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We provide some statistics about an irreducibility/reducibility
test for multivariate polynomials over finite fields based on
counting points. The test works best for polynomials in a large
number of variables and can also be applied to black-box poly-
nomials.

1. INTRODUCTION

Let f ∈ Fq[x1, . . . , xn] be a polynomial. Since f(x) can
take only q possible values for every point in x ∈ An(Fq),
we expect that f(x) = 0 for about 1

q of the points An(Fq).
If, on the other hand, f = gh is a product of two polyno-
mials g, h ∈ Fq[x1, . . . , xn], we have f(x) = 0 if g(x) = 0
or h(x) = 0. So, one might expect that products of poly-
nomials satisfy f(x) = g(x)h(x) = 0 for approximately
2
q − 1

q2 of the points x ∈ An(Fq). This phenomenon
is well explained by the Weil formulas [Milne 80, page
286], [Lang and Weil 54]. The number Nν of Fqν -rational
points on an absolutely irreducible variety of dimension
r defined over Fq grows like

Nν = qrν +O(q(r−1/2)ν).

However, in this paper, we follow a more naive approach.
We propose the following irreducibility test for multivari-
ate polynomials f over Fq:

Evaluate f at N random points. We reject the hypoth-
esis that f is reducible if the fraction of zeros γq(f) found
is significantly smaller than 2

q − 1
q2 . Note that 99.5% of

all polynomial functions satisfy

γq(f) ≤ 1
q

+ 2.58

√
1
q (1− 1

q )

qn
.

This irreducibility test is quick, since the number of
evaluations needed to detect a given percentage 1− ε of
all products of polynomial functions and of all general
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FIGURE 1.

polynomial functions does not depend on the degree of
the polynomials considered, i.e.,

N ∼ O(−q ln ε).

On the other hand it is dirty, since it does not give a
definite answer. Moreover, we cannot make ε arbitrarily
small, because N is bounded by qn, the number of Fq
rational points in An(Fq). There will always be a few
polynomials that cannot be correctly classified by our
method at all. For example, consider the product of an
irreducible, absolutely reducible polynomial with a fur-
ther absolutely irreducible polynomial or an irreducible
polynomial that interpolates all rational points.

The test works for implicitly given (black-box) poly-
nomials as well. We give examples of such polynomials
below.

The expected fraction of zeros for special classes of
polynomials can also be larger than 1

q . For example, the
expected fraction of zeros for n× n determinants is

E(γq,det) = 1/q + 1/q2 − 1/q5 − 1/q7 +O(1/q12),

for n ≥ 12.
We use the following notation:

Fq the finite field with q elements;
X ⊂ An an affine algebraic set;
X(Fq) the Fq-rational points of X;
|X| = |X(Fq)| the number of Fq-rational points of X;
γq(X) the fraction of Fq-rational points in An

that are contained in X;
B(N, p, k) =�

N
k

�
pk(1 − p)N−k the binomial distribution;

N the number of trials;
p the success probability;
k the number of successes;
N (µ, σ) the normal distribution with mean µ

and variance σ2.

B(N, p) can be approximated by N (p,
√
p(1− p)/N).

2. FRACTIONS OF ZEROS

Example 2.1. (Random Polynomial.) We choose fixed
polynomials f1, f2 of degree 5 and f3 of degree 10 in

Z[x1, . . . , x4] with coefficients in [−9, 9] using the ran-
dom number generator of the computer algebra sys-
tem Macaulay 2 [Grayson and Stillman 02] and consider
f = f1f2 + 7f3. Let X be the vanishing set V (f).

A black-box polynomial is a polynomial for which it
is easy, given x, to compute f(x). For our method we
need even less, namely that, given x, it is easy to check
whether f(x) = 0 holds. Therefore, our method also
applies to black-box hypersurfaces. Often these checks
are possible even if the explicit formula for f in terms of
the unknowns x1, . . . , xn is hard or impossible to write
down.

Example 2.2. (Discriminant.) Let Sd ⊂ H0(P2,O(d)) be
the hypersurface of singular homogeneous polynomials
f of degree d in three variables. For each point f ∈
H0(P2,O(d)), it is easy to decide whether f ∈ Sd via
the Jacobi criterion [Eisenbud 95, Section 16.6]. On the
other hand, the equation of Sd in

(
d+2
2

)
variables is not

obvious [Gel′fand et al. 94, page 38, Example 4.15].

Example 2.3. (Dual Variety.) Let C ⊂ P4 be the de-
terminantal curve of degree 10 and genus 6 where the
maximal minors of the 5× 3 matrix in Figure 1 vanish.

Let D = {H ∈ P̌4 |H ∩ C is singular} be the dual
variety of C.

Definition 2.4. Let X ⊂ An an algebraic set. We denote
by

γq(X) :=
|X(Fq)|
|An(Fq)| ,

the fraction of Fq-rational points on X. In particular, for
a hypersurface X = V (f), we have γq(f) = γq(V (f)).
We call γq(f) the fraction of Fq-rational zeros of f .

Example 2.5. We estimate γq in three of our examples by
evaluating N = 1, 000 random points over all primes up
to 17. Table 1 gives the 99% confidence interval for γq.
In this article, we will explain these numbers.
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q X S8 D

2 56.7% ± 4.0% 68.4% ± 2.9% 55.3% ± 4.1%
3 33.8% ± 3.9% 42.3% ± 3.1% 49.2% ± 4.1%
5 17.9% ± 3.1% 24.0% ± 2.6% 24.9% ± 3.5%
7 26.2% ± 3.6% 16.8% ± 2.3% 35.3% ± 3.9%
11 9.3% ± 2.4% 8.9% ± 1.8% 8.0% ± 2.2%
13 8.6% ± 2.3% 9.6% ± 1.8% 8.4% ± 2.3%
17 5.2% ± 1.8% 8.1% ± 1.7% 5.9% ± 1.9%

TABLE 1.

Remark 2.6. We can compute the true values γ2(X) =
56.3%, γ3(X) = 34.6%, and γ5(X) = 18.7% with the
same effort, since there are less than 1, 000 rational points
in A4(Fq) for q ≤ 5.

To study the map

γq : Fq[x1 . . . xn]→ [0, 1], f �→ γq(f),

we note that γq(f) factors over the ring R :=
map(An(Fq),Fq):

Fq[x1 . . . xn]
γq ��

ψ

��

[0, 1]

R

�������������

Lemma 2.7. ψ is surjective.

Proof: Since |An(Fq)| = qn < ∞, we can find a polyno-
mial with prescribed values at these points via interpo-
lation.

We study the distribution of γq on R by regarding it
as a random variable on the finite probability space

(R,Ω, P )

with Ω the sigma algebra of all subsets of R and P the
constant probability measure.

Proposition 2.8. The distribution of γq on R is binomial

P

(
γq =

k

qn

)
= B

(
qn,

1
q
, k

)
.

In particular, the expectation value of γq is E(γq) = 1
q .

Proof: We have to count the maps f ∈ R that map pre-
cisely k different points to 0. Since the values at different
points are independent, this number is(

qn

k

)
1k · (q − 1)q

n−k.

The probability that γq = k
qn is, therefore,

P

(
γq =

k

qn

)
=
(
qn

k

)(
1
q

)k
·
(
q − 1
q

)qn−k

= B
(
qn,

1
q
, k

)
.

Example 2.9. Consider maps

f ∈ R = map(A4(F11),F11).

The distribution of fractions of zeros is

P
(
γ11 = k/114

)
= B (114, 1/11, k

)
.

From its approximation by the normal distribution
N (0.0909, 0.0024), we obtain

P (0.0847 ≤ γ11 ≤ 0.0971) ≥ 99%.

We now consider products. The random variable

γq,∪ : R×R→ [0, 1],

γq,∪(f, g) = γq(fg) = |V (f) ∪ V (g))|/qn

assigns to each pair of functions the fraction of zeros of
their product.

Proposition 2.10. On R×R, the distribution of γq,∪ is

P (γq,∪ = k/qn) = B (qn, (2q − 1)/q2, k
)
.

In particular, the expectation value of γq,∪ is

E(γq,∪) =
2q − 1
q2

= 1−
(
q − 1
q

)2

.

Proof: The value of f · g at a point x depends on the
values of f and g at x. There are q2 ways of choosing
these values, of which (q−1)2 ways give (f ·g)(x) �= 0.

Example 2.11. Consider pairs (f, g) of functions in R as
in Example 2.9. The distribution of γ11,∪ is now

P
(
γ11,∪ = k/114

)
= B (114, 21/112, k

)
.

From its approximation by the normal distribution
N (0.1736, 0.0031), we obtain

P (0.1655 ≤ γ11,∪ ≤ 0.1816) ≥ 99%.

Note that this range does not intersect

P (0.0847 ≤ γ11 ≤ 0.0971) ≥ 99%.
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FIGURE 2. Points on a hypersurface of degree 10 in A4. 99% of polynomial functions on A4 have γq between the
continuous lines. 99% of products have γq between the dashed lines.

Geometrically, products of functions correspond to the
union of their zero sets. We now prove that γq also be-
haves well under other geometric operations.

Proposition 2.12. (Intersection.) Let X ⊂ An be a
subvariety. We consider the random variable

γq,∩X : R→ [0, 1], γq,∩X(f) = |V (f) ∩X|/qn.

The distribution of γq,∩X is

P (γq,∩X = k/qn) = B(|X|, 1/q, k).

In particular, the expectation value of γq,∩X is
E(γq,∩X) = γq(X)/q, where γq(X) = |X|/qn is the frac-
tion of points of X in An(Fq).

Proof: Clearly, x ∈ X ∩ V (f) if and only if x ∈ X and
f(x) = 0. Since the values of f can be chosen indepen-
dently of the points on X, we have

P (x ∈ ker f ∩X|x ∈ X) =
1
q
.

Corollary 2.13. Consider the random variable

γq,∩ : Rc → [0, 1],

γq,∩(f1, . . . , fc) = |V (f1) ∩ · · · ∩ V (fc)|/qn.

Then, the expected fraction of points is E(γq,∩) = 1
qc .

Proof: Use Proposition 2.12 inductively.

Notice that for polynomials f1, . . . , fc, the expected
codimension of V (f1, . . . , fc) ⊂ An is also c.

Proposition 2.14. (Substitution.) Let

Rm = map(An(Fq),Am(Fq))

and X ⊂ Am(Fq) be a subset. Consider the random vari-
able

γq,subst : Rm → [0, 1], γq,subst(φ) = |φ−1X|/qn.

The distribution of γq,subst is

P (γq,subst = k/qn) = B (qn, γq(X), k) .

In particular, the expectation value of γq,subst is
E(γq,subst) = γq(X) = |X|/qn.

Proof: Choosing functions f1, . . . , fn is equivalent to the
independent choice of the image points. Therefore, the
probability of φ−1(X) containing exactly k points is the
same as the probability of hitting k points of X when
choosing qn points in Fn

q . This gives the desired binomial
distribution.

3. DETERMINANTAL VARIETIES

Even though we have shown that E(γq) = 1
q with a small

variance on the set of all functions from A to Fq, there
are special classes of functions that have larger expected
γq. It turns out that this behavior is common for deter-
minants.
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FIGURE 3. Singular curves in P2. The graph shows the expectation values for various classes of polynomials in a large
number of variables and the measurement for S8, the hypersurface of singular plane curves of degree 8. Note that the
graph shows that about 70% of all plane curves over F2 are singular.

Proposition 3.1. Let X ⊂ Anm be the determinantal va-
riety of n×m matrices with n ≤ m of rank less than n.
Then, the fraction of rational points of X is

γq(X) = 1−
n−1∏
i=0

(
1− 1

qm−i

)
,

i.e., X contains γq(X) · qnm rational points.

Proof: We prove by induction that the number of matri-
ces that have maximal rank is

n−1∏
i=0

(
qm − qi

)
.

M is a matrix of full rank if and only if the first n − 1
rows form a matrix of full rank and the last row is linearly
independent of the first n− 1 rows. Since there are qn−1

linear combinations of the first n − 1 rows, we obtain
another factor (qm − qn−1).

Corollary 3.2. On the space of matrices Rnm, consider
the random variable

γq,det : Rnm → [0, 1],

γq,det(M) = |{x ∈ An | rankM(x) < n}|/qn.

Then, the fraction of zeros has expectation value

E(γq,det) = 1−
n−1∏
i=0

(
1− 1

qm−i

)
=

1
qm−n+1

+ . . . .

The distribution of γq,det is

P (γq,det = k/qn) = B(qn, E(γq,det), k).

Proof: Substitute functions for the variables in the
generic n×m matrix and use Proposition 2.14.

In the special case of n× n square matrices we have

E(γq,det) = 1/q + 1/q2 − 1/q5 − 1/q7 +O(1/q12),

for n ≥ 12.

Example 3.3. (Example 2.2 continued.) For small primes
the divisor Sd has more points than expected for irre-
ducible polynomials, but not enough to seem reducible;
see Figure 3. Our measurements are consistent with the
well known fact that Sd is an irreducible determinantal
hypersurface [Gel′fand et al. 94, Chapter 13, Proposi-
tions 1.6 and 1.7].

4. TESTING

To decide between two binomial distributions with suc-
cess probabilities p1 < p2 and N experiments, we com-
pute empirical probability p̄ = k

N and decide for p1 if

p̄ ≤ pmiddle :=
√
p1p2

√
p1(1− p2) +

√
p2(1− p1)√

p1(1− p1) +
√
p2(1− p2)

≈ √p1p2.
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FIGURE 4. Points on the dual variety of a curve in C ⊂ P4. C has a simple node over F7 and is smooth over Fp for
p = 5, 11, 13, 17.

To achieve a confidence level of 1− ε we choose s = s(ε)
such that

Φ(s) =
1
2

erfc
s√
2

=
1√
2π

∫ ∞

s

e−
x2
2 dx = ε,

where erfc is the complementary error function and N

such that

√
N ≥ s(ε)

√
p1(1− p1) +

√
p2(1− p2)

p2 − p1
. (4–1)

This is certainly true if we choose

√
N ≥ s(ε)

√
p1 +

√
p2

p2 − p1
.

We will now use this formula to estimate the number of
evaluations needed in our irreducibility test. By Propo-
sition 2.8, we know that 1− ε of all polynomials satisfy

γq ≤ 1
q

+ s(ε)

√
1
q (1− 1

q )

qn
.

In these cases, we will only overestimate N in Equation
(4–1) if we set

p1 =
1
q

+ s(ε)

√
1
q (1− 1

q )

qn
.

Similarly, we know that 1 − ε of all products of polyno-
mials satisfy

γq ≥ 2q − 1
q2

− s(ε)
√

2q−1
q2 (1− 2q−1

q2 )

qn
.

Again, we will only overestimate N in Equation (4–1) if
we set

p2 =
2q − 1
q2

− s(ε)
√

2q−1
q2 (1− 2q−1

q2 )

qn

in these cases.
The decision based on the empirical probability p̄ = k

N

is then correct in 1 − ε cases of the experiments. Note,
however, that for fixed n and q we cannot make ε arbi-
trarily small, since we need p1 ≤ p2.

We use
p1 ≤ p2 ≤ 2

q

in the numerator and

p2 − p1 ≤
(

2q − 1
q2

− s(ε)
√

2
qn+1

)
−
(

1
q

+ s(ε)
√

1
qn+1

)

≤ q − 1
q2
− s(ε)

√
2 + 1

q
n+1

2

in the denominator to see that
√
N ≥ s(ε) (2q)

3
2

q − 1− s(ε)(√2 + 1)q−
n−1

2

,

which approaches 2s(ε)
√

2q for large n or q. Since s(ε) =
O(
√− ln(ε)), we conclude that N grows like O(−q ln ε).
For ε = 0.5% and s = 2.575829304, the number of

trials needed is shown in Table 2. In Tables 2 and 3, ∞
indicates that there are not enough points in An(Fq) to
perform the test for the required ε = 0.5%. In the cases
where we can perform the test, the deciding number of
successes Npmiddle is shown in Table 3.
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FIGURE 5. Surfaces in P4. The 5% and the 95% quantiles of γq for the Chow forms of 100 Bordiga surfaces, elliptic
scrolls, and their unions compared with the error estimates for counting points on codimension 2 determinantal varieties
rescaled. Using the geometry of Bordiga surfaces we obtain a better estimate.

2 3 5 7 11 13 17

n = 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 3 ∞ ∞ ∞ 27473 2338 1897 1661
n = 4 ∞ ∞ 1095 644 631 679 800
n = 5 ∞ 1685 366 367 481 549 693
n = 6 ∞ 382 258 307 446 520 670
n = 7 4361 223 224 288 436 512 665
n = 8 614 173 211 282 433 510 664
n = 9 293 151 205 279 432 509 663
n = 10 196 140 203 278 432 509 663

TABLE 2.

2 3 5 7 11 13 17

n = 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 3 ∞ ∞ ∞ 5430 299 206 138
n = 4 ∞ ∞ 301 128 80 73 66
n = 5 ∞ 745 100 73 61 59 57
n = 6 ∞ 169 71 61 56 56 55
n = 7 2760 99 61 57 55 55 55
n = 8 388 76 58 56 55 55 55
n = 9 185 67 56 55 55 55 55
n = 10 124 62 55 55 55 55 55

TABLE 3.

5. HIGHER CODIMENSION

In principle this method can be applied to algebraic sets
of higher codimension.

Consider two surfaces in P4 and their union. We would
like to distinguish their union from the irreducible exam-
ples. One possibility is to consider the Chow form, which
is a determinantal hypersurface on G(2, 5) in this case.
In Figure 5, we indicate the 5% and the 95% quantiles
of γq for the Chow forms of 100 Bordiga surfaces, elliptic
scrolls, and their unions. A second possibility is to count
points and apply Corollary 3.2. As Figure 5 shows, there
is no difference between the two methods. The formula
for the error term underestimates the number of points
on a elliptic scroll, because the scroll is irregular.

The method of searching points at random in higher
codimensional subsets of rational varieties helped us in
proving the existence of several interesting components
of Hilbert schemes [Schreyer 96, Schreyer and Tonoli 02,
v. Bothmer et al. 04].
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