R

m, the path

z(t) = PS(r(t)) = PS((1 − t)u+ + tu−)

= α(t)((1 − t)u+ + tu−)

has essentially the same properties as it did in the con-
tinuous case. We see that

d

dt
J(z) = J ′(z)(α′r + αr′) (3–4)

=
α′

α
J ′(z)(z) + αJ ′(z)(u− − u+)

= αJ ′(z)(u− − u+)

is zero only for some unique t∗ ∈ (0, 1) such that
J(z(t∗)) > J(z(t)) for all t ∈ [0, 1]−{t∗}, and that in fact
z(t∗) ∈ S1 as defined in (1–7) (see Figure 6). If u ∈ S1,
then t∗ = 1

2 and α(t∗) = 2. Thus, given a sign-changing
vector u we take gradient ascent steps in the u−−u+ di-
rection and project iterates onto S, until the maximum
value is achieved and we are on S1. For example, the
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Mathematica fragment for effecting these projections (ef-
ficient enough for small problems) that uses the built in
secant method is as follows:

up[u_] := Table[If[u[[i]] > 0,

u[[i]], 0], {i, 1, m}]; um[u_] := -up[-u];

PS[u_] := u * FindRoot[t (L.u).u - u.f[t u]

== 0, {t, .5, 3.5},

MaxIterations -> 100][[1, 2]];

z[t_, u1_, u2_] := PS[(1 - t)u1 + t u2];

alph[u1_, u2_] :=

FindRoot[(u2 - u1).(L.z[t, u1, u2] - f[z[t, u1, u2]])

== 0,

{t, .3, .7}, MaxIterations -> 100][[1, 2]];

PS1[u_] := z[alph[u1,u2], u1, u2];

We will employ algorithms that are further variants
of the MPA and MMPA. First, since we are in a finite-
dimensional setting, we can do steepest ascent and find
critical points (solutions to (1–1)) that are maximizers.
This is easily accomplished by replacing

uk+1 = uk − δ∇J(uk)

with
uk+1 = uk + δ∇J(uk).

Second, we borrow from ideas in [Costa et al. 01] and
[Neuberger et al. 05b] and restrict our optimization to in-
variant subspaces corresponding to specified symmetries.
For example, when seeking a solution vector in R

3 when
G is the complete graph K3, we might want to restrict
our search to elements of the form (b, b, a) in an invariant
subspace χB (see the K3 example in Section 4). Given a
vector u = (b1, b2, a), we execute the projection

PχB
(u) =

(
b1 + b2

2
,
b1 + b2

2
, a

)
(3–5)

after each gradient step. In theory, the gradient ∇J(u)
is invariant under the group actions corresponding to
the chosen symmetry, but in practice, small computa-
tional errors may lead to instability. The projection
uk = PSPχB

ûk, for example, will ensure that the iter-
ate uk is an element of the manifold that maintains the
symmetry of type B. Other symmetry types correspond-
ing to other subgroups can be similarly enforced.

4. EXAMPLES

In this section we demonstrate the numerical and analyt-
ical techniques by looking at a relatively simple example,
namely the complete graph K3. We are able to prove

some extra facts in this concrete case, but more impor-
tantly we show the inner workings of each algorithm and
theorem. We take a thorough approach in looking at this
problem, with an eye toward testing our new algorithms
and gaining insight into the structure needed to prove
existence and nodal structure theorems.

Our initial experiments on regular square grids were
entirely analogous to those found in [Neuberger and Swift
01]. As noted in the introduction, discretizing a PDE
leads to a PdE. We do not report here further on these
executions other than to note that it is enlightening to be
reminded that using numerical algorithms to solve PDE
are really attempts to solve discrete problems exactly.

In this paper, our goal is to further develop techniques
for studying nonlinear elliptic PdE on graphs. By un-
derstanding the underlying symmetries of a given graph
G, one should be able to choose a useful order for the
basis of eigenfunctions of L for R

m. This is an essential
step for understanding the expected proliferation of sym-
metric solutions, aiding in both our numerical investiga-
tions and subsequent efforts to find existence and nodal
structure proofs. Adapting the ARPACK code (see [Neu-
berger et al. 05a]) and automated branch-following meth-
ods (see [Neuberger et al. 05b]) that we have so success-
fully used on continuous problems, we will then be able to
thoroughly investigate very large graphs with large num-
bers of symmetries. Applying the sophisticated approach
taken in [Neuberger et al. 05a] and [Neuberger et al. 05b]
(where the D6 × Z2 symmetry of the hexagon (Koch’s
snowflake) is exploited) will be a fruitful area for several
reasons. Applying those concepts, the symmetry of the
graph (and hence the basis) can be used by an automated
program that follows the trivial branch, makes a turn at
each zero eigenvalue (bifurcation point), and continues
making turns at each secondary (or tertiary) bifurcation
point. At each turn this automated code uses the critical
eigenfunctions of the Hessian to perturb off of the parent
branch. This approach is particularly interesting at mul-
tiple critical eigenvalues, where algorithmic knowledge of
the symmetry of the basis (and hence possible symme-
tries of solutions) is required in order to follow all possible
types of (conjugacy classes of) branches. This is achieved
by applying knowledge of the structure of the symmetry
group of the graph G. Future developments in the field
of nonlinear elliptic PdE on graphs will be obtained by
considering the methods and ideas in [Neuberger et al.
05a] and [Neuberger et al. 05b], where in theory a sin-
gle push of a button may almost completely generate an
accurate and informative bifurcation diagram annotated
with a plethora of relevant information concerning exis-
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tence, multiplicity, symmetry, nodal structure, MI, and
so on.

4.1 K3

Our main example demonstrates that for simple graphs
one can work out the existence and “nodal structure”
of some solutions exactly, while unexpected complexities
result in a structure rich enough to provide secondary
bifurcations and solutions not easily come by analytically.
Let G = K3 be the complete graph with three degree-2
vertices. There is in some sense a maximal amount of
symmetry to exploit in complete graphs.

Due to the superlinear nature of the nonlinearity f ,
the graph of J for λ < λ1 = 0 is a “volcano,” e.g., 0 is a
local minimum, each ray intersects the rim (the manifold
S) once, and so on. Indeed, these properties drive all
of the existence proofs in [Castro et al. 97a] and many
related works. Figure 1 shows the graphs of J(tu) and
J ′(tu)(tu) for a randomly selected nonzero vector in R

3.
In initial experiments, we used the basis of eigenfunc-

tions of L for R
3 that was automatically provided by

Mathematica. Subsequently, we found an alternative ba-
sis that contains eigenfunctions of each symmetry type to
be a more convenient choice, although this may not be
possible for every type of graph. The matter of choosing
a “proper” basis in general has not been settled.

For this elementary example, by plugging u = cψi into
(1–1) one easily obtains complete information about sev-
eral branches. For example, the trivial branch is c ≡ 0,
and the one-sign branch u ≡ c bifurcates to the left from
λ1 = 0 with c2 = −λ and J(cu) = λ2. The conjugacy
class of the permutations of u = c(−1, 1, 0) has branches
bifurcating to the left from λ2 = λ3 = 3, where c2 = 3−λ
and J(cu) = 1

2 (3 − λ)2. It is not so easy to work out in
closed form the results for solutions that are not exact
multiples of eigenfunctions. In this supposedly simple ex-
ample, there are secondary bifurcations. The secondary
bifurcation point on the one-sign branch can be easily
found exactly for any complete graph. These secondary
solutions are not multiples of an eigenfunction; an al-
gorithm such as GNGA or one of the modified MPA-
type algorithms seems to be required to investigate such
branches.

To demonstrate the symmetry arguments from [Neu-
berger et al. 05a] and [Neuberger et al. 05b] to which we
have alluded, we more carefully analyzed the symmetry
of eigenfunctions and solutions. The symmetry group
for G is D3, that is, six rotations and flips. Allowing
for sign changing antireflections, our group expands to
D3 × Z2 � D6. Forming the 16 subgroups of D6 and

# Classes Symm. Type Elements Dim Invar. Subspace

1 A (a, b, c) dim(χA ∩ S) = 2
(b, b, a)

3 B (a, b, b) dim(χBi
∩ S) = 1

(b, a, b) i = 1, 2, 3
1 C (a, a, a) dim(χC ∩ S) = 0

(−b, b, 0)
3 D (0,−b, b) dim(χDi

∩ S) = 0
(b, 0,−b) i = 1, 2, 3

1 E (0, 0, 0) χE ∩ S = ∅

TABLE 1. For K3, the manifold S is 2-dimensional. The in-
tersection of the invariant subspaces with S is of one lower
dimension than the invariant subspaces themselves. All so-
lutions belong to one or more of the appropriate intersec-
tions. From the ordering in (4–1), we see that χE ⊂ χC ⊂
χBi ⊂ χA and χE ⊂ χDi ⊂ χA.

translating back to D3 × Z2, we see that there are five
symmetry types of solutions. These are the five conju-
gacy classes of maximal stabilizer (isotropy) subgroups.
A representative of a symmetry class corresponds to a
subspace that is invariant under the actions of that sub-
group. The symmetry types can be partially ordered as

A ≺ B ≺ C ≺ E and A ≺ D ≺ E, (4–1)

where, for example, B ≺ C means that if H ∈ B and
K ∈ C then H is a subgroup of K. See Table 1 for
a summary of the invariant subspaces corresponding to
these five symmetry types.

Here A is the symmetry that corresponds to the sub-
group containing only the identity. Solutions of this type
have no symmetry. Type B is the symmetry type of the
flip, i.e., each element of the class fixes a function of the
form (b, a, b) (or one of its permutations) on G = K3.
Symmetry type C fixes only the constant functions, i.e.,
invariance under both rotations and flips. Symmetry
type E corresponds to the whole symmetry group and
fixes only the trivial solution u = 0 ∈ R

m. Finally, sym-
metry type D corresponds to invariance under antiflips,
e.g., functions of the form (b, 0,−b) (or one of its permu-
tations) on G = K3. A natural goal for future efforts will
be to systematize and automate the construction of the
hierarchy (lattice) of symmetry types for each new graph
investigated. In Figure 3, the primary branch of constant
solutions (multiples of ψ1) is of symmetry type C, invari-
ant under all rotations and flips. The only subgroups of
the subgroup of type C are of symmetry types B and
A, which have invariance under flips, and only the iden-
tity, respectively. Thus, the only possible bifurcations at
λ = − 3

2 off of the constant branch are of symmetry types
B and A. The displayed secondary branch is of symme-
try type B, with eigenvector expansion coefficients of the
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FIGURE 2. Graph of the functional J restricted to the 1-
dimensional set obtained by intersecting a type-B invariant
subspace for K3 with the manifold S. Extremal points are
solutions. See Figure 3 to view the locations of these so-
lutions on the bifurcation diagram depicting all symmetry
type B solutions.

form (c1, 0, c3), indicating that added to the type-C ψ1-
component is some amount of the type-B ψ3-component
1√
6
(−1,−1, 2).
Armed with this symmetry information, the some-

what trial and error process suggested by Figure 4 is per-
haps unnecessary although still informative. For exam-
ple, without using the deeper implications of the equiv-
ariant branching lemma (see [Golubitsky et al. 88]) and
considering higher-order derivatives of J , we cannot be
certain that we have not missed an asymmetric branch
(type A) bifurcating from the constant solution branch
at this location. Since the extrema in Figure 4 are all
of symmetry type C, we can be fairly confident, how-

FIGURE 3. All symmetry type B solutions to (1–1) when
G = K3 can be found in this diagram. Each nonconstant
branch corresponds to 6 solutions, plus-or-minus from each
of the 3 conjugacy classes. The small dots indicate bifurca-
tion points where the Hessian is singular. The 4 large dots
denote solutions located on the graph in Figure 2; approxi-
mate values of the solutions at λ = −4 are given. The thick
line on the λ axis is the constant solution bifurcating to the
left from λ = 0. The λ axis also corresponds to the trivial
type E solution, although this is not an element of χB ∩ S
since 0 �∈ S.

π/6 π/2
t

J (z(t ))

FIGURE 4. A method for finding perturbation directions
at a bifurcation point. Here, z(t) = α(t)(u∗ + cos(t)ψ2 +
sin(t)ψ3), where u∗ is the one-sign solution (multiple of con-
stant eigenfunction ψ1) at λ∗ = − 3

2
, λ = − 7

4
is just to the

left of the bifurcation point, and α = α(t) is chosen such
that z ∈ S for all t ∈ (0, 2π). The 3 minima correspond
to points that are reasonably likely to be in the basin of
attraction of MI 1 solutions, while the maxima should lead
toward MI 2 solutions. That ψ2 and ψ3 span the critical
eigenspace follows from analyzing the Hessian at the critical
bifurcation value in the K3 case presented here.

ever. The following experiments using Sobolev gradient
descent and ascent restricted to invariant subspaces (see
also Figure 2) give further evidence that there is no such
missing branch.

We have found three different types of solutions of
symmetry type B at λ = −4. There are eighteen alto-
gether, since each type has three rotations (the type-B
conjugacy class has three subgroup elements) and the
negative of each solution is a solution. Let χB be an
invariant subspace corresponding to one of these con-
jugacy classes, say the one with elements of the form
(b, b, a). Intersecting this 2-dimensional subspace with
the Nehari manifold S results in a 1-dimensional sub-
manifold containing all solutions of symmetry type B

from this conjugacy class. Minimizers and maximizers of
J restricted to this submanifold must be solutions of sym-
metry type B or C, since B ≺ C implies that χC ⊂ χB

and the trivial type E solution is not an element of S.
Let q(θ) = PS(cos(θ), cos(θ), sin(θ)). Then the range of q
is precisely the 1-dimensional manifold χB ∩ S. Figure 2
shows the graph of J ◦ q, with four of the eight extremal
points and their corresponding MI noted. These points
are solutions to (1–1) that have either symmetry type B,
or in the case of the constant solutions, symmetry type
C. The solutions are also noted on the portion of the
bifurcation diagram found in Figure 3. It is interesting
to note that minimizers in this invariant subspace can be
of either MI 1 or MI 2; all we know is that there is at
least one more “down direction” by virtue of being an
element of S.
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The modifications of the MPA and MMPA obtained
by restricting to invariant subspaces work well (keep in
mind that f ′(0) = λ < λ1 = 0 must be assumed for S
to be a manifold). In many low-dimensional cases, the
invariant subspace has a 0- or 1-dimensional intersection
with S or S1. The former leads to a solution in one
iteration, while the latter efficiently leads to convergence
by performing what amounts to 1-dimensional steepest
descent and/or ascent. The four featured solutions noted
in Figures 2 and 3 were all separately located using the
MPA modified to perform steepest descent and/or ascent
in χB (see (3–5); B = B1 corresponds to the conjugacy
class with symmetry (b, b, a)). Such results are easily
verified, since plugging a solution vector into (1–1) is a
simple matter. Although we have not proved that S1 is a
manifold, it appears from our experiments that it is when
G = K3. If so, clearly it is of dimension 1. We can see
that χB ∩ S1 is not empty, since letting u = (−1,−1, 2)
we have u, u+, u− ∈ χB , and hence z(t) = PS((1−t)u++
tu−) ∈ χB ∩ S1 for all t ∈ [0, 1]. Thus, χB ∩ S1 is zero-
dimensional, in fact containing precisely two points, the
solution z(t∗) ∈ S1 obtained by maximizing J ◦z on [0, 1],
and the “antipodal” solution gained by replacing u with
−u, (1, 1,−2).

4.2 MPA and MMPA

In preparation for looking for existence proofs of the type
found in [Castro et al. 97a], we looked for low-energy
solutions using the MPA and a modified version of the
MMPA. The above K3 symmetry-type-B experiments
used the MPA, modified as noted in Section 3, by apply-
ing the projection equation (3–5). The Sobolev gradient
can be easily computed (see (3–3)). Using purposefully
bad initial guesses, MPA converged to the one-sign (con-
stant) solution in about seven iterations, from which one
can infer that the appropriate space, norm, and hence
gradient were used. The plot on the left in Figure 5
depicts the norm of the gradient as a function of MPA
iteration number for this execution.

We indicated in Section 3 that we must use the alter-
native definition of S1 found in (1–7). The difficulty is
quite interesting. In [Castro et al. 97a], and as a result in
[Neuberger 97b], we rely heavily on the fact that since u+

and u− are disjoint, then J(u) = J(u+) + J(u−). It also
follows that J ′(u)(u+) = J ′(u+)(u+), so that u+, u− ∈ S

implies that u ∈ S1. None of these statements is true for
graphs; in general Lu+ · u− �= 0. Our alternative defini-
tion for S1 makes the MMPA work. Once we had proved
that the new set has many of the same properties as
found in [Castro et al. 97a] (see Section 2), we were able

FIGURE 5. Convergence of MPA to the constant one-sign
and the modified MMPA to the sign-changing exactly-once
solutions of (1–1) for G = K3 at λ = − 1

2
. Despite start-

ing with intentionally bad initial guesses, both algorithms
yield solutions accurate to 4 or 5 decimal places in k = 7
iterations.

to prove the existence of a sign-changing exactly-once so-
lution. Figure 6 suggests that, like the explicit construc-
tion in [Castro et al. 97a], along the convex combination
projected onto S connecting positive and negative parts
of a sign-changing function u, J achieves its maximum
at or near the midpoint. We see that every path on S

connecting a positive function to a negative function will
intersect S1. Using the initial guess from Figure 6, the
MMPA converged to the CCN MI 2 minimal-energy sign-
changing exactly-once solution (see also Figure 5).
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FIGURE 6. This plot of J(z(t)) = J(PS(r(t))) = J(PS((1 −
t)u+ +u−)) could have easily come from a continuous prob-
lem, although it was in fact generated using a specific sign-
changing vector u ∈ R3 while studying G = K3. In this
example, u satisfied u, cu+, cu− ∈ S for some c ∈ (0, 1).
Noticing that the maximum occurred close to but not ex-
actly at t = 1

2
lead to the alternative definition (1–7). If

u ∈ S1, then the maximizer would occur at precisely t = 1
2
.

4.3 Other Graphs and General Results

We considered other graphs, although we do not plan
to report much of the findings in this paper. In fact,
our first GNGA experiments were on the circulant graph
G = C13(1, 3, 4), which has m = 13 vertices and n = 39
edges. The eigenvalues of L are approximately

σ = {0, 4.69722, . . . , 4.69722, 8.30278, . . . , 8.30278},
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with two multiplicity-6 eigenvalues. These values can
be in theory calculated using algebraic equations. We
computed the various symmetry types of eigenfunctions
(vectors in R

m), six for each of the two distinct multiple
eigenvalues. See Figure 7 for a plot of a pair of MI 2
CCN solutions to (1–1) for C13(1, 3, 4). We also did ex-
periments on K4 and obtained complete results parallel-
ing the K3 results presented above. The simple experi-
ments done on K3 and the resulting complexities should
be enough to convince the reader that when considering
a general graph G, it will first be necessary to thoroughly
understand the implications of the graph’s symmetries,
order a basis, and automate the branch-following code.

FIGURE 7. “Contour plots” of a pair of MI 2 sign-changing
solutions to (1–1) for G = C13(1, 3, 4). Black corresponds
to positive values, gray to zero values, and white to negative
values; small opposite color dots indicate where a extremal
values are obtained. The two solutions are of distinct sym-
metry type. These CCN solutions were obtain using the
MMPA, modified for graphs, as described in this paper.

We contemplated what can be said in general
about nonlinear elliptic difference equations on complete
graphs. It is not difficult to see that the complete graph
Km has a simply described set of eigenvectors. On the
one hand, Km is fairly simple and well studied; on the
other, it has a large symmetry group. As we first saw
when analyzing the K3 problem, we can show that there
exists and describe completely the constant branch bifur-
cating from λ1 = 0 and do the same for the conjugacy
class of permutations of Ψ2 (since it has only ±1 and 0
entries). When G is a complete graph a straightforward
calculation computes the Hessian matrix at λ = −m

2 and
shows that there is a multiplicity-(m−1) zero eigenvalue
and hence a bifurcation point with a jump from MI 1 to
MI m at λ = −m

2 as one travels left along the constant
branch starting from λ1 = 0. It might be worthwhile to
work out the rest of the details concerning superlinear
elliptic PdE on complete graphs.

In Section 2, we proved the existence of one-sign and
sign-changing solutions, in general and of specified sym-

metry. The proofs were inspired by the work in [Castro
et al. 97a], but many of the required techniques came
to light only after the variants of the MPA and MMPA
were correctly stated, coded, and tested. In particular,
the correct definition of S1 found in (1–7) was discovered
during the consideration of certain experimental failures.
Finally, we tested the MMPA (and other algorithms) for
several nonodd nonlinearities. In our theorems we do not
assume oddness; it was gratifying to see that the algo-
rithms still converged to the expected solutions.

5. CONCLUSION

Open questions and areas for future inquiry in partial
difference equations on graphs abound. Extending the
representation theory found in [Neuberger et al. 05a] to
analyze symmetry types of eigenvectors for the discrete
Laplacian is an obvious first step. Not only is this of
interest in its own right, but it is an essential step to-
ward understanding all possible solutions to nonlinear
elliptic equations. It is not clear that there exists in
all cases a “canonical” basis; perhaps orthogonality and
symmetry types do not always go hand in hand. Cal-
culating the conjugacy classes of the symmetry group as
done here and in [Neuberger et al. 05b] for larger graphs
with varying degrees of symmetry is the next step, since
this will enable the implementation of automated branch
following where decisions based on symmetry aid in fol-
lowing bifurcating branches at multiply degenerate bi-
furcation points. In future efforts, we may use the code
recently developed by the author’s colleague N. Sieben
using GAP (Graphs, Algorithms, and Programming; see
http://www.gap-system.org/gap/) to automate the pro-
cess of cataloging symmetry types and ordering the ba-
sis. For large graphs, the ARPACK code of [Neuberger et
al. 05a] or perhaps the parallel version PARPACK will
be necessary in order to efficiently compute the eigen-
pairs. We are interested in embedding graphs into met-
ric spaces, whereby one might be able to approximate
PDE on manifolds using ideas from this paper. Weighted
Laplacians could be used. This might be interesting in
itself, or, if the weights are chosen depending on the lo-
cation of vertices in a metric space, then again approxi-
mations to PDE might be obtained. It may be necessary
to use Monte Carlo integration methods to form the gra-
dients and Hessians when investigating elliptic PDE on
high-dimensional regions. This suggests that perhaps the
same random distribution of points could define a ran-
dom graph, and the corresponding (weighted?) Lapla-
cian might be used to generate a matching basis. Appli-
cations in statistical mechanics, computer science, and
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mathematical biology are known to exist (see cited refer-
ences and references therein for a start). Further inves-
tigations into such applications will be interesting.

Graphs of all types of symmetry abound; it has
been suggested that the Peterson graph and the Gray
semisymmetric (bipartite) graph will be interesting. We
ran experiments on nonsymmetric (and much less sym-
metric) graphs analogous to the experiments with small
complete graphs detailed above. In particular, we won-
dered whether a small graph with simple eigenvalues
would be free of secondary bifurcations. The answer is
“not necessarily”: We found secondary bifurcations when
investigating a nonsymmetric graph with five vertices. A
systematic approach is likely to be fruitful, although per-
haps no more (or less) conclusive than the typical foray
into questions of classification in graph theory.

The GNGA amounts to a simple application of New-
ton’s method on K : R

m → R
m defined by Ku =

−Lu + f(u), but uses the symmetry of the graph and
solutions of an associated linear problem to yield a suffi-
cient understanding of the basins of attraction. Clearly
the large amount of known theory related to graphs and
their Laplacians will be useful in the future research of
nonlinear PdE.

One can consider types of PdE other than elliptic
(see [Kevrekidis et al. 02] for an example in which
discrete nonlinear time-dependent equations are consid-
ered). Any PDE with a “−∆” in it could be converted
to a PdE using Laplacians on graphs. In fact, deriva-
tives of any order can be replaced with an appropriate
difference matrix. As our first foray in to these other ar-
eas, we considered the following parabolic and hyperbolic
equations:

ut = −Lu,

u(0) = u0 =
m∑

i=1

aiψi,

and

utt = −Lu,

u(0) = u0 =
m∑

i=1

aiψi,

u′(0) = v0 =
m∑

i=2

biψi (v0 · 1 = 0 =⇒ b1 = 0),

where one seeks solutions u : (0,∞) → R
m, again identi-

fying R
m with functions mapping V to R. These elemen-

tary first- and second-order linear systems can be solved

in a straightforward way using separation of variables.
Respectively, the solutions can be written as

u(t) =
m∑

i=1

aie
−λitψi = (e−tL)u0

and

u(t) =
m∑

i=1

ai cos
(
λ

1/2
i t

)
ψi +

m∑
i=2

(
bi/λ

1/2
i

)
sin

(
λ

1/2
i t

)
ψi,

= cos
(
tL1/2

)
u0 + L†1/2

sin
(
tL1/2

)
v0,

where † denotes a pseudoinverse. Numerical experiments
using explicit and implicit methods generated satisfac-
tory approximations to the above solutions. Consider-
ing the extension of these nonelliptic equations to non-
linear situations, equations of mixed type, the inclusion
of other-order difference terms, and complicated graphs
should suggest many directions for further mathematical
inquiry.
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