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We give an algorithm for computing the special values of twisted
standard zeta functions of elliptic modular forms by using the
pullback formula for the Siegel-Eisenstein series of degree 2.

1. INTRODUCTION

Let M and k be positive integers and ¢ a Dirichlet
character modulo M. For a normalized cuspidal Hecke
eigenform f of weight k and Nebentypus ¢ with respect
to T'o(M), and a Dirichlet character xy modulo N, let
L(f,s,x) be the standard zeta function of f twisted by x.
(For the precise definition of the standard zeta function,
see the paragraph immediately preceding Theorem 3.3.)
The twisted standard zeta function of an elliptic modular
form is sometimes called a twisted symmetric-square L
function, an important subject in number theory, and is
related to many other areas, especially to Galois repre-
sentations. For examples, see [Doi et al. 98] and [Dummi-
gan 01]. The special values of the standard zeta function
are particularly important. To be more precise, assume
that k is even, and set

L(f,m, x)
7rk+2m <f’ f>

for a positive integer m < k — 1 such that (—1)"~! =
Xx(—1), where (——) is the normalized Petersson product.

As is well known, these values are algebraic numbers
and their qualitative natures have been fully investigated
by many people (see [Sturm 80, Shimura 00, Bocherer and
Schmidt 00]). To investigate various problems related to

L*(fa m, X) =

these values, it is important to compute these values ex-
actly. Several people have considered algorithms for com-
puting these values and have carried out the computa-
tions. Sturm [Sturm 80] gave an algorithm for computing
these values for a general y. However, it seems difficult to
give exact values by direct use of his method. Zagier [Za-
gier 77] gave an explicit formula expressing L*(f, m, x)
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in the case where M is a square-free positive integer con-
gruent to 1 modulo 4, ¢ is the Kronecker character (%)
corresponding to the extension Q(v/M)/Q, and Y is triv-
ial. Stopple [Stopple 96] gave an explicit formula express-
ing L*(f,m,x) in the case M = 1 and yx is a quadratic
character of prime conductor ¢ = 1 mod 4.

In [Katsurada 03], we announced some formulas which
seem useful for the computation of L*(f, m, x) in the case
where M =1 or a prime number congruent to 1 modulo
4, ¢ = (%), and x is not necessarily a quadratic char-
acter of prime conductor p such that x(—1) = 1. In this
paper, we give a complete proof of these formulas un-
der more general settings. The main tool is the pullback
formula of the Siegel-Eisenstein series of degree 2 due to
Bocherer and Schmidt [Bocherer and Schmidt 00] and
Shimura [Shimura 00]. Such a formula has been used
to study the qualitative nature of the special values of
the standard zeta function. However, as far as the au-
thor knows, no one has used the formula to give its exact
values. In this paper, we carry out such a computation.

To explain our method briefly, for simplicity M #
p. Let k and [ be even positive integers such that
Il < k. Then we define a certain Siegel-Eisenstein se-
ries Ej,(Z, Mp®, ¢, s) in Section 2. We write e(u) =
exp(2my/—1u) for a complex number u. Then, as is well
known, if | > 4, E3 ,(Z, Mp?, ¢x,0) becomes a holomor-
phic modular form of weight { and of Nebentypus ¢y;
and has a Fourier expansion of the following form:

E3,(Z; Mp®,6X,0) = Y cna(A, Mp?, ¢x, 0)e(tr(AZ)),
A

where A runs over all positive definite half-integral ma-
trices of degree 2, and tr(—) denotes the trace of a matrix.

Set B B )
C2,Z(A7 O) = CQ,Z(A, Mp ) ¢>27 O)

= A(lv 0)_102,Z(A7 Mp27 (b)_(? 0)
with a suitable normalizing factor A(l,0)~! (see Theorem

2.1). For two positive integers mq,ms set

6(Tnla maj lv 0) =
S e ([ ™ 72 0) G mims, x(r) ()
’ r/2 mg )’ ! ’ ’
r2<4mims
where Gf‘l(u7 v) is the polynomial introduced by Zagier
[Zagier 77], and 7(¥) is the Gauss sum (see Section 3).
Furthermore, set
t(m;1,0) = e(p, p°m;1,0) — ¢(p)p"~*e(p,m;1,0),
and

Fop(2) =Y t(mil,0)e(mz).

=1

Then by the holomorphy of the Eisenstein series and
the theory of differential operators on modular forms,
due to Ibukiyama [Ibukiyama 99], F,,(z) belongs to
Si(To(Mp), @) (see Sections 3 and 4). Now, take a ba-
sis { fi}91, of Sk(o(M), ¢) consisting of primitive forms,

and write
oo

filz) =) ai(m)e(mz)
m=1
with a;(1) = 1. Then, by the pullback formula due to
Bocherer and Schmidt [Bocherer and Schmidt 00], we
have

dy
Fop(2) = ipar p_ L (firl = 1,00E fi(2),
i=1
where 1,1 p. a is a rational number explicitly determined
by k,l,p, M; and ¢; is a certain algebraic number with
absolute norm 1; and
(oo}
fi(z) =Y ai(pm)e(mz)
m=1
(see (2) of Theorem 4.2). We restate an explicit form of
¢2,1(A,0) (see Theorem 2.1).

Thus, by the above formula combined with the
trace formula of Hecke operators, we can compute
the norm Ng, (L*(f,m,x)) for a primitive form f €
Sk(To(M), ¢) and for an odd integer m such that 3 <
m < k — 1. Here Ky, is the field over Q gener-
ated by all the eigenvalues of Hecke operators relative
to f and all the values of x (see Theorem 4.6). If
x? is not trivial, E35(Z; Mp?, ¢x,0) becomes holomor-
phic, and by the same procedure, we obtain an ex-
act value for Ng, (L*(f,1,x)). On the other hand,
if x? is trivial, E§’2(Z;Mp2,q5)2,0) is not holomorphic.
However, Ej3,(Z; Mp?,¢x,—1/2) is holomorphic, and
by the same procedure, we obtain an exact value of
N, (L*(f,0,x)); and by the functional equation due
to Li [Li 79], we can also compute Nx, (L*(f,1,x)) (see
(2) of Proposition 4.7). In the case M = p we obtain
similar results (see (1) of Theorem 4.2 and (1) of Theo-
rem 4.6). In Section 5, we give some numerical examples,
and discuss some related topics.

As an application of Theorem 4.2, we show that a
prime factor of the denominator of L*(f,m,x) gives a
congruence between f and another primitive form (see
Theorem 4.10).

By using the method in this paper, we expect more
fruitful results about the special values of standard zeta
functions of other modular forms, for example, of Siegel
modular forms and of Hilbert modular forms. We will
discuss these topics in subsequent papers.
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2. FOURIER COEFFICIENTS OF
SIEGEL-EISENSTEIN SERIES

Let GSp;(R) be the group of proper symplectic simili-
tudes of degree n, and H,, Siegel’s upper half space of de-
gree n. Asis usual, we write v(Z) = (AZ+B)(CZ+D)~!
and j(v,Z) = det(CZ + D) for

A B
v= ( o D ) € GSp;; (R).

We write fly(2) = (det)*?j(v,2) 7" f(7(2)) for v €
GSpt(R) and a C*°-function f on H,,. We simply write
fly for fli~, if there is no confusion. Let Sp,(Z) be the
Siegel modular group of degree n. For a positive integer
M, we denote by T (M) (respectively Ty (M)) the
subgroup of Sp,(Z) consisting of matrices whose lower
left n x n block (respectively upper right n x n block) is
congruent to O modulo M.

For a Dirichlet character ¢ modulo M, we denote
by ¢ (respectively ¢ ) the character of Fg") (M) (respec-
tively I‘g(")(M)) defined by ¢(v) = ¢(det D) (respec-
tively ¢/ () = ¢(det A)) for

A B
(e 5)

We denote by 1, the trivial character modulo M and,
in particular, set 1 = For a Dirichlet character ¢
modulo M, we denote by Mk(F(n)(M),¢) (respectively
Mpe (I‘én)(M ), #)) the space of holomorphic (respectively
C*°-) modular forms of weight k and Nebentypus ¢ with
respect to F(()")(M), and by Sy (I‘(()n)(M), ¢) the subspace
of My(T{"™ (M), $) consisting of cusp forms. In particu-
lar, if ¢ = 1,7, we write Sg (T (M) for S, (TS (M), ¢).
Furthermore, for a subgroup I' of Sp,,(Z) we denote by
I'o the subgroup of I' consisting of matrices whose lower
left n x n block is O.

For a function f on H, we write f¢(Z) = f(—2).
Let dv denote the invariant volume element on H,, given
by dv = det(Im(Z)) "' Ai<j<i<n (dxji Adyj). Here, for
Z € H,, we write Z = (z,)++/—1(y;i) with real matrices
() and (yj;). For two C*°-modular forms f and g of

weight k& and Nebentypus ¢ with respect to F(()") (M), we
define the Petersson scalar product (f, g) of f and

g by

F(()n) (M)

P = || sy, TP ()

provided the integral converges.
Let ¢ be a Dirichlet character modulo L. For a positive
integer M such that L|M, we denote by ¢, the Dirichlet

character modulo M induced by ¢. Let f and g be ele-

ments of M,SO(I‘(()")(Ml),gﬁMl) and M,?O(F(()")(Mg),QSM2),

respectively. Let N be any common multiple of M;

and M. Then, f and g belong to M,;’O(I‘én)(N)7 on), and
-1

the value m(@Fén)(N)) (f, g}an)(N) does not depend on

the choice of N, where <I>F<n> is the fundamental do-
0

(N)
main for
H,, modulo T (),
and m(@r(”) fr(,L>(N)\H dv. We denote this value

by (f,q) and call it the normalized Petersson product of
fand g.

For a Dirichlet character v, we denote by L(s, ) the
Dirichlet L-function associated with . Let n, [, and M
be positive integers. For a Dirichlet character ¢ modulo
M such that ¢(—1) = (—1)!, we define the Eisenstein

series B, (Z; M, ¢,s) b
;L,Z(Z;Mad)ﬂs) =
[n/2]
detTm(Z2)*L(1 + 25,¢) [ [ L(2l +4s — 2i,¢%)
1=1

)iy, 2)17*.

x PRRCACIVICH

FYETH (M) \I'h (™ (M)

We then define E}, ,(Z; M, ¢, s) by

:L,Z(Z;Mv ¢,S) = j(va)_lE;L,l(L(Z);M7¢7S)7

. < 0, —1, )
1, 0, ’

Let H,(Z) denote the set of half-integral matrices
of degree n over Z, and denote by H,(Z)-¢ (respec-
tively H,(Z)>0) the subset of H,(Z) consisting of pos-
itive definite (respectively semipositive definite) matri-

ces. Then, it is well known that ET*LJ(Z; M, ¢, s) belongs

to MOO(I‘(n)(M), ¢) and has a Fourier expansion of the
following form:

where

(X VI M, ,5) =
Z cn,l(AaKM7 (bv S)e(tr(AX))

AcH . (Z)

In  particular, if By, (Z;M,$,s) belongs to

M (T (n)(M),¢), it has the following Fourier expan-
sion:

ni(ZiM g5 = Y

A€EH L (Z)>0

cni (A, M, ¢, s)e(tr(AZ)) .
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Throughout the rest of this paper, we exclusively con-
sider the case n = 2.

Let | be an even positive integer. Let M > 1 be
an integer, and let ¢ be a Dirichlet character modulo
M such that ¢(—1) = 1. Then, E3,(Z;M,¢,0) be-
longs to Ml(I‘(()Q)(M), @) in the case | > 4. Furthermore,
E35(Z; M, $,0) belongs to My(TSY (M), ¢) if ¢° # Lar.
We remark that E3,(Z; M, ¢,0) is neither holomorphic
nor nearly holomorphic in the sense of [Shimura 00]
if > = 1y. However, E5,(Z; M, $,—1/2) belongs to
Mg(FéQ)(M), @) in this case.

Now, to see the Fourier coefficient of the Eisenstein
series, for an element

apn az/2
A= € Ho(Z),
(a12/2 asa ) 2(2)
set e = eq4 = GCD(a11,a12,a922). For an element A €

H2(Z) such that rank A =1 and for each prime number
p, define a polynomial F},(A, X) as

ordy(ea)
F:D(AvX) = Z (pX)",
i=0
where ord,, denotes the normalized additive valuation on
the field of p-adic numbers. For an element

A= (,my 2 ) e ra(2)on
write —4det A =9 Af2A with b4 the fundamental discrimi-
nant of Q(v/—det A) and f, a positive integer. Further-
more, let x4 = (*2) be the Kronecker character cor-
responding to Q(v/—det A)/Q. For a prime number p,
define a polynomial F,(A, X) as

ordy,(ea) Aordp(fA)—i .
F(AX)= > (0°X) > (0°X* —xalp)pX
i—0 =0
ordy,(ea) ordy (f,)—i—1

x> X))y (X)L
i=0 j=0
For a Dirichlet character 1 modulo L, let m,, denote
its conductor, and 1(® the associated primitive char-
acter. Furthermore, let B,, ., be the mth generalized
Bernoulli number associated with v, and let 7(1)) be the

Gauss sum defined by
W)= Y w(X)e(X/L).
XmodL

Let [ be an even positive integer, and s = 0 or —1/2. Let
¢ be a Dirichlet character such that ¢(—1) = 1. Now as-
sume that the triple (I, s, ¢) satisfies one of the following
conditions:

(h-1) I >4 and s =0;
(h-2) | =2,5 =0 and ¢? is not trivial;

(h-3) I=2and s = —1/2.

Theorem 2.1. [Katsurada 99, Shimura 00]. Let M > 1 be
an integer, and ¢ a Dirichlet character modulo M such
that (—1) = 1. Let | be an even positive integer, and s =
0 or —1/2. Assume that the triple (1, s, ¢) satisfies one of
the Conditions (h—1), (h-2), or (h-3). First, assume that
(1,8,0) satisfies either Condition (h—1) or (h-2). Then
for A€ Ho(Z)>¢ set

EQ,I (A7 0) - 62,l(A; M7 ¢1 0) =
(4det A) 326 FplA, ()" B,y G
x7((¢xa) @) (—v *Uméq:;)(o)

< [Ty (1= (ex2) O (p)p™")
A>0

0 otherwise.

Next assume that (1, s, ¢) satisfies Condition (h—3). Then
for A € Ha(Z)>¢ set

Ca2(A,—1/2) = C22(A; M, ¢,—1/2) =
- Hp\fA Fy(A, ¢)(p)P_1)Bl,(¢XA)(0>

< [ppar (1 = (6x4) () A>0
—1/21L,c, Fo(A, 6(p)p™")
X HPIM(1 - (¢2)(O) (p)p)Bz,(¢2)<o) rank A =1

/8T Lar{(1 = (6) O (p)p)(1 = (8) D (p)p)}
XBQ7(¢2)(0)B2,(¢)(0) A=0

Let
(_1)1/22lﬂ.31—3/2

L)?ri-1/2)
forl>2 and s =0, and let

A(l,s) =

871'5/2
A(l,s) =
forl =2 and s = —1/2, where T' (=) is the Gamma

function. Then we have

CZ,Z(A; Ma ¢7 S) = A(l; 8)62,1("4; Mv d)v 8)

Remark 2.2. Assume that (I,s,¢) satisfies Condition
(h-1) or (h—2). Let m be the conductor of ¢, and write

fa = fafa with fy = Hp\mpordp(ff‘) and (f4,m) = 1.
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Then, by the functional equation of F,(A4, X) (see [Kat-
surada 99]), we can rewrite ¢é3;(A,0) as

T A

plfA

X Blfl,(¢XA)(0> (_\/—71)7((¢XA)(0))m%¢;A)(0)
< JTT( = (exa)@@)p' ). (2-1)

p|M

G2,1(A,0) = (Joalf'y )% 26(f 4

Let ¢ be a Dirichlet character modulo M with con-
ductor m such that ¢(—1) = 1. Set m' = M/m. If |p4] is
prime to m, we have

7((¢xa) ) = V=1d(04)xa(m)7(8)0a]"/?,
Mgy a)0 = mfdal;
and
[T = (ex) Q@) = T 1= 6Oxalp)p' ™).
p|M plm/

Thus if 4det A is prime to M, we have

$(—4det A) [] F,(A

P‘fA
X B xamxalm)T(@)m

x [T = (eoxa)@)p' ™).

p|lm’

2,(A,0) = L o(p)p' )

1-1

(2-2)

In particular, if M is a square-free odd positive integer
dividing mi;meo and r is an integer prime to mime, we
have

Cgl(AO HF )

plfa

X B_) i ®

x7(@ym " T (1 = (exa) O (0)p' ™)

plm’

o my r)2
A= < /2 moy > ’
On the other hand, we have

=[] Fo(A é(p

plfa

3/2-1
X B 1 Gxa® M(gxa)©

< [T = (exa) @ w)p' ),

p|M

for

@2,1(A, 0) P (oalfy ) 2/

(2-4)

if 2 = 17. Thus if ¢? = 137 and [p4| is prime to m, we
have

¢2.1(A,0) H F,(A, o(p ) L 177(¢XA)(0)m3/2*l
plfa
< JT (= (exa) @ @)p' . (2-5)
p|lm’

Assume that M is a square-free odd positive integer
and that [v4] is prime to m. If ¢ is primitive,

[T - (ex)@@p'") =1.

p|M

On the other hand, let ¢ = 1,;. Let
A= ( mi T2 ) € Ha(Z) 0

/2 Mo
with myms divided by M and r prime to mims. Then,
éQ’Q(A;M, ].M,—]./Q) :0. (2*6)

Furthermore, for any positive integer [ > 2, we have

~[I 5B, o [T,

plfa pIM

62,[(14; M7 ]-Ma 0) -

(2-7)
provided (I, s, ¢) satisfies Condition (h-1) or (h-2). On
the other hand, if ¢ = 1,; but ¢ # 1,,, we have

Co2(A; M, ¢, -1/2) =
—15 [Ty, Fo(A 0@)p™") Tl (1 = p)
rank A =1

4%5 Hp|M{(1 -p)(1— (@b)(o) (P)p)}Bz,(¢)(0>

A=0
(2-8)

3. PULLBACK FORMULA

Now we define Bocherer’s differential operator. For de-
tails, see [Bocherer and Schmidt 00]. First we define the
differential operator D, on the module C*°(Hs) of C'*°-
functions on Hs by

Do(f) == (a—1/2)0f /0212
+ 212 (32f/32115222 - iazf/[)zﬂ)

for f € C>*(Hs) and

z z
7 — 11 12 € H,.
Z12 222
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For a nonnegative integer v define the differential opera-
tors DX and D% by

D’ =Dpsy1...Da,
and
NY Ty
Da - Da‘z12=0'

Furthermore, for s € C and f € C*°(H,), we define 15(’;78
by

DY, (f) (211, 222) = (y11922)° DYy o (det Y5 £(2)),
where 7 = X ++1/—1Y € Hy and

y — ( Y11 Y12 ) )
Y12 Y22

Let ¢ be a Dirichlet character modulo M. Then, it
is well known that D} and f)i’s map MZOO(FEQ)(M),(M
into Mpe, (DY (M), ¢) @ Mg2, (TSY (M), ). Further-
more, @l” maps Ml(Féz)(M), ¢) into MH_Z,(Fél)(M), P)®
MlJrl,(I‘él)(M),(;S)7 and, in particular, if v > 0, its im-
age is contained in SZ+V(F(()1)(M), D) ® SZ+V(F61)(M), o).
Clearly these two operators, D; and Dj, coincide
with each other if s = 0. Furthermore, for F(Z) €
Mpe(T5 (M), ¢) and g(z1) € Si(FSY (M), ¢) we have
the following identity as a function of zj:

(DY (F)(~, 22),9) = dis (D J(F) (- 22), 9)

if both sides are cusp forms (see [Bocherer and
Schmidt 00, (1.30)]).
Here, we take the inner product as a function of z;

(3-1)

and
v

l—1+v—p/2
Hle—l—s—l—i—u—,u/Q

dl,u,s =

In addition to the above notation, let N > 1 be a pos-
itive integer, and x a Dirichlet character modulo N.
Assume that N? divides M. For positive even integers
I,k such that | < k we define a function €(z1,23) =
€s k(21, 22;1, M, p, x,s) on Hy x Hy:

@2,k(Zl,ZQ;Z,M,¢,X7S) =

o Y )
2€Z/NZ
* — Z1 0
XE2,I(;Ma¢X»S)|kR(x/N)> ( 0 2 )a
where

1 0 0 «x
01 = O

R@) =19 091 o
0 0 0 1

Then (see [Bocherer and Schmidt 00]), €(z1, 2z2) belongs
to MEe(D§Y (M), ¢) @ Mpo(D§Y (M), ) .

Now to see an explicit form of Dy, for an even positive
integer | and nonnegative integer v we define a polyno-
mial G (u,v) in u,v by

v

y I+2v—p—2)! b
G (uv) = Yo (- L2 o,

pn=0

This polynomial was introduced by Zagier [Zagier 77].
We define Ibukiyama’s differential operator gfu on
C*>(Hz) by

gf” = G?”(@Q/azu()zgz, 8/8212”212:0.

We note that

G (e(tr(AZ)) =
G?¥(a11a92,a12)(2mV—1)* e(a11211 + azz22) (3-2)
for /
2
A— aii @12
( aia/2  a
and

g Ar z2 )
Z12 %22
It is well known that G?” is a constant multiple of @12”

(see [Ibukiyama 99]). More precisely, by calculating
Gi" (+73) and D} (215) for

7= ( “L
212

_ (I+2v—2)! ﬁl%_ (3-3)
[T (e/2)(0 =1+ 20 — p/2)

By (3-3), for F(Z) € M(T{"(M),¢) and g(z1) €
Si (TS (M), ¢), we have

<gl2V(F)(_7 Z2)a9> = el,2u,s<b;:s(F)(_’ Z2)7g>

if both sides are cusp forms, where

(I +2v—2)!
€l,2v,s = 2% .

[L=i(/2)( = 1420 —s — p/2)

Now for even positive integers [, k such that [ <k, set

52,]6(217 223 lyM7 ¢7X? 3) =

> x(@)

T€Z/NZ

212
H
29 > € 2,

we have

2
glV:

(3-4)

(2my/~1)! G

z2
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Then, as is easily seen, & (21, 22;1, M, ¢, x, s) is a con-
stant multiple of €5 1, (21, 2251, M, ¢, x, s) as a function of
z1 and 29, and therefore, it belongs to M °(I'y(M), ¢) ®
M>(To(M), ¢). Furthermore, regarding the holomorphy
and the cuspidality of & (21, z2;1, M, ¢, X, s), by a care-
ful examination of the behavior at cusps, we have Propo-
sition 3.1.

Proposition 3.1. Let k and 1 be positive even inte-
gers such that | < k, and s = 0 or —1/2. Let ¢
and x be Dirichlet characters modulo M and N, re-
spectively, that satisfy the above conditions. Assume
that the triple (I,s,¢X) satisfies one of the Conditions
(h-1), (h=2), or (h-3). Then E;i(21,22;1, M, ¢, x,s)
belongs to My(To(M),¢) @ Mi(To(M),p). Further-
more, assume | < k, or k > 4 and N > 1.
Then Es (21, 22;1, M, ¢, x, s) belongs to Si(To(M), ) &
Si(Lo(M), ¢).

Remark 3.2. We remark that in the case k > 4 and N >
1, & k21, 22:k, M, ¢, x,s) belongs to Si(Lo(M),¢) @
Sk(To(M), ) even if x = 1n. On the contrary, in the
case k = 2 and y = 1y, we easily see that it does
not belong to Sk(Lo(M),¢) ® Sp(To(M),¢) by observ-
ing Fourier coefficients of E3,(Z; M, ¢,—1/2) in Theo-
rem 2.1. At present, we don’t know about the cuspidal-
ity of £2.9(21, 2251, M, ¢, X, s) for a general x that satisfies
(h-2) and (h-3).

Now by (3-4), for any f € Si(T'o(M), ¢), we have

<f’ 52,’6(217 7227 laM7¢7X’ 5)> -

(27T\/—71)l_k€[,kfl,s<fa @2,k(21a _22; l7 Ma (ba e S)> (375)

if both sides are cusp forms. Furthermore, by (3-2) and
[Bocherer and Schmidt 00, (6.11)], we have

52,]6(21? 223 la M, ¢7X? S) =

= = my /2 y1 O _
2 _ZC”(<7~/2 mz)’( 0 y2>’M’¢X’S>

X fol(mlmgm)
x T(r,x)e(mizy)e(maxs)
where we write z; = x1 + leyl, 2o = 21+ v/ —1lya, and
T(r,¢)= > ¢(x)e(rz/N)
x mod N

for a Dirichlet character ¢ modulo .
From now on, let T'o(N) = F(()l)(N). Let M and k be
positive integers and ¢ a Dirichlet character modulo M

et

. L
1) =Y a(m)e(ms)

such that ¢(—1) = (—1)¥
m=1

be a normalized cuspidal Hecke eigenform of weight k
and Nebentypus ¢ with respect to T'g(M). Then, for a
Dirichlet character y modulo N, we define the standard
zeta function L(f, s, x) twisted by x as

L(f, 5,0 = [[{(1 = x(p)apBop~* 1)

x (1= x(p)agp~*~Ft1)

7sfk+1)}71

)

x(1—x(p)Bip

where «,, 3, are complex numbers such that

op + ﬂp = a(p), O‘pﬂp = ¢(p)pk71 (376)

for each prime number p. Then by [Bocherer and
Schmidt 00, Theorem 3.1] and (3-5), we have the fol-
lowing theorem:

Theorem 3.3. In addition to the notation and the as-
sumptions as above, assume that M > 1, N? divides
M, ¢* = 1y, and x(—1) = 1. Let f € Sp(To(M), )
be a common eigenfunction of all Hecke operators. Fur-
thermore, assume one of the following conditions: (a)
k=1 (b)s =0, or (c) E;J(Z;M,qb)z,s) belongs to
Ml(FBQ)(M), ®X). Then we have

<f7 g?,k(77 —Z; l7 M7 ¢7 X g))>FO(M) = Hl7k(S)Nk+l+25_2
X MY“F2L(f{War, 1+ 25 — 1, x) f|War [ T(M/N?)(2),

where
-1 /2
ki k(s) = 2—3+21(c—l+)257rk—l—1

Tk+s—1/2)T"k+s—1)

IF'(l+s)I'(l+s—1/2)
T(k—1)
X il )
[T =i (e/2)(k =1 —s—p/2)

T(M/N?) is the Hecke operator, and
0 -1
wu=( 4 o )

Remark 3.4. We slightly change the notation in [Bocherer
and Schmidt 00]. It is not certain that the assertion of
[Katsurada 03, Theorem 3.1] holds in general. Thus we
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impose some conditions here. This does not affect our
main results. There is a minor misprint in [Bocherer
and Schmidt 00, Theorem 3.1]. On page 1,339, line
9, “21+n(n+1)/272ns77 should read 44217nl+n(n+3)/272ns7n
and this correction has been done in [Katsurada 03, The-

orem 3.1].

Now, let ¢ be as in Theorem 3.3, and assume
that the triple (I,s,¢y) satisfies one of the Condi-
tions (h-1), (h-2), or (h-3). Then we define a function
527k(21722;l,M,¢7X78) on H; x H; so that

gZ,k(zlv 223 lv Mv d)v X 8) =
SR . my 71/2 _
> Ser(( 1y 1) anens)
m1=0m2=0r2<4mims
x Gy~ myma, )T (r, X)e(m121)e(maz2),

&Q,Z << :}12 %j ) ,M,QZS)_(,S>

is as defined in Theorem 2.1. Then, by Theorem 2.1 we

where

have
52,](?('217 22, l7 Ma ¢7 X S) = AU? 8)52}]“(21, 225 lu Ma ¢7X7 S)

From now on, for a Dirichlet character 1» modulo M, we
use the same symbol 1 to denote the character modulo
M induced from v if My divides M. For a positive integer

r let
r 0
67"_(0 1>’

0)" = {florif € Sp(To(M), )},
and let Sk(To(M),¢)™*" be the space of new forms
in Sk(To(M),¢). We note that Si(To(M),d)"e"
Sp(To(M),¢) if ¢ is a primitive character of con-
ductor M. Furthermore for a primitive form f in
Si(To(M), )" let ¢y be the complex number such that
fIWar = ¢y fe. Let Ar(m) be the eigenvalue of the Hecke
operator T'(m) for a positive integer m. For an odd pos-
itive integer m < k — 1, let

and let Sg(To(M), ¢

T(k— 1)k +m— DI (m+1)
I'(k—m)
L(f,m,x)

22k+2m—4ﬂ-k+2m<f, f> ’

A(f,m,x) =

and

L(f,0
= =t
We note that m(®p,(ny)) = 5[ : [o(V)]. Thus by The-

orem 3.3 we obtain the following two theorems:

Theorem 3.5. Let the notation and the assumptions be
as before. Let p be a prime number such that p =
1 mod 4, ¢ = (&), and x a Dirichlet character modulo
p such that x(—1) = 1.

(1) Let f be a primitive form in S (To(p?), ¢)"¢“. Then,

<f7 gZ,k(_a _Z; l7p27 ¢a X> 5)> =
30+ o (p*)] ™' p" 2 A(F€, 1425 =1, X)(F, fles f(2).

(2) Let f be a primitive form in Sk(To(p), p). Then, we
have

<fa (-(:;2,’6(77 —Z; l7p27 ¢a X S)> =
3[: To(p?)] ! T2 A(f[6,p, 1 + 25 — 1,X)

X (f|0p, flp)cr f€l6p(2),

and

<f‘6pa gZ,k(fv _2; lap2a ¢7 X S)> =
3[C : To(p*)] P2 A(S, 1425 =1, X)(f, fer fo(2).

Theorem 3.6. Let the notation and the assumptions be
as before. Let po = 1 or a prime number such that pg =
1 mod 4, and ¢ = (E
number different from pg, and x a Dirichlet character
modulo p such that x(—1) = 1.

). Furthermore, let p be a prime

(1) Let f be a primitive form in Si(To(pop?),d)"v.
Then, we have

<f7 gQ,k:(77 _2;l7p0p27¢7X?3)> =
30 : To(por®)] ~'py **p 2 A(F<, 1+ 25 — 1,x)
X (f, FesAp(po) f€(2)-
(2) Let f be a primitive form in Sg(To(pop), @)™ ™.
Then, we have
<f7 gQ,k(ia lvp0p25¢7X’5)> =
3[C : To(pop?)] oy /P2 A(f418p, 1+ 25 — 1, X)
X (f16p, flop)crAs(po) f€l6p(2),
and
—Z L, pop”, §, X, 8)) =

*’C/zp“rQSA(fc,l +2s—1,x)
x (£, £)esXs o) f(2).

(f16p, Eae(—
3[T : To(pop?)] 1o
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(3) Let f be a primitive form in Sy(To(po), ¢). Then, we
have

<f7 52,143(77 _27 l7p0p27 ¢7 X5 8)> =
3[0 < To(pop®) 'po "/ *p 2 A(f4]0,2. 1 + 25 — 1, X)
X (f16p2, f10p2)cs Ap (po) f€0p2(2),

<f|6p> gZ,k(? _2; l,POPQa ¢7 X S)> =
30 : To(pop?)] "oy " 2p 25 A(f€16,, 1 + 25 — 1, X)

X (f10p, flop)csAs(po) f€[0p(2),

and

<f|(5p2 , g2,k(’7 —Z; l,popzy b, X, 8)) =
3IC : To(pop®)]'p " TP A(S 1425 = 1.X)

X (f, FyesAr(po) f9(2)-

Remark 3.7. In Theorems 3.5 and 3.6, we imposed the
same restrictions on M, N, and x as in Theorem 3.3. In
the general case, the formula becomes more complicated.
However, we can give a similar formula in the case where
M and N are square-free, which we will discuss in a sub-
sequent paper.

4. COMPUTATION OF L(f,1,x)

In this section, we give some formulas to compute
L(f, m,x) for a primitive form f € S;(T'o(N),v) in the
following two cases:

(c-1) N is a prime number p such that p = 1 mod 4,
¢ = (£), and x is a Dirichlet character modulo p
such that x(—1) = 1.

(¢2) N is 1 or a prime number py such that py =
1 mod 4, ¢ = (22), and x is a Dirichlet character
modulo p such that x(—1) = 1, where p is a prime
number different from py.

In either case, x is a primitive character modulo p,
or 1,. Furthermore, we note that Si(T'o(N),y)"*" =
Si(To(N),v) in both cases. Let M = p? or pop? for
Case (c—1) or (¢-2), respectively. From now on, let k be
an even integer not smaller than 4, and [ an even integer
such that 2 < | < k. Assume that the triple (I, s,vY)

satisfies one of the Conditions (h-1), (h-2), or (h-3). For
two positive integers mi, mo set

E(mla ma; l7 S) = E(mla maj; l7 Ma wa X S) =
~ my 1/2 _
Z CQ,[(( 7,/2 Mo )7ManaS>
r2<4mims
x GI ™ (mymg, )T (r, X).
We note that T'(r,x) = p — 1 or x(r)7(Y) if respec-
tively, x = 1, and 7 = 0 mod p, or not. Furthermore, for

each positive integer m; set

oo

fm1(22) = Z €(m17m2;l58)e(m2z2)7

m2:1

and for a prime number p let

fmlap(zz) =

o¢]

Z (e(my, p*ma; 1, 8)—1h(p)p*~2e(my, ma; 1, 5))e(mazs).

m2:1

We note that

oo
Eok(z1, 2051, Myh, X, 8) = D Fomy (22)e(mazn). (4-1)
m1:1
Take a basis {f;}7, of Sx(To(NN),) consisting of prim-
itive forms. We note that, in this case, Sk(To(N),v) =
Se(To(N), ). Let f;|Wn = c¢;ff with constant ¢,
and write

filz) = Y ai(m)e(mz)

m=1
with a;(1) = 1.
First, we have the following lemma:

Lemma 4.1. Let N be a positive integer and 1) a Dirichlet
character modulo N.

(1) Let f and g be Hecke eigenforms in Sy (Io(N
and let p be a prime number. Then we have
(189, 9) =2~ Xg (D) ([, 9)
—a(N,p)i(p)p™" (gldp, £,
where \g(p) denotes the eigenvalue of the Hecke op-

erator T(p) with respect to g, and a(N,p) is 0 or 1
according to whether p divides N, or not.

)? ,IZ])’

(2) Let g € Sp(To(N),v) be a Hecke eigenform. Let p
be a prime number dividing N. Then we have

(965, 9) = P~ *X;(p) (g, 9)-
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(3) Let f € Sp(To(N), ) be a primitive form. Let p be a
prime number that does not divide N. Then we have

24 (p) A (p)

(16 £) = 252 g ),
and
<f|6p2 ) f> =
@) A () —vpp~ (1 +p7Y) O f)
L4+p-t o
Proof: ~ The assertions follow immediately from
[Shimura 76, (2.5)] and [Shimura 76, Lemma 1]. d

Now we compute the value A(f,1, x).

Theorem 4.2. Let the notation and the assumptions be as
before.

(1) In Case (c-1), for any even positive integer | < k,
we have

fp(ZZ) — 3pk/2+l+2571(p + 1)71
dy

X ZA(flvl +2s — 17X)€1fz(22)

i=1

(2) Let t,, = po+ 1 or 1 according to whether py is a
prime number or 1. Then, in Case (¢-2), for any
even positive integer | < k, we have

1/2
]_—p,p(ZQ) _ 3tp01p0/ pk+l+23 2
dy

< N A(fi 1+ 25 — L)@ fi(z2),

i=1

where we write f(z) = Y05 a(pm)e(mz) for a
modular form f(z) =Y °_, a(m)e(mz).

Proof:

(1) Set E(z1,22) = ~<S'~27k(zl7 22;1,p%,1, X, 8). Then by
Proposition 3.1, (21, 22) belongs to Sk (To(p?),v) ®
S (To(p?),1). As is well known,

Sk(To(p?),v) = Sk(To(p), ¥) ® Sk(To(p), )™
iSk(Fo(p2)71/J)new~

Let
di = dimSy(To(p), )

and

dy = dimSg(T'o (p2) )"

Take a basis {g;}92, of Sg(To(p?),1)™" consisting
of common eigenfunctions of Hecke operators. Then

{fi (=1,2,...,d1), fildp, i =1,2,...,d1),

g; (l = 1,27 7d2)}

forms a basis of Si(To(p?),?). Let ¢; be as above.
Then, we have f;|W, = cff, filW,e = ¢ f{|0p.
Furthermore, we have g;|W,2 = cg{ with constant
c;. From this we have f;|6,|W,2 = ¢;ff. We note
that (g;,g;) = 0 for any 1 < i # j < dg, and
(firgj) = (g5, fi) = 0 for any 1 < i < dy and
1 < j < ds. Thus, by Proposition 3.1, we have

21722 Z bzggz 21 gj 22)

,Jl

+ZawﬂaM@

,Jl

+Za”ﬂamﬂw

,Jl

+demzmw>

1,j=1

dy
+ 3 al Y il (21) £110,(22).

ij=1
Now let

= Z bl(m)e(mZ) (Z - 1727 "'7d2)

m=1

with b;(1) = 1. Then by (1) of Theorem 3.5, we have

<gi7‘§(77 _72)> = 3p (p + 1) ! l+25A(gicvl +2s — ]-7X)
<9i79i> cig5 (22)

bij (9i:9i) 95 (22).

||MP~

Since g1, ..., gd2 are orthogonal with each other, we
have b;; = 3p~ ' (p+1)"'p!*25A(g;, 1 +25 — 1, x)c} or
0 according to whether ¢ = j, or not. Furthermore,
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by (2) of Theorem 3.5, we have

—m;)) =3+ 1)
X pHEN(FELp, 1425 — 1, )

X (filop, fildp)cifi|op(22)
dq
= Zai?”’ (Fir Fi) F5 (22)

<fiag(7a

+Z OV Fi, £ 2185 (22)

GO iy Fi18p) £5 (22)

dy
+2_ay

j:1

+ Za“ D, Fil0) 15160 (22).

We note that

A(ff10p, 1 +2s—1,x) = A(fi, 1 +2s — 1, %),

and

(fi, £il0p) = X @) 2 fi fi), (Fil s fil6p)
= (fi, fi)-

Thus for any 1 < i < d; we have

01) v~ _ 1,1
az('j )+)\_() k/2 ( ) _

ptp+ 1)t ”zsA(f l+2s—1,x)c;ior 0

according to whether ¢ = j, or not. Similarly, we

have
00 4 Xl =

for any 1 <4, j < d;. Similarly, by taking the inner

product of f£;0,(21) against (21, —%3), we have

Xi(p)p /2 (Q,o)+ (1,0) —

p~tp+ 1)t HQSA(fz,l +2s—1,x)¢; or 0
according to whether ¢ = j, or not, and
, —k/2_(0,1) (1,1 _
Ai(p)p a;;" a7 =0
for any 1 <4,j < d;. Thus we have

L0 _ =3 (p+ 1)~ 1ptt2s=R/2 ), (p)
i 1 —p=FX(p)|?

A(fi,l+2s—1,x)E

and
Q10 _ ,01) _ _ploR2y, (p)aqq,o)
(1 1) 17’6)\1‘(]))2(1(‘(')70)
for any ¢ =1, ...,dy; and
0,0) _ 10 _ 01 _ (11 _
a0 =0 = = Ay =0

for any 1 <14 # j < dy. Thus we have

szzgz z21 gz 22

+ Zagf’o){fi(zl)fi(@)
=1

P 2N (p) fi(21) fil0p (22)
PN (D) fil6y (21) fil22)
0 NP0 (1) fildp(22) |

We note that b;(pm) = 0 and a;(pm) = \;i(p)a;(m).
Thus, comparing both sides of (4-1), we have

Z“(O 0){

Z17 Z2

fz(ZZ)

P RN (9)2 f16p(22)
PPN (p)p* fi(22)

+P1_k>\i(p)2pk/2fi|5p(22)}

dy
0.0) y
= > (1= p)aXi(p) fi(z2).
i=1
We note that |\;(p)|> = p*~!. This proves asser-

tion (1).

Set 5(21722) =

known,

Sk(Fo(p0p2)7w) —

Sk(To(po), ) © Sk(ro(po)’w)(l)) @ Sk(To(po), w)(pz)
1.8,(To(pop), )™ & Si(To(pop), o)™ P
J_Sk(ro(pOpQ), ¢)new.

Take the bases {g;}%2,

g2,k(21722;l»170p27¢7Xa S)' AS is Weu

of S(Lo(pop),¥)™* and

{hi}® | of Sk(To(pop?), w)""‘“’ consisting of primitive
forms. Then
{fi (=1,2,...,d1), fildp, i=1,2,...,d1),
fi|§p2 (Z = 1727 "'7d1)7 gi (Z = 1727 "'7d2)7

gz|6p (Z = 1,2, ...,dg), hz (7, = 1,2, ,dg)}
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forms a basis of Sy(Io(pop?), /). Thus, similarly to
the proof of (1), by using Proposition 3.1, we have

Zl,Zg Zcoo)h (21)hj(22)

4,j=1
1
+ > Z b gil0pe (1) 910, (22)
a,Bf=01,5=1
2
+ > Z a5 filOpe (21) £i10,0 (22)
a,Bf=01,5=1

with ¢, b7, Ej‘ﬁ) € C. Now let fi|W,, =
Ciffs 9ilWpop = gy, and h;|Wy, 2 = c;’hf with
constant ¢. Then, we have fj|W, 2 = ¢;f{]|0p2,
filop|Whyep2 = ¢if{]0p, and g;|0,|Wy,p2 = cigf. For
a positive integer write A;(m) = Ay, (m), Ai(m) =
Ag;(m), and X;(m)”" = Ap,(m). We have \;(p) =
Y(p)Ai(p). Then by direct computation combined
with Theorem 3.6 and Lemma 4.1 we have

+ Z b“’{*Pfk/z/\i(P)/gi(Zl)gi(Zz)

i=1

+ 9i(21)9i16p(22) + 9il0p(21)gi(22)
— 07N B) 10y (21)g110, (22)}

dy
+ Z a“{pflfz'wp? (21) fil0p2 (22)
1=1

— p 2N (p) fil0p(21) fi0,2 (22)

+ fi(21) fil0p2 (22)

— p 2N (p) fil0p2 (21) fil0p(22)

+ (1 +9@Xi()?p ™" —p ) fildp(21)
x fil0p(22)

— V(P)Ai(P)p ™ fi(21) fil0p(22)

+ fil0p2(21) fi(22)

—(p)p P Xi(p) fil0p(21) fi(22)

U i) i) ],

where

ci =3p '(p+1)7" lpl+2spl b
x A(hs, 1425 — 1, %) Ai(po)”,

bi =3p ' (p+ 1)_1t;01

P2 A (g5, 1+ 25 — 1,X) A (po)’

X
1—p2 ’

and
ai =3p ' (p+1)7 ',
(1+p )P 2 pp @M (po)

A= (A +p 12— pp N2
X A(flvl+ 2s — 1)X)

Now let

gi(z) = Y _ bi(m)e(mz) (i =1,2,...,dy)
and

hl(Z) = Z Cl(m)e(mz) (Z 1723 "adS)

bi(pm) = Ai(p)

Zau{ k/2 1 -
—(p)(1 —p—luz»(p)fi(za}

+ ZPWQ 1— mgz(zQ)

1) = 1. We note that ¢;(pm) = 0 and
bi(m). Thus we have

~ —~

2)fi|5p(22)

We note that b;(p?>m) = (p)p*2b;(m) (see
[Miyake 89, Theorem 4.6.17]). Thus we have

e(p, p*m; 1, s) — b (p)p" 2e(p,msl, s)

dy
= Zan {P*(1 - p~?)ai(pm)
—(p)(1 = p~HAi(p)ai(p®m)
—(p)p* 2P (1 —p Hai(p~'m)
—p(p)(1 —p ") Ai(p)ai(m))}
dy

I
™
B
£
_
|

— ¥(P)Xi(p)*p")ai(pm)

1—-k/2
g1k Hi+2s—2 /

= Do p pO
dy
x> A(firl+ 25 — 1,X)@Ni(po)ai(pm)
=1

for any positive integer m. This proves assertion (2).
|
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Corollary 4.3. Let the notation and assumptions be as
before. Furthermore, set

37N (p + Dp~ M2 e (p,mi U, )
Case (c¢—1)

1/2 —k—1—2s5+2

Y(p)p*2e(p,msl, 5))
Case (c-2).

t(m;l,8) =4 3~ Y poPo

x(e(p, p? m,l,S)
(1) In Case (c—1), for any positive integer m we have

t(m;l, s

dy
) =Y A(fi, L+ 25 — 1,9)Ta;(m).

(2) In Case (c=2), for any positive integer m we have

dy
) = ZA(flal+ 25 — laX)?iQai(pm)'

=1

t(m;l, s

The above corollary is a certain generalization of [Kat-
surada 03, Theorem 4.1].
restricted ourselves to the case where | < k£ — 2. Fur-
thermore, in (3) of that theorem, we restricted ourselves
to the case where (%0) = 1 and m is prime to pop,
and in the above corollary such conditions have been re-
moved. We also note that, A(f,m,1,) = A(f,m,1)(1 —
p~" k+la(p)?) for a primitive form f in Si(To(p), (2)),
where a(p) denotes the pth Fourier coefficient of f. Thus
(1) of that theorem is essentially included in (1) of the
above corollary as a special case. However, for practical
computation, we include the following statement, which
can be easily proved in a way similar to Theorem 4.2.

Namely, in that theorem, we

Proposition 4.4. Let f; (i = 1,...,d1) and ¢; be as in
(1) of Theorem 4.2. Then for any even positive integer
I <k —2, we have

dy
=3(p+1)""p? D> A(fi, 1425 — 1, 1) fi(22).

i=1

.7:1 (22)

Corollary 4.5. In addition to the previous notation, set

t(m;l,s) =37 p+ D)p~2e(1,m;1, 5).

Then, for any positive integer m we have

dy

)= A(fi,1+2s — 1, 1)c2a;(m).

i=1

t(m;l, s

In the previous case, gzﬁk(zl, 293k, p,1,1,0) does not
belong to Sk(To(p),v) @ Sk(To(p),v) but belongs to
M (To(p), ) ® Mg(To(p),). Thus, by modifying the
previous method, we obtain a similar formula for the
value of A(f, k— 1,1
does not divide pop let

Biv1 = pi+1,q1,5)

[i/2] _
Z —iCr1)g"* (g0, 5)

). Now for a prime number ¢ that

fori =0,1,....,d; — 1, where ;,C,. = m We under-
stand that ;C_; = 0. For a Hecke eigenform f let Ky
be the field over Q generated by all the eigenvalues of
the Hecke operators. Furthermore, for a character Y,
let K¢, be the field generated over Ky by all the val-
ues of x. Set ey = [K; : Q], and denote by N, (c) the
norm of o over Q for o € K. Similarly, we define ey,
and Nk, (a) for a € Ky . Let {f;}¢_; be the basis of
Sk(To(N),v) as above and write K; = Ky, and e; = ey,.
Let ®(X) = ®p(,,,)(X) be the characteristic polynomial
of T(m) on Sg(To(N),v). We note that Ng,(¢;) = 1
in Theorem 4.2 and Proposition 4.4. Thus by [Goto 98,
Lemma 2.2], we obtain:

Theorem 4.6. Let the notation and assumptions be as
in Theorem 4.2 and Proposition 4.4. Let f be a primi-
tive form in Si(To(N), ), and a(q) be the qth Fourier
coefficient of f. Assume that @%(q)(a(q)) £ 0. Write

D) (X) = S bay i X' K =Ky, and e = ej..
(1) In (1) of Theorem 4.2 or Proposition 4.4, we have

Ni(A(f,1+2s—1,%x)) =

Zdl 1Zd1 1/8d1 —j j 1a(Q).
NK( ¥, (ala)) )

(2) In (2) of Theorem 4.2, if N(a(p)) # 0, we have

Ng(A(f,1+2s—1,x)) =

N St I Bay—jbj—ia(q)
" a(p) Py (a(q)) '

Now we give an exact value of A(f, 1, x) for a Dirichlet
character such that x? is trivial. For a Hecke eigenform
f € Sk(To(M), ), set

L(f,s,1)

i(f7 S, 1) = p— ,
[La (L= alp) p=s=+*1)
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and

L(f,s,9)
[Ln@—p=)

Furthermore, set, for an odd positive integer [ < k — 1,

L(f,s,9) =

T(k—D)(k+1—1)T(1+1)
T(k— 1)

L(f,1,x)
22k+2l—4ﬂ-k+2l <f7 f> ?

Af,1,x) =

X

and .
L(f,0,x)
22k =37k (f f)

for x = 1 or 4. If x? is trivial, E3 5(Z; M,4x,0) does
not belong to My (T'g(M),1x), and thus we cannot give
an exact value of A(f,1,x) by direct use of the previous

A(f.0,x) =T(k—1)

method. However, we can relate the value A(f,1,x) to
A(f,0,x) by using the functional equation. We explain
this in the following three cases:

(¢-3) M is a prime number p and x = 1;
(c-4) M is a prime number p and x = = (2);

(¢5) M =1 and x = (&) with p a prime number such
that p = 1 mod 4.

First, in Case (¢-3), set

R(f,s,1) = pleTh= D2 =3/26H 00 (s 4 & = 1) /2)
x T'((s + k)/2)D((s +1)/2)L(f, 5, 1).

Next, in Case (¢-5), for f € S(I'o(1)) and the character
x modulo p, set

R(f, 57X) — p3(s+k71)/27‘_73/2(s+k71)1—1((8 +k— 1)/2)
x I((s + k)/2)T((s +1)/2)L(f, 5, X)-

Then by Li [Li 79], we have the following functional equa-
tion:

Proposition 4.7.
(1) In Case (c¢-3),
R(f,1-s,1)=R(f,s,1).
In particular,

A(f,1,1) = p~'/2A(£,0,1).

(2) In Case (c-5), under the previous notation and as-
sumptions, we have

R(fa1_57X) :R(f’37X)'

In particular, in Case (c—5), we have

A(f,1,x) = p*2A(£.0, ).

In Case (c4), the value A(f,1,¢) can be given by a
different method (see [Zagier 77]).

Proposition 4.8. In Case (c—4), we have

Af1L0) =50 -p72),

Now we discuss congruence among modular forms. Let
K be an algebraic field, and © = Ok the ring of in-
tegers in K. Let ¢ be a prime ideal of ©, and Dq the
localization of © at q. Let f(z) =, _; a(m)e(mz) and
g(z) = >,_;b(m)e(mz) be elements of Si(I'g(M), )
whose Fourier coefficients belong to Og. Then, we write
f =g mod q if a(m) = b(m) mod q for any positive inte-
ger m. We give the following lemma which is essentially
the same as Lemma 1.4 of [Doi et al. 98].

Lemma 4.9. Let f1,..., fr be a basis of Sp(To(M),p) con-
sisting of Hecke eigenforms. Let K be the composite field
of all Ky, ,...,Ky , and O the ring of integers in K. Let
q be a prime ideal of ©. Assume that all the Fourier co-
efficients and eigenvalues of f; (i =1,..,r) belong to Oq.
Let h be an element of Si(To(M), ) whose Fourier co-
efficients belong to Oq such that

h = zr:lifi
=1

with l; € K. Assume that f1 # 0 mod q and ordg(l1) < 0.
Then there exists 2 < i < r such that

Ji = f1 mod q.

Now by Theorem 4.2, combined with Lemma 4.9, we
have the following theorem.

Theorem 4.10. Let N, p, 1, and x be as in Theorem 4.2.
Let f be a primitive form in Sp(I'o(N),1). Let O, be
the ring of integers in Ky, and q a prime ideal of O,
dividing the denominator of N, i, (A(f,1+2s5—1,%))
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but not dividing Npr, where r = 6 or (21 — 1)! according
to whether (2) of Theorem 4.2 holds, or not. Then, there
exists a primitive form g in Sk(To(N),v) different from
f such that

g=f mod ¢,

where 9" is a prime ideal of Ok, x, lying above q.

Proof: We note that the generalized Bernoulli number as-
sociated with a Dirichlet character ¢ is an algebraic inte-
ger if the conductor of ¢ is not a power of a prime number
(see [Carlitz 59, Leopoldt 58]). Thus by Equations (2-4)
and (2-5), all the Fourier coefficients of F,(z) belong to
9q in Case (c-1). Thus the assertion in Case (c-1) fol-
lows directly from (1) of Theorem 4.2 and Lemma 4.9.
In Case (c-2), F,p belongs to Si(I'o(pN),v) and its
eigenvalues and Fourier coefficients belong to 9. In this
case, we remark that ¢ does not divide both the pth
and the p?th Fourier coefficients of f. Thus we have
f # 0 mod q. Thus, again by (1) of Theorem 4.2 and
Lemma 4.9, we can show that there exists a primitive
form g in Si(To(V), ) different from f such that

g=fmodd,

where f (respectively §) is the modular form in (2) of
Theorem 4.2 for f (respectively g). Thus the assertion
can be proved by the above remark. O

5. NUMERICAL EXAMPLES AND COMMENTS

Using Theorem 4.6 combined with Proposition 4.7 we
can compute the norm of A(f,m,x). A subspace S of
Sk(To(N),v) is called nonsplitting if it is spanned by
all Galois conjugates of a primitive form in S. Take a
primitive form f of Si(T'o(1)). Assume that Si(Io(1)) is
nonsplitting. Then, Ny, (A(f,l,(%))) is independent of
f. Thus, in this case, we denote this value by L(k;l,q).
Similarly, in the case Si(I'o(q), (£)) is nonsplitting, we
deﬁneﬁ;(k,q;l, 1) and E(k,q;l,q) as N, (]\(f,l, 1)) and
N, (A(f,1,(2))), respectively, for a primitive form f
of Sk(To(q),(%)). We have computed some values using
Mathematica.

Example 5.1. It is conjectured by Maeda that Sk (I'o(1)) is
nonsplitting, and so far, this conjecture has been verified
at least for k£ < 2000 (see [Hida and Maeda 97, Farmer
and James 02]).

We show some examples of L(k; 1, q) for various k,, q.
From now on let

_ ay  az/2
[a17a27a3] - ( a3/2 (ZQ ) N

To make computations easy, for an odd positive integer
I < k—1 and a positive integer m prime to ¢, set t(m;l) =
q%/%t(m,2,—1/2) or t(m;1+ 1,0) according to whether
[ =1, or not. We note that the Gauss sum 7(x) for x is
q'/2. Thus by (2-5) we have

tm; 1) = 2/3q 742+

[29/qm]
<{ X I AEledmrxep

r=1 plf[q,qzm-,r]

k—1—
X Bl,(xx[q,qz,,,h,,,]ﬂ“) Gl+1 1(q3m, r)x(r)

(2v/am]
2 Y [T Bolle,mrlxe'™?)

r=1 P‘f[q,m,r]

x Bl:(XX[q,m,r])(O) Gf—':ll_l (qm’ T)X(T) }

Example 5.1.1. We compute L(12;1,q) for 1 <
< k—1 and some prime numbers ¢. In this case
dim S12(T'(1)) = 1. Take a unique primitive form f(z) =
Yoo a(m)e(mz) in S12(To(1)). Thus, by (2) of Theo-
rem 4.6 and (2) of Proposition 4.7, we have

L(12;1,q) = a(q)~"¢(1;1)

if a(g) # 0. Numerical examples are displayed in Ta-
bles 1-4.

The wvalues in Tables 1-4 were computed in
[Katsurada 03] except the following two cases:
(a) k = 18; and (b) £ = 12 and | = 11. We note
that, the value of L(12;1,¢q) has been obtained by Stop-
ple [Stopple 96] in the case where ¢ =5 and [ =1,3,5,7,
or ¢q = 13,17,29,37,41 and | = 1, and that all the
values in the tables can also be obtained by his method.
We note that relatively large prime numbers appear in
the numerator of L(k;l,5), contrary to the untwisted
case in [Dummigan 01]. We note that the numerator
of A(f,l,1) is conjecturally related to the order of
the Shafarevich-Tate group (see [Dummigan 01]). In

1 L(12;1,5)

1 oTF 35 . 7/510

3 | 2'.3%.7.2851/5"

5 | 219.3%.7.1511599/5

7 | 2'9.3%.73.521-205387/5%°

9 | 2%6.30.72.110308273279/5*

11 | 2213072112963 - 5523341/5°

TABLE 1.
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L(12;1,13)

214 .38 . 5% . 7.563/13"2

O© J Ot W |~

—_
—_

214 .35 . 52. 741177 - 1445419/13%¢

21935 . 5% . 7. 299696968678699/13%°

219.37.5% .73 . 312 . 5479 - 306945156059/13%

226.310. 55 . 72 . 547 - 10267 - 1634679978646831 /132"
221.39.5%.72.11-17-29 - 131 - 3331 - 868032338256361 /133>

TABLE 2.

L(12;1,17)

© ~J Ot W |~
(]
[®)
[=}

—_

—

[\]
)
[=}

271 3% . 5% . 7.2389/17"

217.35.52. 7. 477200018623 /17"
-3%.5%.7.23-29-997 - 46316422211 /17%°
272.3%.5%.7% . 167 - 11003 - 322079 - 915248119/17**
230,310 55 . 72. 43 . 892028959 - 1604767911433 /1727
3105 .72 .11 - 20790457101154865002708553 /17

TABLE 3.

L(18;1,5)

21377 11-13/5™

Ut W |~

9 220.38'72'
11 | 222.37.72.

213.3%.7.11-13-227-769/5'7
218.3%.7.11-13 - 397 - 140407/5%

217,36 73 .11 13- 1279 - 2059715807 /5%

11-13-673- 1709 - 43867 /5%

11% - 13 - 23 - 79265243 - 681985859041 /5

13 | 239.3%.73.11%.13% - 79 - 63077797 - 1535138971999/53°

15 | 2313173112 . 13% . 673 - 10420198073 - 99670080988216447 /58
17 | 224.3%0.72.11%2.13% . 17 - 131 - 263 - 205502593 - 31922855977 /5%

TABLE 4.

our case, as suggested by the referee, arguing as in
Theorem 14.2 of [Dummigan 01],
that Eisenstein primes should divide the numerator of
L(k;k/2,q) under certain conditions when k/2 is odd.
The value L(18;9,5) shows that this observation is true
in the case £k = 18 and ¢ = 5, because 43867 is an
Eisenstein prime.

one would expect

Example 5.1.2. The values of the standard zeta func-
tions at s = 1 are particularly important. To explain
this, let ¢ be a prime number congruent to 1 modulo
4, and let Dq(,/q) be the ring of integers in Q(,/q). As-
sume that the class number of Q(,/g), in the narrow
sense, is one. Let Sy 1 (SL2(Dq(,/q))) be the space of cusp
forms of weight (k, k) with respect to SL2(9q(,/g))- Then
Sk,k(SL2(9q(,q))) has the following decomposition:

Sk (SL2(9q(yg)) =
$+(To(1)) LSk (To(a).

(), (
(@), (

VRS

2) st

))) is the im-
))) under the

(1)) (respectively Si(Tq
(1)) (respectively Sk(Tg

where Sk(FO
age of Si(To

q
*
q
*

Doi-Naganuma map, and S,gy i is the orthogonal comple-
ment of Sk (To(1))L Sk(To(q), (£)) in Sk.x(SLa(Dq( a)))
with respect to the Petersson product. Take a primitive
form g € S}, and for an integral ideal % in Q(,/q) let
c(¥; g) be the Ath Fourier coefficient of g. Let K, be the
field generated over Q by all ¢(%;¢g) and K ; the sub-
field of K, generated by c((p);g) for all rational primes
p. We denote by D(K,/K ) the relative discriminant of
Kg/K;. Assume that 527,6 is nonsplitting, that is, it is
spanned by all Galois conjugates of a primitive form in
Sg,v Then, D(K,/K ) does not depend on g. Hence we
denote this value by Dy, ,. Then, on page 567 of [Doi et
al. 98] Doi, Hida, and Ishii, among others, conjectured
the following:

Any odd prime factor of Dy, , divides either the
numerator of Ng, (A(f,1,(£))) for some prim-
itive form f in Sk(Tp(1)) or the numerator of
Nk, (A(f,1,1)) for some primitive form f in

Sk(To(q), (1))-

This is actually a counterpart of the conjecture for-
mulated in Goto [Goto 98]. Doi, Hida, and Ishii [Doi et
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k D L(k;1,5)

24 | 144169 2793977 117 1317 - 19 - 109 - 54449/5%7 - 144169

28 | 131-139 226.38.7%.11%.13% . 17- 19 - 23 - 66876860429/5** - 131 - 139
30 | 51349 22631074112 . 13- 17- 19 - 23 - 3253 - 20017939/5%% - 51349

32 | 67273067 226310 74.11.132.17-19-23-37- 157 - p1 /5°* - 67 - 273067
34 | 479 -4919 22631073 . 113132 .19 - 23- 29 - 191 - 3191 - p2 /5°* - 479 - 4919
38 | 181-349-1009 | 228 .3%.7%.11%.13-17-23-29- 31 - p3 /5% - 181 - 349 - 1009

TABLE 5. p; = 222142617427425679, p2 = 121120620073, p3 = 24539630352019799615221087

al. 98] computed an exact value of i(k, ¢;1,1) and veri-
fied the above conjecture in some cases. Goto [Goto 98]
computed the value L(20,1,5) and Hiraoka [Hiraoka 00]
computed the values L(22;1,5) and L(24;1,5). Then,
combining the results of [Doi et al. 98|, they verified
the conjecture for (k,q) = (20,5),(22,5), and (24,5).
Now let £ = 12 and ¢ = 13. In this case, 5?2712 and
Sk(To(13), (2)) are nonsplitting. Furthermore, accord-
ing to Table 1 of [Doi et al. 98], the odd prime factors of
Di2,13 are 13, 563, and 6205151, and the numerator of
L(12,13;1,1) is 5-7- 132 . 6205151. Thus it is expected
that 563 appears in the numerator of L(12; 1, 13). Table 2
shows that this is true.

Now we compute L(k;1,5) for 16 < k < 38. For other
numerical examples, see [Stopple 96].

First, let k = 16, 18, 20,22, 26. Then, we have

dim Sy (Do (1)) = 1.

Take a unique primitive form f(z) = > ~_, a(m)e(mz)

in S;(T'o(1)). Then, we have
L(12;1,5) = a(5) " 't(1;1).

Thus we have Table 6.

k L(k;1,5)

16 | 27.37. 7% . 11/5™

18 | 2%.3*.7.11-13/5

20 | 2°.3%.7.11-13.977/5'®

22 | 21°.35.7%.13-17-71/5'8

26 | 2'%.3%.7.11-17-19- 337 - 1409/5%

TABLE 6.

Next let & = 24,28,30,32,34,38. Then we have
dim S;(T'o(1)) = 2. Take a basis f1, fa, of Sk(I'o(1)),
consisting of primitive forms. Then, Ky = Ky, is a
real quadratic field, thus this field can be expressed as
K = Q(v/D) with D a nonsquare positive integer. Let
Pp(2)(X) = X? 4 b1 X +by. Then, by (2) of Theorem 4.6,

we have

t(1;1)8(2;1)by 4 (23 1)% + ¢(151)%by
(b3 + 4b2) Nk (a(5)) ’

L(k;1,5) =

where a(5) is the fifth Fourier coefficient of f;. The poly-
nomial ®(X) and the value Nk (a(5)) can easily be com-
puted by the trace formula (see [Miyake 89]).
have Table 5.

Thus we

Example 5.2. We compute I:(k',q;l,l) and f,(k,q;l,q)

when Si(To(q), (£)) is nonsplitting. In Proposition 4.4,
let t(m;1) = p~/?t(m; 2, —1/2) or t(m;1+1,0) according
to whether [ = 1, or not. Let x = (£). Then for [ > 1 we

have
t(m;1) =1/3(qg+1)q~"

{2 > I Altmrlx@ep

1<r<2vmoplfy ,,

k—1—1
XBl,(xxu,vn,r])(“)Gl-s-l (m,r)

% q(l73/2)(0rdq (4 det[l,m,r])Jrordq(b[l’m’T]))

% (1= (0x(1m) O(a)a ™) =8 m, r) (1 — q)/12 ]

where §(I;m,r) =1 or 0 according to whether [ = 1 and
4m —1? = 0, or not. Furthermore, in (1) of Theorem 4.6,
for I > 3 let t(m;1) = (1 — ¢~ Y)~1¢(m;1 + 1,0). Then, by
Equation (2-7), we have

(m31) = 2/3(q + 1)q /211172
X Z H Fy(lg,m,r],p'™?)
l<r<2vagmplfy, .

Gr(am, r)x(r)-

x B o I+1

X[g,m,r]

Assume that Sk(To(q), (%)) is nonsplitting. Take a

*
primitive form

£ = 3 almpe(mz) € i (To(a). (£))

m=1

and set K = Ky Let o = a(2) and assume that
Do (@) # 0. Write @) (X) = 357 be—; X' and

[i/2]
Bip1 =Y (:Cr -

r=0

Cr_1)q" V(g 20,
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as in Section 4. We also define @H by replacing
t(¢g"=?;1) with £(¢"~?";1). Then, we have

L(k,q,1,1) =

NK(Z Zg 156].7 ’La)
(I)T(q)(q(k_lH)/Q)q)T(q)( (k 1+l)/2)NK((I)/T(2)( ))

for I > 3 and

L(k,q;1,1) =
NK(ZZ& 25711 Be—jbj— ia’)
O7(q) (qF D) B () (—g* D) Nic (@) ()

Furthermore,

Nic (3520 3252 Bejbjict)
Nk ((I)/T(z) () '

We note that the value of L(k,¢;1,1) can also be ob-
tained by Zagier’s method in [Zagier 77]. On the other
hand, the value of I:(k7 ¢;1,q) cannot be obtained by his
method.

Here we mention the special values of the standard
zeta function of the Doi-Naganuma lift

f € Skr(SLa(Oq(yg))

for a primitive form f € S;(To(q),(%)). For a prime

*

L(k,q;l,q) =

number p, let «,,, 3, be the complex numbers in Equa-

tion (3-6). For a prime ideal p of Oq(, /) let
Ap = ) and By = 3",

if N(p) = p™, where N(p) = Nq(,/q))/q(p). Then, we
define the standard zeta function L(f, s) of f as

L(f,s) = TT{0 - apByN )=+
p

x(L= AN~

For the precise definition of the standard zeta function
of a general Hilbert modular form, see [Zagier 77]. Set

- BN}

A(f, 1) =

D(k— DIk +1— DI+ 1)\ (g + DL/, 1)
( 22k+2l—57-rk+2lr(k _ l) > B2,(g)<f7 f>

)

where (f, f) denotes the normalized Petersson product of
fin Sk x(SL2(9q(q)))- By [Zagier 77, page 158, Equa-
tion 97], we have

L(f.s) = Lif.s DL (f.5(2)).

Thus we have

A = AL DA (10 (1)) 2 Eﬁ()gff =
2
On the other hand, we have
X 4By ([, f)
ML= 07

(see page 158 in [Zagier 77]). Thus we have
AL DAL ()
ALY

Let ¢ = 13, k = 8. Then Ss(I'9(13), (£2)) is nonsplitting
and dimSs(To(13), (12)) = 6. Then, by [Doi and Goto 93]

A(f.0) = (5-1)

we have
Drp1)(X) = X +2-13-193X° + 7% -13% . 29 - 31X*
+2%.5-13% .47 179X
+72.1310.29.31X2
+2-13'%.193X +13%,
D) (X) = X® 4+ 449X" + 37224X> + 205776,
and

Ni (P (a(2))) =232 -5 - 412 - 14297 - 25104281%.

Thus we have

76131 . 43572
312. 412 14292 - 251042812
(see Table 1 [Doi et al. 98]). Furthermore,

230'34.76.134,52

412 . 251042812
222 . 518 . 76 . 3132

412 - 251042812 °
230310 58 . 76 . 45832 . 100792
1316 . 412 . 251042812 ’

L(8,13;1,1) =

L(8,13;3,1) =

L(8,13;5,1) =

L(8,13;3,13) =

and

L(8,13;5,13) =
238 . 310 . 518 . 76 . 45832 . 100792 - 204476878959232
1328 . 412 . 251042812

Set
L(87 13; l) = NK/Q(A(f7 l))

Then by (5-1), we see that the prime number 4357, a
prime factor of the numerator of I~1(87 13;1,1), appears
in the denominators of f:(& 13;3) and ﬁ(8,13;5). This
phenomenon is closely related to the above conjecture.
We will discuss this topic more precisely in a subsequent
paper.
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