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We give an algorithm for computing the special values of twisted
standard zeta functions of elliptic modular forms by using the
pullback formula for the Siegel-Eisenstein series of degree 2.

1. INTRODUCTION

Let M and k be positive integers and φ a Dirichlet
character modulo M. For a normalized cuspidal Hecke
eigenform f of weight k and Nebentypus φ with respect
to Γ0(M), and a Dirichlet character χ modulo N, let
L(f, s, χ) be the standard zeta function of f twisted by χ.
(For the precise definition of the standard zeta function,
see the paragraph immediately preceding Theorem 3.3.)
The twisted standard zeta function of an elliptic modular
form is sometimes called a twisted symmetric-square L
function, an important subject in number theory, and is
related to many other areas, especially to Galois repre-
sentations. For examples, see [Doi et al. 98] and [Dummi-
gan 01]. The special values of the standard zeta function
are particularly important. To be more precise, assume
that k is even, and set

L∗(f,m, χ) =
L(f,m, χ)
πk+2m〈f, f〉

for a positive integer m ≤ k − 1 such that (−1)m−1 =
χ(−1), where 〈–,–〉 is the normalized Petersson product.

As is well known, these values are algebraic numbers
and their qualitative natures have been fully investigated
by many people (see [Sturm 80, Shimura 00, Böcherer and
Schmidt 00]). To investigate various problems related to
these values, it is important to compute these values ex-
actly. Several people have considered algorithms for com-
puting these values and have carried out the computa-
tions. Sturm [Sturm 80] gave an algorithm for computing
these values for a general χ. However, it seems difficult to
give exact values by direct use of his method. Zagier [Za-
gier 77] gave an explicit formula expressing L∗(f,m, χ)
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in the case where M is a square-free positive integer con-
gruent to 1 modulo 4, φ is the Kronecker character (M∗ )
corresponding to the extension Q(

√
M)/Q, and χ is triv-

ial. Stopple [Stopple 96] gave an explicit formula express-
ing L∗(f,m, χ) in the case M = 1 and χ is a quadratic
character of prime conductor q ≡ 1 mod 4.

In [Katsurada 03], we announced some formulas which
seem useful for the computation of L∗(f,m, χ) in the case
where M = 1 or a prime number congruent to 1 modulo
4, φ = (M∗ ), and χ is not necessarily a quadratic char-
acter of prime conductor p such that χ(−1) = 1. In this
paper, we give a complete proof of these formulas un-
der more general settings. The main tool is the pullback
formula of the Siegel-Eisenstein series of degree 2 due to
Böcherer and Schmidt [Böcherer and Schmidt 00] and
Shimura [Shimura 00]. Such a formula has been used
to study the qualitative nature of the special values of
the standard zeta function. However, as far as the au-
thor knows, no one has used the formula to give its exact
values. In this paper, we carry out such a computation.

To explain our method briefly, for simplicity M �=
p. Let k and l be even positive integers such that
l ≤ k. Then we define a certain Siegel-Eisenstein se-
ries E∗

2,l(Z,Mp2, φχ̄, s) in Section 2. We write e(u) =
exp(2π

√−1u) for a complex number u. Then, as is well
known, if l ≥ 4, E∗

2,l(Z,Mp2, φχ̄, 0) becomes a holomor-
phic modular form of weight l and of Nebentypus φχ̄;
and has a Fourier expansion of the following form:

E∗
2,l(Z;Mp2, φχ̄, 0) =

∑
A

cn,l(A,Mp2, φχ̄, 0)e(tr(AZ)),

where A runs over all positive definite half-integral ma-
trices of degree 2, and tr(–) denotes the trace of a matrix.
Set

c̃2,l(A, 0) = c̃2,l(A,Mp2, φχ̄, 0)

= A(l, 0)−1c2,l(A,Mp2, φχ̄, 0)

with a suitable normalizing factor A(l, 0)−1 (see Theorem
2.1). For two positive integers m1,m2 set

ε(m1,m2; l, 0) =∑
r2≤4m1m2

c̃2,l

((
m1 r/2
r/2 m2

)
, 0
)
Gk−ll (m1m2, r)χ(r)τ(χ̄),

where Gk−ll (u, v) is the polynomial introduced by Zagier
[Zagier 77], and τ(χ̄) is the Gauss sum (see Section 3).

Furthermore, set

t(m; l, 0) = ε(p, p2m; l, 0) − φ(p)pk−2ε(p,m; l, 0),

and

Fp,p(z) =
∞∑
m=1

t(m; l, 0)e(mz).

Then by the holomorphy of the Eisenstein series and
the theory of differential operators on modular forms,
due to Ibukiyama [Ibukiyama 99], Fp,p(z) belongs to
Sk(Γ0(Mp), φ) (see Sections 3 and 4). Now, take a ba-
sis {fi}d1i=1 of Sk(Γ0(M), φ) consisting of primitive forms,
and write

fi(z) =
∞∑
m=1

ai(m)e(mz)

with ai(1) = 1. Then, by the pullback formula due to
Böcherer and Schmidt [Böcherer and Schmidt 00], we
have

Fp,p(z) = γk,l,p,M

d1∑
i=1

L∗(fi, l − 1, χ)c̄i2f̃i(z),

where γk,l,p,M is a rational number explicitly determined
by k, l, p,M ; and ci is a certain algebraic number with
absolute norm 1; and

f̃i(z) =
∞∑
m=1

ai(pm)e(mz)

(see (2) of Theorem 4.2). We restate an explicit form of
c̃2,l(A, 0) (see Theorem 2.1).

Thus, by the above formula combined with the
trace formula of Hecke operators, we can compute
the norm NKf,χ

(L∗(f,m, χ)) for a primitive form f ∈
Sk(Γ0(M), φ) and for an odd integer m such that 3 ≤
m ≤ k − 1. Here Kf,χ is the field over Q gener-
ated by all the eigenvalues of Hecke operators relative
to f and all the values of χ (see Theorem 4.6). If
χ2 is not trivial, E∗

2,2(Z;Mp2, φχ̄, 0) becomes holomor-
phic, and by the same procedure, we obtain an ex-
act value for NKf,χ

(L∗(f, 1, χ)). On the other hand,
if χ2 is trivial, E∗

2,2(Z;Mp2, φχ̄, 0) is not holomorphic.
However, E∗

2,2(Z;Mp2, φχ̄,−1/2) is holomorphic, and
by the same procedure, we obtain an exact value of
NKf,χ

(L∗(f, 0, χ)); and by the functional equation due
to Li [Li 79], we can also compute NKf,χ

(L∗(f, 1, χ)) (see
(2) of Proposition 4.7). In the case M = p we obtain
similar results (see (1) of Theorem 4.2 and (1) of Theo-
rem 4.6). In Section 5, we give some numerical examples,
and discuss some related topics.

As an application of Theorem 4.2, we show that a
prime factor of the denominator of L∗(f,m, χ) gives a
congruence between f and another primitive form (see
Theorem 4.10).

By using the method in this paper, we expect more
fruitful results about the special values of standard zeta
functions of other modular forms, for example, of Siegel
modular forms and of Hilbert modular forms. We will
discuss these topics in subsequent papers.
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2. FOURIER COEFFICIENTS OF
SIEGEL-EISENSTEIN SERIES

Let GSp+
n (R) be the group of proper symplectic simili-

tudes of degree n, and Hn Siegel’s upper half space of de-
gree n. As is usual, we write γ(Z) = (AZ+B)(CZ+D)−1

and j(γ, Z) = det(CZ +D) for

γ =
(
A B
C D

)
∈ GSp+

n (R).

We write f |kγ(z) = (det γ)k/2j(γ, z)−kf(γ(z)) for γ ∈
GSp+

n (R) and a C∞-function f on Hn. We simply write
f |γ for f |kγ, if there is no confusion. Let Spn(Z) be the
Siegel modular group of degree n. For a positive integer
M, we denote by Γ(n)

0 (M) (respectively Γ′
0
(n)(M)) the

subgroup of Spn(Z) consisting of matrices whose lower
left n× n block (respectively upper right n× n block) is
congruent to O modulo M.

For a Dirichlet character φ modulo M , we denote
by φ̃ (respectively φ̃′) the character of Γ(n)

0 (M) (respec-
tively Γ′

0
(n)(M)) defined by φ̃(γ) = φ(detD) (respec-

tively φ̃′(γ) = φ(detA)) for

γ =
(
A B
C D

)
.

We denote by 1M the trivial character modulo M and,
in particular, set 1 = 11. For a Dirichlet character φ
modulo M, we denote by Mk(Γ

(n)
0 (M), φ) (respectively

M∞
k (Γ(n)

0 (M), φ)) the space of holomorphic (respectively
C∞-) modular forms of weight k and Nebentypus φ with
respect to Γ(n)

0 (M), and by Sk(Γ
(n)
0 (M), φ) the subspace

of Mk(Γ
(n)
0 (M), φ) consisting of cusp forms. In particu-

lar, if φ = 1M , we write Sk(Γ
(n)
0 (M)) for Sk(Γ

(n)
0 (M), φ).

Furthermore, for a subgroup Γ of Spn(Z) we denote by
Γ∞ the subgroup of Γ consisting of matrices whose lower
left n× n block is O.

For a function f on Hn we write fc(Z) = f(−Z̄).
Let dv denote the invariant volume element on Hn given
by dv = det(Im(Z))−n−1∧1≤j≤l≤n (dxjl∧dyjl). Here, for
Z ∈ Hn we write Z = (xjl)+

√−1(yjl) with real matrices
(xjl) and (yjl). For two C∞-modular forms f and g of
weight k and Nebentypus φ with respect to Γ(n)

0 (M), we
define the Petersson scalar product 〈f, g〉

Γ
(n)
0 (M)

of f and
g by

〈f, g〉
Γ

(n)
0 (M)

=
∫

Γ
(n)
0 (M)\Hn

f(Z)g(Z) det(Im(Z))kdv,

provided the integral converges.
Let φ be a Dirichlet character modulo L. For a positive

integer M such that L|M, we denote by φM the Dirichlet

character modulo M induced by φ. Let f and g be ele-
ments of M∞

k (Γ(n)
0 (M1), φM1) and M∞

k (Γ(n)
0 (M2), φM2),

respectively. Let N be any common multiple of M1

and M2. Then, f and g belong to M∞
k (Γ(n)

0 (N), φN ), and
the value m(Φ

Γ
(n)
0 (N)

)−1〈f, g〉
Γ

(n)
0 (N)

does not depend on
the choice of N, where Φ

Γ
(n)
0 (N)

is the fundamental do-
main for

Hn modulo Γ(n)
0 (N),

and m(Φ
Γ

(n)
0 (N)

) =
∫
Γ

(n)
0 (N)\Hn

dv. We denote this value
by 〈f, g〉 and call it the normalized Petersson product of
f and g.

For a Dirichlet character ψ, we denote by L(s, ψ) the
Dirichlet L-function associated with ψ. Let n, l, and M

be positive integers. For a Dirichlet character φ modulo
M such that φ(−1) = (−1)l, we define the Eisenstein
series E′

n,l(Z;M,φ, s) by

E′
n,l(Z;M,φ, s) =

det Im(Z)sL(l + 2s, φ)
[n/2]∏
i=1

L(2l + 4s− 2i, φ2)

×
∑

γ∈Γ′
0
(n)(M)∞\Γ′

0
(n)(M)

φ̃′(γ)j(γ, Z)−l|j(γ, Z)|−2s.

We then define E∗
n,l(Z;M,φ, s) by

E∗
n,l(Z;M,φ, s) = j(ι, Z)−lE′

n,l(ι(Z);M,φ, s),

where

ι =
(

0n −1n
1n 0n

)
.

Let Hn(Z) denote the set of half-integral matrices
of degree n over Z, and denote by Hn(Z)>0 (respec-
tively Hn(Z)≥0) the subset of Hn(Z) consisting of pos-
itive definite (respectively semipositive definite) matri-
ces. Then, it is well known that E∗

n,l(Z;M,φ, s) belongs

to M∞
l (Γ(n)

0 (M), φ) and has a Fourier expansion of the
following form:

E∗
n,l(X +

√−1Y ;M,φ, s) =∑
A∈Hn(Z)

cn,l(A, Y,M, φ, s)e(tr(AX)).

In particular, if E∗
n,l(Z;M,φ, s) belongs to

Ml(Γ
(n)
0 (M), φ), it has the following Fourier expan-

sion:

E∗
n,l(Z;M,φ, s) =

∑
A∈Hn(Z)≥0

cn,l (A,M,φ, s)e(tr(AZ)) .
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Throughout the rest of this paper, we exclusively con-
sider the case n = 2.

Let l be an even positive integer. Let M > 1 be
an integer, and let φ be a Dirichlet character modulo
M such that φ(−1) = 1. Then, E∗

2,l(Z;M,φ, 0) be-

longs to Ml(Γ
(2)
0 (M), φ) in the case l ≥ 4. Furthermore,

E∗
2,2(Z;M,φ, 0) belongs to M2(Γ

(2)
0 (M), φ) if φ2 �= 1M .

We remark that E∗
2,2(Z;M,φ, 0) is neither holomorphic

nor nearly holomorphic in the sense of [Shimura 00]
if φ2 = 1M . However, E∗

2,l(Z;M,φ,−1/2) belongs to

M2(Γ
(2)
0 (M), φ) in this case.

Now, to see the Fourier coefficient of the Eisenstein
series, for an element

A =
(

a11 a12/2
a12/2 a22

)
∈ H2(Z),

set e = eA = GCD(a11, a12, a22). For an element A ∈
H2(Z) such that rank A = 1 and for each prime number
p, define a polynomial Fp(A,X) as

Fp(A,X) =
ordp(eA)∑
i=0

(pX)i,

where ordp denotes the normalized additive valuation on
the field of p-adic numbers. For an element

A =
(

a11 a12/2
a12/2 a22

)
∈ H2(Z)>0,

write −4 detA = �A�
2
A with �A the fundamental discrimi-

nant of Q(
√−detA) and �A a positive integer. Further-

more, let χA = ( �A

∗ ) be the Kronecker character cor-
responding to Q(

√−detA)/Q. For a prime number p,
define a polynomial Fp(A,X) as

Fp(A,X) =
ordp(eA)∑
i=0

(p2X)i
ordp(�A)−i∑

j=0

(p3X2)j − χA(p)pX

×
ordp(eA)∑
i=0

(p2X)i
ordp(�A)−i−1∑

j=0

(p3X2)j .

For a Dirichlet character ψ modulo L, let mψ denote
its conductor, and ψ(0) the associated primitive char-
acter. Furthermore, let Bm,ψ be the mth generalized
Bernoulli number associated with ψ, and let τ(ψ) be the
Gauss sum defined by

τ(ψ) =
∑

XmodL

ψ(X)e(X/L).

Let l be an even positive integer, and s = 0 or −1/2. Let
φ be a Dirichlet character such that φ(−1) = 1. Now as-
sume that the triple (l, s, φ) satisfies one of the following
conditions:

(h–1) l ≥ 4 and s = 0;

(h–2) l = 2, s = 0 and φ2 is not trivial;

(h–3) l = 2 and s = −1/2.

Theorem 2.1. [Katsurada 99, Shimura 00]. Let M > 1 be
an integer, and φ a Dirichlet character modulo M such
that φ(−1) = 1. Let l be an even positive integer, and s =
0 or −1/2. Assume that the triple (l, s, φ) satisfies one of
the Conditions (h–1), (h–2), or (h–3). First, assume that
(l, s, φ) satisfies either Condition (h–1) or (h–2). Then
for A ∈ H2(Z)≥0 set

c̃2,l(A, 0) = c̃2,l(A;M,φ, 0) =


(4 detA)l−3/2
∏
p|�A Fp(A,φ(p)p−l)B

l−1,(φχA)(0)

×τ((φχA)(0))(−√−1)m1−l
(φχA)(0)

×∏p|M (1 − (φχA)(0)(p)p1−l)
A > 0

0 otherwise.

Next assume that (l, s, φ) satisfies Condition (h–3). Then
for A ∈ H2(Z)≥0 set

c̃2,2(A,−1/2) = c̃2,2(A;M,φ,−1/2) =


−∏p|�A Fp(A,φ(p)p−1)B1,(φχA)(0)

×∏p|M (1 − (φχA)(0)(p)) A > 0

−1/2
∏
p|eA

Fp(A,φ(p)p−1)
×∏p|M (1 − (φ2)(0)(p)p)B2,(φ2)(0) rank A = 1

1/8
∏
p|M{(1 − (φ2)(0)(p)p)(1 − (φ)(0)(p)p)}

×B2,(φ2)(0)B2,(φ)(0) A = O

Let

A(l, s) =
(−1)l/22lπ3l−3/2

Γ(l)2Γ(l − 1/2)

for l ≥ 2 and s = 0, and let

A(l, s) =
8π5/2

Γ(3/2)

for l = 2 and s = −1/2, where Γ (–) is the Gamma
function. Then we have

c2,l(A;M,φ, s) = A(l, s)c̃2,l(A;M,φ, s).

Remark 2.2. Assume that (l, s, φ) satisfies Condition
(h–1) or (h–2). Let m be the conductor of φ, and write
�A = �′A �̃A with �′A =

∏
p|m p

ordp(�A) and (̃�A,m) = 1.
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Then, by the functional equation of Fp(A,X) (see [Kat-
surada 99]), we can rewrite c̃2,l(A, 0) as

c̃2,l(A, 0) = (|�A|�′A2)l−3/2φ(̃�A)2
∏
p|̃�A

Fp(A, φ̄(p)pl−3)

×B
l−1,(φχA)(0)

(−√−1)τ((φχA)(0))m1−l
(φχA)(0)

×
∏
p|M

(1 − (φχA)(0)(p)p1−l). (2–1)

Let φ be a Dirichlet character modulo M with con-
ductor m such that φ(−1) = 1. Set m′ = M/m. If |�A| is
prime to m, we have

τ((φχA)(0)) =
√−1φ(�A)χA(m)τ(φ)|�A|1/2,

m(φχA)(0) = m|�A|,
and∏
p|M

(1 − (φχA)(0)(p)p1−l) =
∏
p|m′

(1 − φ(0)χA(p)p1−l).

Thus if 4 detA is prime to M, we have

c̃2,l(A, 0) = φ(−4 detA)
∏
p|�A

Fp(A, φ̄(p)pl−3)

×B
l−1,(φχA)(0)

χA(m)τ(φ)m1−l

×
∏
p|m′

(1 − (φχA)(0)(p)p1−l). (2–2)

In particular, if M is a square-free odd positive integer
dividing m1m2 and r is an integer prime to m1m2, we
have

c̃2,l(A, 0) = φ(r)2
∏
p|�A

Fp(A, φ̄(p)pl−3)

×B
l−1,(φχA)(0)

× τ(φ)m1−l ∏
p|m′

(1 − (φχA)(0)(p)p1−l)

(2–3)

for

A =
(

m1 r/2
r/2 m2

)
.

On the other hand, we have

c̃2,l(A, 0) =
∏
p|�A

Fp(A,φ(p)pl−3)(|�A|�′A2)l−3/2

×B
l−1,(φχA)(0)

m
3/2−l
(φχA)(0)

×
∏
p|M

(1 − (φχA)(0)(p)p1−l), (2–4)

if φ2 = 1M . Thus if φ2 = 1M and |�A| is prime to m, we
have

c̃2,l(A, 0) =
∏
p|�A

Fp(A,φ(p)pl−3)B
l−1,(φχA)(0)

m3/2−l

×
∏
p|m′

(1 − (φχA)(0)(p)p1−l). (2–5)

Assume that M is a square-free odd positive integer
and that |�A| is prime to m. If φ is primitive,∏

p|M
(1 − (φχA)(0)(p)p1−l) = 1.

On the other hand, let φ = 1M . Let

A =
(

m1 r/2
r/2 m2

)
∈ H2(Z)>0

with m1m2 divided by M and r prime to m1m2. Then,

c̃2,2(A;M,1M ,−1/2) = 0. (2–6)

Furthermore, for any positive integer l ≥ 2, we have

c̃2,l(A;M,1M , 0) = −
∏
p|�A

Fp(A, pl−3)B
1,χ

(0)
A

∏
p|M

(1−p1−l),

(2–7)
provided (l, s, φ) satisfies Condition (h–1) or (h–2). On
the other hand, if φ2 = 1M but φ �= 1M , we have

c̃2,2(A;M,φ,−1/2) =


− 1
12

∏
p|eA

Fp(A,φ(p)p−1)
∏
p|M (1 − p)
rank A = 1

1
48

∏
p|M{(1 − p)(1 − (φ)(0)(p)p)}B2,(φ)(0)

A = O.

(2–8)

3. PULLBACK FORMULA

Now we define Böcherer’s differential operator. For de-
tails, see [Böcherer and Schmidt 00]. First we define the
differential operator Dα on the module C∞(H2) of C∞-
functions on H2 by

Dα(f) = − (α− 1/2)∂f/∂z12

+ z12

(
∂2f/∂z11∂z22 − 1

4
∂2f/∂z2

12

)

for f ∈ C∞(H2) and

Z =
(
z11 z12
z12 z22

)
∈ H2.
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For a nonnegative integer ν define the differential opera-
tors Dν

α and D̃ν
α by

Dν
α = Dα+ν−1....Dα,

and
D̃ν
α = Dν

α|z12=0.

Furthermore, for s ∈ C and f ∈ C∞(H2), we define D̃ν
α,s

by

D̃ν
α,s(f)(z11, z22) = (y11y22)sD̃ν

α+s(detY −sf(Z)),

where Z = X +
√−1Y ∈ H2 and

Y =
(
y11 y12
y12 y22

)
.

Let φ be a Dirichlet character modulo M. Then, it
is well known that D̃ν

l and D̃ν
l,s map M∞

l (Γ(2)
0 (M), φ)

into M∞
l+ν(Γ

(1)
0 (M), φ) ⊗ M∞

l+ν(Γ
(1)
0 (M), φ). Further-

more, D̃ν
l maps Ml(Γ

(2)
0 (M), φ) into Ml+ν(Γ

(1)
0 (M), φ)⊗

Ml+ν(Γ
(1)
0 (M), φ), and, in particular, if ν > 0, its im-

age is contained in Sl+ν(Γ
(1)
0 (M), φ)⊗ Sl+ν(Γ

(1)
0 (M), φ).

Clearly these two operators, D̃ν
l and D̃ν

l,s, coincide
with each other if s = 0. Furthermore, for F (Z) ∈
M∞
l (Γ(2)

0 (M), φ) and g(z1) ∈ Sl+ν(Γ
(1)
0 (M), φ) we have

the following identity as a function of z2:

〈D̃ν
l (F )(–, z2), g〉 = dl,ν,s〈D̃ν

l,s(F )(–, z2), g〉 (3–1)

if both sides are cusp forms (see [Böcherer and
Schmidt 00, (1.30)]).

Here, we take the inner product as a function of z1
and

dl,ν,s =
ν∏
µ=1

l − 1 + ν − µ/2
l + s− 1 + ν − µ/2

.

In addition to the above notation, let N ≥ 1 be a pos-
itive integer, and χ a Dirichlet character modulo N.

Assume that N2 divides M. For positive even integers
l, k such that l ≤ k we define a function �(z1, z2) =
�2,k(z1, z2; l,M, φ, χ, s) on H1 × H1:

�2,k(z1, z2; l,M, φ, χ, s) =

D̃k−l
l,s


 ∑
x∈Z/NZ

χ̄(x)

× E∗
2,l(–;M,φχ̄, s)|kR(x/N)

)(
z1 0
0 z2

)
,

where

R(x) =




1 0 0 x
0 1 x 0
0 0 1 0
0 0 0 1


 .

Then (see [Böcherer and Schmidt 00]), �(z1, z2) belongs
to M∞

k (Γ(1)
0 (M), φ) ⊗M∞

k (Γ(1)
0 (M), φ) .

Now to see an explicit form of D̃ν
l , for an even positive

integer l and nonnegative integer ν we define a polyno-
mial G2ν

l (u, v) in u, v by

G2ν
l (u, v) =

ν∑
µ=0

(−1)µ
(l + 2ν − µ− 2)!

(2ν − 2µ)!µ!
uµv2ν−2µ.

This polynomial was introduced by Zagier [Zagier 77].
We define Ibukiyama’s differential operator G2ν

l on
C∞(H2) by

G2ν
l = G2ν

l (∂2/∂z11∂z22, ∂/∂z12)|z12=0.

We note that

G2ν
l (e(tr(AZ)) =

G2ν
l (a11a22, a12)(2π

√−1)2νe(a11z11 + a22z22) (3–2)

for

A =
(

a11 a12/2
a12/2 a22

)
and

Z =
(
z11 z12
z12 z22

)
.

It is well known that G2ν
l is a constant multiple of D̃2ν

l

(see [Ibukiyama 99]). More precisely, by calculating
G2ν
l (z2ν

12 ) and D̃2ν
l (z2ν

12 ) for

Z =
(

z1 z12
z12 z2

)
∈ H2,

we have

G2ν
l =

(l + 2ν − 2)!∏2ν
µ=1(µ/2)(l − 1 + 2ν − µ/2)

D̃2ν
l . (3–3)

By (3–3), for F (Z) ∈ M∞
l (Γ(2)

0 (M), φ) and g(z1) ∈
Sl+ν(Γ

(1)
0 (M), φ), we have

〈G2ν
l (F )(–, z2), g〉 = el,2ν,s〈D̃ν

l,s(F )(–, z2), g〉 (3–4)

if both sides are cusp forms, where

el,2ν,s =
(l + 2ν − 2)!∏2ν

µ=1(µ/2)(l − 1 + 2ν − s− µ/2)
.

Now for even positive integers l, k such that l ≤ k, set

E2,k(z1, z2; l,M, φ, χ, s) =

(2π
√−1)l−kGk−ll


 ∑
x∈Z/NZ

χ̄(x)

× E∗
2,l(–;M,φχ̄, s)|kR(x/N)

)(
z1 0
0 z2

)
.
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Then, as is easily seen, E2,k(z1, z2; l,M, φ, χ, s) is a con-
stant multiple of �2,k(z1, z2; l,M, φ, χ, s) as a function of
z1 and z2, and therefore, it belongs to M∞

k (Γ0(M), φ) ⊗
M∞
k (Γ0(M), φ). Furthermore, regarding the holomorphy

and the cuspidality of E2,k(z1, z2; l,M, φ, χ, s), by a care-
ful examination of the behavior at cusps, we have Propo-
sition 3.1.

Proposition 3.1. Let k and l be positive even inte-
gers such that l ≤ k, and s = 0 or −1/2. Let φ

and χ be Dirichlet characters modulo M and N, re-
spectively, that satisfy the above conditions. Assume
that the triple (l, s, φχ̄) satisfies one of the Conditions
(h–1), (h–2), or (h–3). Then E2,k(z1, z2; l,M, φ, χ, s)
belongs to Mk(Γ0(M), φ) ⊗ Mk(Γ0(M), φ). Further-
more, assume l < k, or k ≥ 4 and N > 1.
Then E2,k(z1, z2; l,M, φ, χ, s) belongs to Sk(Γ0(M), φ) ⊗
Sk(Γ0(M), φ).

Remark 3.2. We remark that in the case k ≥ 4 and N >

1, E2,k(z1, z2; k,M, φ, χ, s) belongs to Sk(Γ0(M), φ) ⊗
Sk(Γ0(M), φ) even if χ = 1N . On the contrary, in the
case k = 2 and χ = 1N , we easily see that it does
not belong to Sk(Γ0(M), φ) ⊗ Sk(Γ0(M), φ) by observ-
ing Fourier coefficients of E∗

2,2(Z;M,φ,−1/2) in Theo-
rem 2.1. At present, we don’t know about the cuspidal-
ity of E2,2(z1, z2; l,M, φ, χ, s) for a general χ that satisfies
(h–2) and (h–3).

Now by (3–4), for any f ∈ Sk(Γ0(M), φ), we have

〈f, E2,k(z1,−z̄2; l,M, φ, χ, s)〉 =

(2π
√−1)l−kel,k−l,s〈f, �2,k(z1,−z̄2; l,M, φ, χ, s)〉 (3–5)

if both sides are cusp forms. Furthermore, by (3–2) and
[Böcherer and Schmidt 00, (6.11)], we have

E2,k(z1, z2; l,M, φ, χ, s) =
∞∑

m1=−∞

∞∑
m2=−∞

c2,l

((
m1 r/2
r/2 m2

)
,

(
y1 0
0 y2

)
,M, φχ̄, s

)

×Gk−ll (m1m2, r)

× T (r, χ̄)e(m1x1)e(m2x2)

where we write z1 = x1 +
√−1y1, z2 = x1 +

√−1y2, and

T (r, φ) =
∑

x mod N

φ(x)e(rx/N)

for a Dirichlet character φ modulo N.
From now on, let Γ0(N) = Γ(1)

0 (N). Let M and k be
positive integers and φ a Dirichlet character modulo M

such that φ(−1) = (−1)k. Let

f(z) =
∞∑
m=1

a(m)e(mz)

be a normalized cuspidal Hecke eigenform of weight k
and Nebentypus φ with respect to Γ0(M). Then, for a
Dirichlet character χ modulo N, we define the standard
zeta function L(f, s, χ) twisted by χ as

L(f, s, χ) =
∏
p

{
(1 − χ(p)αpβpp−s−k+1)

× (1 − χ(p)α2
pp

−s−k+1)

×(1 − χ(p)β2
pp

−s−k+1)
}−1

,

where αp, βp are complex numbers such that

αp + βp = a(p), αpβp = φ(p)pk−1 (3–6)

for each prime number p. Then by [Böcherer and
Schmidt 00, Theorem 3.1] and (3–5), we have the fol-
lowing theorem:

Theorem 3.3. In addition to the notation and the as-
sumptions as above, assume that M > 1, N2 divides
M, φ2 = 1M , and χ(−1) = 1. Let f ∈ Sk(Γ0(M), φ)
be a common eigenfunction of all Hecke operators. Fur-
thermore, assume one of the following conditions: (a)
k = l, (b) s = 0, or (c) E∗

2,l(Z;M,φχ̄, s) belongs to

Ml(Γ
(2)
0 (M), φχ̄). Then we have

〈f, E2,k(–,−z̄; l,M, φ, χ, s̄))〉Γ0(M) = κl,k(s)Nk+l+2s−2

×M1−k/2L(f |WM , l + 2s− 1, χ)f |WM |T (M/N2)(z),

where

κl,k(s) =
(−1)l/2

2−3+2k−l+2sπk−l−1

× Γ(k + s− 1/2)Γ(k + s− 1)
Γ(l + s)Γ(l + s− 1/2)

× Γ(k − 1)∏k−l
µ=1(µ/2)(k − 1 − s− µ/2)

,

T (M/N2) is the Hecke operator, and

WM =
(

0 −1
M 0

)
.

Remark 3.4. We slightly change the notation in [Böcherer
and Schmidt 00]. It is not certain that the assertion of
[Katsurada 03, Theorem 3.1] holds in general. Thus we
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impose some conditions here. This does not affect our
main results. There is a minor misprint in [Böcherer
and Schmidt 00, Theorem 3.1]. On page 1,339, line
9, “21+n(n+1)/2−2ns” should read “21−nl+n(n+3)/2−2ns,”
and this correction has been done in [Katsurada 03, The-
orem 3.1].

Now, let φ be as in Theorem 3.3, and assume
that the triple (l, s, φχ̄) satisfies one of the Condi-
tions (h–1), (h–2), or (h–3). Then we define a function
Ẽ2,k(z1, z2; l,M, φ, χ, s) on H1 × H1 so that

Ẽ2,k(z1, z2; l,M, φ, χ, s) =
∞∑

m1=0

∞∑
m2=0

∑
r2≤4m1m2

c̃2,l

((
m1 r/2
r/2 m2

)
,M, φχ̄, s

)

×Gk−ll (m1m2, r)T (r, χ̄)e(m1z1)e(m2z2),

where

c̃2,l

((
m1 r/2
r/2 m2

)
,M, φχ̄, s

)
is as defined in Theorem 2.1. Then, by Theorem 2.1 we
have

E2,k(z1, z2; l,M, φ, χ, s) = A(l, s)Ẽ2,k(z1, z2; l,M, φ, χ, s).

From now on, for a Dirichlet character ψ modulo M0 we
use the same symbol ψ to denote the character modulo
M induced from ψ if M0 divides M. For a positive integer
r let

δr =
(
r 0
0 1

)
,

and let Sk(Γ0(M), φ)(r) = {f |δr; f ∈ Sk(Γ0(M), φ)},
and let Sk(Γ0(M), φ)new be the space of new forms
in Sk(Γ0(M), φ). We note that Sk(Γ0(M), φ)new =
Sk(Γ0(M), φ) if φ is a primitive character of con-
ductor M. Furthermore for a primitive form f in
Sk(Γ0(M), φ)new let cf be the complex number such that
f |WM = cff

c. Let λf (m) be the eigenvalue of the Hecke
operator T (m) for a positive integer m. For an odd pos-
itive integer m ≤ k − 1, let

Λ(f,m, χ) =
Γ(k − 1)Γ(k +m− 1)Γ(m+ 1)

Γ(k −m)

× L(f,m, χ)
22k+2m−4πk+2m〈f, f〉 ,

and

Λ(f, 0, χ) = Γ(k − 1)
L(f, 0, χ)

22k−3πk〈f, f〉 .

We note that m(ΦΓ0(N))) = π
3 [Γ : Γ0(N)]. Thus by The-

orem 3.3 we obtain the following two theorems:

Theorem 3.5. Let the notation and the assumptions be
as before. Let p be a prime number such that p ≡
1 mod 4, φ = (p∗ ), and χ a Dirichlet character modulo
p such that χ(−1) = 1.

(1) Let f be a primitive form in Sk(Γ0(p2), φ)new. Then,

〈f, Ẽ2,k(–,−z̄; l, p2, φ, χ, s)〉 =

3[Γ : Γ0(p2)]−1pl+2sΛ(fc, l+2s−1, χ)〈f, f〉cffc(z).

(2) Let f be a primitive form in Sk(Γ0(p), φ). Then, we
have

〈f, Ẽ2,k(–,−z̄; l, p2, φ, χ, s)〉 =

3[Γ : Γ0(p2)]−1pl+2sΛ(fc|δp, l + 2s− 1, χ)

× 〈f |δp, f |δp〉cffc|δp(z),

and

〈f |δp, Ẽ2,k(–,−z̄; l, p2, φ, χ, s)〉 =

3[Γ : Γ0(p2)]−1pl+2sΛ(fc, l+2s−1, χ)〈f, f〉cffc(z).

Theorem 3.6. Let the notation and the assumptions be
as before. Let p0 = 1 or a prime number such that p0 ≡
1 mod 4, and φ = (p0∗ ). Furthermore, let p be a prime
number different from p0, and χ a Dirichlet character
modulo p such that χ(−1) = 1.

(1) Let f be a primitive form in Sk(Γ0(p0p
2), φ)new.

Then, we have

〈f, Ẽ2,k(–,−z̄; l, p0p
2, φ, χ, s)〉 =

3[Γ : Γ0(p0p
2)]−1p

1−k/2
0 pl+2sΛ(fc, l + 2s− 1, χ)

× 〈f, f〉cfλf (p0)fc(z).

(2) Let f be a primitive form in Sk(Γ0(p0p), φ)new.
Then, we have

〈f, Ẽ2,k(–,−z̄; l, p0p
2, φ, χ, s)〉 =

3[Γ : Γ0(p0p
2)]−1p

1−k/2
0 pl+2sΛ(fc|δp, l + 2s− 1, χ)

× 〈f |δp, f |δp〉cfλf (p0)fc|δp(z),

and

〈f |δp, Ẽ2,k(–,−z̄; l, p0p
2, φ, χ, s)〉 =

3[Γ : Γ0(p0p
2)]−1p

1−k/2
0 pl+2sΛ(fc, l + 2s− 1, χ)

× 〈f, f〉cfλf (p0)fc(z).
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(3) Let f be a primitive form in Sk(Γ0(p0), φ). Then, we
have

〈f, Ẽ2,k(–,−z̄; l, p0p
2, φ, χ, s)〉 =

3[Γ : Γ0(p0p
2)]−1p

1−k/2
0 pl+2sΛ(fc|δp2 , l + 2s− 1, χ)

× 〈f |δp2 , f |δp2〉cfλf (p0)fc|δp2(z),

〈f |δp, Ẽ2,k(–,−z̄; l, p0p
2, φ, χ, s)〉 =

3[Γ : Γ0(p0p
2)]−1p

1−k/2
0 pl+2sΛ(fc|δp, l + 2s− 1, χ)

× 〈f |δp, f |δp〉cfλf (p0)fc|δp(z),

and

〈f |δp2 , Ẽ2,k(–,−z̄; l, p0p
2, φ, χ, s)〉 =

3[Γ : Γ0(p0p
2)]−1p

1−k/2
0 pl+2sΛ(fc, l + 2s− 1, χ)

× 〈f, f〉cfλf (p0)fc(z).

Remark 3.7. In Theorems 3.5 and 3.6, we imposed the
same restrictions on M, N , and χ as in Theorem 3.3. In
the general case, the formula becomes more complicated.
However, we can give a similar formula in the case where
M and N are square-free, which we will discuss in a sub-
sequent paper.

4. COMPUTATION OF L(f, l, χ)

In this section, we give some formulas to compute
L(f,m, χ) for a primitive form f ∈ Sk(Γ0(N), ψ) in the
following two cases:

(c–1) N is a prime number p such that p ≡ 1 mod 4,
ψ = (p∗ ), and χ is a Dirichlet character modulo p

such that χ(−1) = 1.

(c–2) N is 1 or a prime number p0 such that p0 ≡
1 mod 4, ψ = (p0∗ ), and χ is a Dirichlet character
modulo p such that χ(−1) = 1, where p is a prime
number different from p0.

In either case, χ is a primitive character modulo p,

or 1p. Furthermore, we note that Sk(Γ0(N), ψ)new =
Sk(Γ0(N), ψ) in both cases. Let M = p2 or p0p

2 for
Case (c–1) or (c–2), respectively. From now on, let k be
an even integer not smaller than 4, and l an even integer
such that 2 ≤ l ≤ k. Assume that the triple (l, s, ψχ̄)

satisfies one of the Conditions (h–1), (h–2), or (h-3). For
two positive integers m1,m2 set

ε(m1,m2; l, s) = ε(m1,m2; l,M, ψ, χ, s) =∑
r2≤4m1m2

c̃2,l

((
m1 r/2
r/2 m2

)
,M, ψχ̄, s

)

×Gk−ll (m1m2, r)T (r, χ̄).

We note that T (r, χ̄) = p − 1 or χ(r)τ(χ̄) if respec-
tively, χ = 1p and r ≡ 0 mod p, or not. Furthermore, for
each positive integer m1 set

Fm1(z2) =
∞∑

m2=1

ε(m1,m2; l, s)e(m2z2),

and for a prime number p let

Fm1,p(z2) =
∞∑

m2=1

(ε(m1, p
2m2; l, s)−ψ(p)pk−2ε(m1,m2; l, s))e(m2z2).

We note that

Ẽ2,k(z1, z2; l,M, ψ, χ, s) =
∞∑

m1=1

Fm1(z2)e(m1z1). (4–1)

Take a basis {fi}d1i=1 of Sk(Γ0(N), ψ) consisting of prim-
itive forms. We note that, in this case, Sk(Γ0(N), ψ) =
Sk(Γ0(N), ψ)new. Let fi|WN = cif

c
i with constant ci,

and write

fi(z) =
∞∑
m=1

ai(m)e(mz)

with ai(1) = 1.
First, we have the following lemma:

Lemma 4.1. Let N be a positive integer and ψ a Dirichlet
character modulo N.

(1) Let f and g be Hecke eigenforms in Sk(Γ0(N), ψ),
and let p be a prime number. Then we have

〈f |δp, g〉 = p−k/2λg(p)〈f, g〉
− α(N, p)ψ̄(p)p−1〈g|δp, f〉,

where λg(p) denotes the eigenvalue of the Hecke op-
erator T (p) with respect to g, and α(N, p) is 0 or 1
according to whether p divides N, or not.

(2) Let g ∈ Sk(Γ0(N), ψ) be a Hecke eigenform. Let p
be a prime number dividing N. Then we have

〈g|δp, g〉 = p−k/2λg(p)〈g, g〉.
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(3) Let f ∈ Sk(Γ0(N), ψ) be a primitive form. Let p be a
prime number that does not divide N. Then we have

〈f |δp, f〉 =
p−k/2ψ̄(p)λf (p)

1 + p−1
〈f, f〉,

and

〈f |δp2 , f〉 =

p−kψ̄(p)2λf (p)2 − ψ̄(p)p−1(1 + p−1)
1 + p−1

〈f, f〉.

Proof: The assertions follow immediately from
[Shimura 76, (2.5)] and [Shimura 76, Lemma 1].

Now we compute the value Λ(f, l, χ).

Theorem 4.2. Let the notation and the assumptions be as
before.

(1) In Case (c–1), for any even positive integer l ≤ k,

we have

Fp(z2) = 3pk/2+l+2s−1(p+ 1)−1

×
d1∑
i=1

Λ(fi, l + 2s− 1, χ)cifi(z2).

(2) Let tp0 = p0 + 1 or 1 according to whether p0 is a
prime number or 1. Then, in Case (c–2), for any
even positive integer l ≤ k, we have

Fp,p(z2) = 3t−1
p0 p

1/2
0 pk+l+2s−2

×
d1∑
i=1

Λ(fi, l + 2s− 1, χ)ci2f̃i(z2),

where we write f̃(z) =
∑∞
m=1 a(pm)e(mz) for a

modular form f(z) =
∑∞
m=1 a(m)e(mz).

Proof:

(1) Set Ẽ(z1, z2) = Ẽ2,k(z1, z2; l, p2, ψ, χ, s). Then by
Proposition 3.1, Ẽ(z1, z2) belongs to Sk(Γ0(p2), ψ)⊗
Sk(Γ0(p2), ψ). As is well known,

Sk(Γ0(p2), ψ) = Sk(Γ0(p), ψ) ⊕ Sk(Γ0(p), ψ)(p)

⊥Sk(Γ0(p2), ψ)new.

Let
d1 = dimSk(Γ0(p), ψ)

and

d2 = dimSk(Γ0(p2), ψ)new.

Take a basis {gi}d2i=1 of Sk(Γ0(p2), ψ)new consisting
of common eigenfunctions of Hecke operators. Then

{fi (i = 1, 2, ..., d1), fi|δp (i = 1, 2, ..., d1),

gi (i = 1, 2, ..., d2)}

forms a basis of Sk(Γ0(p2), ψ). Let ci be as above.
Then, we have fi|Wp = cif

c
i , fi|Wp2 = cif

c
i |δp.

Furthermore, we have gi|Wp2 = c′ig
c
i with constant

c′i. From this we have fi|δp|Wp2 = cif
c
i . We note

that 〈gi, gj〉 = 0 for any 1 ≤ i �= j ≤ d2, and
〈fi, gj〉 = 〈gj , fi〉 = 0 for any 1 ≤ i ≤ d1 and
1 ≤ j ≤ d2. Thus, by Proposition 3.1, we have

Ẽ(z1, z2) =
d2∑

i,j=1

bijgi(z1)gj(z2)

+
d1∑

i,j=1

a
(0,0)
ij fi(z1)fj(z2)

+
d1∑

i,j=1

a
(0,1)
ij fi(z1)fj |δp(z2)

+
d1∑

i,j=1

a
(1,0)
ij fi|δp(z1)fj(z2)

+
d1∑

i,j=1

a
(1,1)
ij fi|δp(z1)fj |δp(z2).

Now let

gi(z) =
∞∑
m=1

bi(m)e(mz) (i = 1, 2, ..., d2)

with bi(1) = 1. Then by (1) of Theorem 3.5, we have

〈gi, Ẽ(–,−z2)〉 = 3p−1(p+ 1)−1pl+2sΛ(gci , l + 2s− 1, χ)

× 〈gi, gi〉c′igci (z2)

=
d2∑
j=1

bij〈gi, gi〉gcj(z2).

Since g1, ..., gd2 are orthogonal with each other, we
have bij = 3p−1(p+1)−1pl+2sΛ(gi, l+2s−1, χ)c′i or
0 according to whether i = j, or not. Furthermore,
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by (2) of Theorem 3.5, we have

〈fi, Ẽ(–,−z2)〉 = 3p−1(p+ 1)−1

× pl+2sΛ(fci |δp, l + 2s− 1, χ)

× 〈fi|δp, fi|δp〉cifci |δp(z2)

=
d1∑
j=1

a
(0,0)
ij 〈fi, fi〉fcj (z2)

+
d1∑
j=1

a
(0,1)
ij 〈fi, fi〉fcj |δp(z2)

+
d1∑
j=1

a
(1,0)
ij 〈fi, fi|δp〉fcj (z2)

+
d1∑
j=1

a
(1,1)
ij 〈fi, fi|δp〉fcj |δp(z2).

We note that

Λ(fci |δp, l + 2s− 1, χ) = Λ(fi, l + 2s− 1, χ),

and

〈fi, fi|δp〉 = λi(p)p−k/2〈fi, fi〉, 〈fi|δp, fi|δp〉
= 〈fi, fi〉.

Thus for any 1 ≤ i ≤ d1 we have

a
(0,1)
ij + λi(p)p−k/2a

(1,1)
ij =

3p−1(p+ 1)−1pl+2sΛ(fi, l + 2s− 1, χ)ci or 0

according to whether i = j, or not. Similarly, we
have

a
(0,0)
ij + λi(p)p−k/2a

(1,0)
ij = 0

for any 1 ≤ i, j ≤ d1. Similarly, by taking the inner
product of fi|δp(z1) against Ẽ(z1,−z2), we have

λi(p)p−k/2a
(0,0)
ij + a

(1,0)
ij =

3p−1(p+ 1)−1pl+2sΛ(fi, l + 2s− 1, χ)ci or 0

according to whether i = j, or not, and

λi(p)p−k/2a
(0,1)
ij + a

(1,1)
ij = 0

for any 1 ≤ i, j ≤ d1. Thus we have

a
(0,0)
ii =

−3p−1(p+ 1)−1pl+2s−k/2λi(p)
1 − p−k|λi(p)|2

× Λ(fi, l + 2s− 1, χ)ci

and

a
(1,0)
ii = a

(0,1)
ii = −p1−k/2λi(p)a

(0,0)
ii ,

a
(1,1)
ii = p1−kλi(p)2a

(0,0)
ii

for any i = 1, ..., d1; and

a
(0,0)
ij = a

(1,0)
ij = a

(0,1)
ij = a

(1,1)
ij = 0

for any 1 ≤ i �= j ≤ d1. Thus we have

Ẽ(z1, z2) =
d2∑
i=1

biigi(z1)gi(z2)

+
d1∑
i=1

a
(0,0)
ii

{
fi(z1)fi(z2)

− p1−k/2λi(p)fi(z1)fi|δp(z2)
− p1−k/2λi(p)fi|δp(z1)fi(z2)
+ p1−kλi(p)2fi|δp(z1)fi|δp(z2)

}
.

We note that bi(pm) = 0 and ai(pm) = λi(p)ai(m).
Thus, comparing both sides of (4–1), we have

Fp(z2) =
d1∑
i=1

a
(0,0)
ii

{
λi(p)fi(z2)

− p1−k/2λi(p)2fi|δp(z2)
− p1−k/2λi(p)pk/2fi(z2)

+p1−kλi(p)2pk/2fi|δp(z2)
}

=
d1∑
i=1

(1 − p)a(0,0)
ii λi(p)fi(z2).

We note that |λi(p)|2 = pk−1. This proves asser-
tion (1).

(2) Set Ẽ(z1, z2) = Ẽ2,k(z1, z2; l, p0p
2, ψ, χ, s). As is well

known,

Sk(Γ0(p0p
2), ψ) =

Sk(Γ0(p0), ψ) ⊕ Sk(Γ0(p0), ψ)(p) ⊕ Sk(Γ0(p0), ψ)(p
2)

⊥Sk(Γ0(p0p), ψ)new ⊕ Sk(Γ0(p0p), ψ)new(p)

⊥Sk(Γ0(p0p
2), ψ)new.

Take the bases {gi}d2i=1 of Sk(Γ0(p0p), ψ)new and
{hi}d3i=1 of Sk(Γ0(p0p

2), ψ)new consisting of primitive
forms. Then

{fi (i = 1, 2, ..., d1), fi|δp (i = 1, 2, ..., d1),

fi|δp2 (i = 1, 2, ..., d1), gi (i = 1, 2, ..., d2),

gi|δp (i = 1, 2, ..., d2), hi (i = 1, 2, ..., d3)}
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forms a basis of Sk(Γ0(p0p
2), ψ). Thus, similarly to

the proof of (1), by using Proposition 3.1, we have

Ẽ(z1, z2) =
d3∑

i,j=1

c
(0,0)
ij hi(z1)hj(z2)

+
1∑

α,β=0

d2∑
i,j=1

b
(α,β)
ij gi|δpα(z1)gj |δpβ (z2)

+
2∑

α,β=0

d1∑
i,j=1

a
(α,β)
ij fi|δpα(z1)fj |δpβ (z2)

with c
(0,0)
ij , b

(α,β)
ij , c

(α,β)
ij ∈ C. Now let fi|Wp0 =

cif
c
i , gi|Wp0p = c′ig

c
i , and hi|Wp0p2 = c′′i h

c
i with

constant c′′i . Then, we have fi|Wp0p2 = cif
c
i |δp2 ,

fi|δp|Wp0p2 = cif
c
i |δp, and gi|δp|Wp0p2 = c′ig

c
i . For

a positive integer write λi(m) = λfi
(m), λi(m)′ =

λgi
(m), and λi(m)′′ = λhi

(m). We have λi(p) =
ψ(p)λi(p). Then by direct computation combined
with Theorem 3.6 and Lemma 4.1 we have

Ẽ(z1, z2) =
d3∑
i

ciihi(z1)hi(z2)

+
d2∑
i=1

bii

{
−p−k/2λi(p)′gi(z1)gi(z2)

+ gi(z1)gi|δp(z2) + gi|δp(z1)gi(z2)
− p−k/2λi(p)′gi|δp(z1)gi|δp(z2)

}

+
d1∑
i=1

aii

{
p−1fi|δp2(z1)fi|δp2(z2)

− p−k/2λi(p)fi|δp(z1)fi|δp2(z2)
+ fi(z1)fi|δp2(z2)
− p−k/2λi(p)fi|δp2(z1)fi|δp(z2)
+ (1 + ψ(p)λi(p)2p−k − p−2)fi|δp(z1)
× fi|δp(z2)

− ψ(p)λi(p)p−k/2fi(z1)fi|δp(z2)
+ fi|δp2(z1)fi(z2)
− ψ(p)p−k/2λi(p)fi|δp(z1)fi(z2)
+ ψ(p)p−1fi(z1)fi(z2)

}
,

where

cii = 3p−1(p+ 1)−1t−1
p0 p

l+2sp
1−k/2
0

× Λ(hi, l + 2s− 1, χ)c′′i λi(p0)′′,

bii = 3p−1(p+ 1)−1t−1
p0

× pl+2sp
1−k/2
0 Λ(gi, l + 2s− 1, χ)c′iλi(p0)′

1 − p−2
,

and

aii = 3p−1(p+ 1)−1t−1
p0

× (1 + p−1)pl+2sp
1−k/2
0 ciλi(p0)

(1 − p−1)((1 + p−1)2 − ψ(p)p−kλi(p)2)
× Λ(fi, l + 2s− 1, χ).

Now let

gi(z) =
∞∑
m=1

bi(m)e(mz) (i = 1, 2, ..., d2)

and

hi(z) =
∞∑
m=1

ci(m)e(mz) (i = 1, 2, ..., d3)

with bi(1) = ci(1) = 1. We note that ci(pm) = 0 and
bi(pm) = λi(p)′bi(m). Thus we have

Fp(z2) =
d1∑
i=1

aii

{
pk/2(1 − p−2)fi|δp(z2)

−ψ(p)(1 − p−1)λi(p)fi(z2)
}

+
d2∑
i=1

pk/2(1 − p−2)biigi(z2).

We note that bi(p2m) = ψ(p)pk−2bi(m) (see
[Miyake 89, Theorem 4.6.17]). Thus we have

ε(p, p2m; l, s) − ψ(p)pk−2ε(p,m; l, s)

=
d1∑
i=1

aii
{
pk(1 − p−2)ai(pm)

− ψ(p)(1 − p−1)λi(p)ai(p2m)

− ψ(p)pk−2(pk(1 − p−2)ai(p−1m)

−ψ(p)(1 − p−1)λi(p)ai(m))
}

=
d1∑
i=1

aiip
k(1 − p−1)((1 + p−1)2

− ψ(p)λi(p)2p−k)ai(pm)

= 3t−1
p0 p

k+l+2s−2p
1−k/2
0

×
d1∑
i=1

Λ(fi, l + 2s− 1, χ)ciλi(p0)ai(pm)

for any positive integer m. This proves assertion (2).
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Corollary 4.3. Let the notation and assumptions be as
before. Furthermore, set

t(m; l, s) =




3−1(p+ 1)p−k/2−l−2s+1ε(p,m; l, s)
Case (c–1)

3−1tp0p
−1/2
0 p−k−l−2s+2

×(ε(p, p2m; l, s) − ψ(p)pk−2ε(p,m; l, s))
Case (c–2).

(1) In Case (c–1), for any positive integer m we have

t(m; l, s) =
d1∑
i=1

Λ(fi, l + 2s− 1, ψ)ciai(m).

(2) In Case (c–2), for any positive integer m we have

t(m; l, s) =
d1∑
i=1

Λ(fi, l + 2s− 1, χ)ci2ai(pm).

The above corollary is a certain generalization of [Kat-
surada 03, Theorem 4.1]. Namely, in that theorem, we
restricted ourselves to the case where l ≤ k − 2. Fur-
thermore, in (3) of that theorem, we restricted ourselves
to the case where (p0p ) = 1 and m is prime to p0p,

and in the above corollary such conditions have been re-
moved. We also note that, Λ(f,m,1p) = Λ(f,m,1)(1 −
p−m−k+1a(p)2) for a primitive form f in Sk(Γ0(p), (p∗ )),
where a(p) denotes the pth Fourier coefficient of f . Thus
(1) of that theorem is essentially included in (1) of the
above corollary as a special case. However, for practical
computation, we include the following statement, which
can be easily proved in a way similar to Theorem 4.2.

Proposition 4.4. Let fi (i = 1, ..., d1) and ci be as in
(1) of Theorem 4.2. Then for any even positive integer
l ≤ k − 2, we have

F1(z2) = 3(p+ 1)−1p1/2
d1∑
i=1

Λ(fi, l + 2s− 1,1)ci2fi(z2).

Corollary 4.5. In addition to the previous notation, set

t(m; l, s) = 3−1(p+ 1)p−1/2ε(1,m; l, s).

Then, for any positive integer m we have

t(m; l, s) =
d1∑
i=1

Λ(fi, l + 2s− 1, 1)ci2ai(m).

In the previous case, Ẽ2,k(z1, z2; k, p, ψ,1, 0) does not
belong to Sk(Γ0(p), ψ) ⊗ Sk(Γ0(p), ψ) but belongs to
Mk(Γ0(p), ψ) ⊗ Mk(Γ0(p), ψ). Thus, by modifying the
previous method, we obtain a similar formula for the
value of Λ(f, k − 1,1). Now for a prime number q that
does not divide p0p let

βi+1 = β(i+ 1, q; l, s)

=
[i/2]∑
r=0

(iCr − iCr−1)qr(k−1)t(qi−2r; l, s)

for i = 0, 1, ...., d1 − 1, where iCr = i!
r!(i−r)! . We under-

stand that iC−1 = 0. For a Hecke eigenform f let Kf

be the field over Q generated by all the eigenvalues of
the Hecke operators. Furthermore, for a character χ,
let Kf,χ be the field generated over Kf by all the val-
ues of χ. Set ef = [Kf : Q], and denote by NKf

(α) the
norm of α over Q for α ∈ Kf . Similarly, we define ef,χ
and NKf,χ

(α) for α ∈ Kf,χ. Let {fi}di=1 be the basis of
Sk(Γ0(N), ψ) as above and write Ki = Kfi

and ei = efi
.

Let Φ(X) = ΦT (m)(X) be the characteristic polynomial
of T (m) on Sk(Γ0(N), ψ). We note that NKi

(ci) = 1
in Theorem 4.2 and Proposition 4.4. Thus by [Goto 98,
Lemma 2.2], we obtain:

Theorem 4.6. Let the notation and assumptions be as
in Theorem 4.2 and Proposition 4.4. Let f be a primi-
tive form in Sk(Γ0(N), ψ), and a(q) be the qth Fourier
coefficient of f. Assume that Φ′

T (q)(a(q)) �= 0. Write

ΦT (q)(X) =
∑d1
i=0 bd1−iX

i, K = Kf,χ, and e = ef,χ.

(1) In (1) of Theorem 4.2 or Proposition 4.4, we have

NK(Λ(f, l + 2s− 1, χ)) =

NK

(∑d1−1
i=0

∑d1−1
j=i βd1−jbj−ia(q)

i

Φ′
T (q)(a(q))

)
.

(2) In (2) of Theorem 4.2, if N(a(p)) �= 0, we have

NK(Λ(f, l + 2s− 1, χ)) =

NK

(∑d1−1
i=0

∑d1−1
j=i βd1−jbj−ia(q)

i

a(p)Φ′
T (q)(a(q))

)
.

Now we give an exact value of Λ(f, 1, χ) for a Dirichlet
character such that χ2 is trivial. For a Hecke eigenform
f ∈ Sk(Γ0(M), ψ), set

L̃(f, s,1) =
L(f, s,1)∏

p|M (1 − a(p)
2
p−s−k+1)

,
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and

L̃(f, s, ψ) =
L(f, s, ψ)∏
p|M (1 − p−s)

.

Furthermore, set, for an odd positive integer l ≤ k − 1,

Λ̃(f, l, χ) =
Γ(k − 1)Γ(k + l − 1)Γ(l + 1)

Γ(k − l)

× L̃(f, l, χ)
22k+2l−4πk+2l〈f, f〉 ,

and

Λ̃(f, 0, χ) = Γ(k − 1)
L̃(f, 0, χ)

22k−3πk〈f, f〉
for χ = 1 or ψ. If χ2 is trivial, E∗

2,2(Z;M,ψχ, 0) does
not belong to M2(Γ0(M), ψχ̄), and thus we cannot give
an exact value of Λ(f, 1, χ) by direct use of the previous
method. However, we can relate the value Λ(f, 1, χ) to
Λ(f, 0, χ) by using the functional equation. We explain
this in the following three cases:

(c–3) M is a prime number p and χ = 1;

(c–4) M is a prime number p and χ = ψ = (p∗ );

(c–5) M = 1 and χ = (p∗ ) with p a prime number such
that p ≡ 1 mod 4.

First, in Case (c–3), set

R̃(f, s,1) = p(s+k−1)/2π−3/2(s+k−1)Γ((s+ k − 1)/2)

× Γ((s+ k)/2)Γ((s+ 1)/2)L̃(f, s,1).

Next, in Case (c–5), for f ∈ Sk(Γ0(1)) and the character
χ modulo p, set

R(f, s, χ) = p3(s+k−1)/2π−3/2(s+k−1)Γ((s+ k − 1)/2)

× Γ((s+ k)/2)Γ((s+ 1)/2)L(f, s, χ).

Then by Li [Li 79], we have the following functional equa-
tion:

Proposition 4.7.

(1) In Case (c–3),

R̃(f, 1 − s,1) = R̃(f, s,1).

In particular,

Λ̃(f, 1,1) = p−1/2Λ̃(f, 0,1).

(2) In Case (c–5), under the previous notation and as-
sumptions, we have

R(f, 1 − s, χ) = R(f, s, χ).

In particular, in Case (c–5), we have

Λ(f, 1, χ) = p−3/2Λ(f, 0, χ).

In Case (c–4), the value Λ(f, 1, φ) can be given by a
different method (see [Zagier 77]).

Proposition 4.8. In Case (c–4), we have

Λ(f, 1, φ) =
2
3
(1 − p−2).

Now we discuss congruence among modular forms. Let
K be an algebraic field, and � = �K the ring of in-
tegers in K. Let � be a prime ideal of �, and �� the
localization of � at �. Let f(z) =

∑
n=1 a(m)e(mz) and

g(z) =
∑
n=1 b(m)e(mz) be elements of Sk(Γ0(M), φ)

whose Fourier coefficients belong to ��. Then, we write
f ≡ g mod � if a(m) ≡ b(m) mod � for any positive inte-
ger m. We give the following lemma which is essentially
the same as Lemma 1.4 of [Doi et al. 98].

Lemma 4.9. Let f1, ..., fr be a basis of Sk(Γ0(M), φ) con-
sisting of Hecke eigenforms. Let K be the composite field
of all Kf1 , ...,Kfr

, and � the ring of integers in K. Let
� be a prime ideal of �. Assume that all the Fourier co-
efficients and eigenvalues of fi (i = 1, .., r) belong to ��.

Let h be an element of Sk(Γ0(M), φ) whose Fourier co-
efficients belong to �� such that

h =
r∑
i=1

lifi

with li ∈ K. Assume that f1 �≡ 0 mod � and ord�(l1) < 0.
Then there exists 2 ≤ i ≤ r such that

fi ≡ f1 mod �.

Now by Theorem 4.2, combined with Lemma 4.9, we
have the following theorem.

Theorem 4.10. Let N, p, ψ, and χ be as in Theorem 4.2.
Let f be a primitive form in Sk(Γ0(N), ψ). Let �Kf

be
the ring of integers in Kf , and � a prime ideal of �Kf

dividing the denominator of NKf,χ/Kf
(Λ(f, l+2s−1, χ))
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but not dividing Npr, where r = 6 or (2l − 1)! according
to whether (2) of Theorem 4.2 holds, or not. Then, there
exists a primitive form g in Sk(Γ0(N), ψ) different from
f such that

g ≡ f mod �′,

where �′ is a prime ideal of �KfKg
lying above �.

Proof: We note that the generalized Bernoulli number as-
sociated with a Dirichlet character φ is an algebraic inte-
ger if the conductor of φ is not a power of a prime number
(see [Carlitz 59, Leopoldt 58]). Thus by Equations (2–4)
and (2–5), all the Fourier coefficients of Fp(z) belong to
�� in Case (c–1). Thus the assertion in Case (c–1) fol-
lows directly from (1) of Theorem 4.2 and Lemma 4.9.
In Case (c–2), Fp,p belongs to Sk(Γ0(pN), ψ) and its
eigenvalues and Fourier coefficients belong to ��. In this
case, we remark that � does not divide both the pth
and the p2th Fourier coefficients of f. Thus we have
f̃ �≡ 0 mod �. Thus, again by (1) of Theorem 4.2 and
Lemma 4.9, we can show that there exists a primitive
form g in Sk(Γ0(N), ψ) different from f such that

g̃ ≡ f̃ mod �′,

where f̃ (respectively g̃) is the modular form in (2) of
Theorem 4.2 for f (respectively g). Thus the assertion
can be proved by the above remark.

5. NUMERICAL EXAMPLES AND COMMENTS

Using Theorem 4.6 combined with Proposition 4.7 we
can compute the norm of Λ(f,m, χ). A subspace S of
Sk(Γ0(N), ψ) is called nonsplitting if it is spanned by
all Galois conjugates of a primitive form in S. Take a
primitive form f of Sk(Γ0(1)). Assume that Sk(Γ0(1)) is
nonsplitting. Then, NKf

(Λ(f, l, ( q∗ ))) is independent of
f. Thus, in this case, we denote this value by L(k; l, q).
Similarly, in the case Sk(Γ0(q), ( q∗ )) is nonsplitting, we
define L̃(k, q; l, 1) and L̃(k, q; l, q) as NKf

(Λ̃(f, l,1)) and
NKf

(Λ̃(f, l, ( q∗ ))), respectively, for a primitive form f

of Sk(Γ0(q), ( q∗ )). We have computed some values using
Mathematica.

Example 5.1. It is conjectured by Maeda that Sk(Γ0(1)) is
nonsplitting, and so far, this conjecture has been verified
at least for k ≤ 2000 (see [Hida and Maeda 97, Farmer
and James 02]).

We show some examples of L(k; l, q) for various k, l, q.
From now on let

[a1, a2, a3] =
(

a1 a3/2
a3/2 a2

)
.

To make computations easy, for an odd positive integer
l ≤ k−1 and a positive integer m prime to q, set t(m; l) =
q−3/2t(m, 2,−1/2) or t(m; l + 1, 0) according to whether
l = 1, or not. We note that the Gauss sum τ(χ) for χ is
q1/2. Thus by (2–5) we have

t(m; l) = 2/3q−k−2l+2

×
{[2q

√
qm]∑

r=1

∏
p|�[q,q2m,r]

Fp([q, q2m, r], χ(p)pl−2)

×Bl,(χχ[q,q2m,r])
(0)Gk−l−1

l+1 (q3m, r)χ(r)

−qk−2

[2
√
qm]∑

r=1

∏
p|�[q,m,r]

Fp([q,m, r], χ(p)pl−2)

×Bl,(χχ[q,m,r])(0)
Gk−l−1
l+1 (qm, r)χ(r)

}
.

Example 5.1.1. We compute L(12; l, q) for 1 ≤ l

≤ k − 1 and some prime numbers q. In this case
dimS12(Γ0(1)) = 1. Take a unique primitive form f(z) =∑∞
m=1 a(m)e(mz) in S12(Γ0(1)). Thus, by (2) of Theo-

rem 4.6 and (2) of Proposition 4.7, we have

L(12; l, q) = a(q)−1t(1; l)

if a(q) �= 0. Numerical examples are displayed in Ta-
bles 1–4.

The values in Tables 1–4 were computed in
[Katsurada 03] except the following two cases:
(a) k = 18; and (b) k = 12 and l = 11. We note
that, the value of L(12; l, q) has been obtained by Stop-
ple [Stopple 96] in the case where q = 5 and l = 1, 3, 5, 7,
or q = 13, 17, 29, 37, 41 and l = 1, and that all the
values in the tables can also be obtained by his method.
We note that relatively large prime numbers appear in
the numerator of L(k; l, 5), contrary to the untwisted
case in [Dummigan 01]. We note that the numerator
of Λ(f, l,1) is conjecturally related to the order of
the Shafarevich-Tate group (see [Dummigan 01]). In

l L(12; l, 5)

1 214 · 35 · 7/510

3 214 · 35 · 7 · 2851/513

5 219 · 35 · 7 · 1511599/516

7 219 · 38 · 73 · 521 · 295387/520

9 226 · 310 · 72 · 110308273279/524

11 221 · 310 · 72 · 11 · 2963 · 5523341/529

TABLE 1.
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l L(12; l, 13)

1 214 · 38 · 53 · 7 · 563/1312

3 214 · 35 · 52 · 7 · 41177 · 1445419/1316

5 219 · 35 · 54 · 7 · 299696968678699/1320

7 219 · 37 · 53 · 73 · 312 · 5479 · 306945156059/1323

9 226 · 310 · 55 · 72 · 547 · 10267 · 1634679978646831/1328

11 221 · 39 · 54 · 72 · 11 · 17 · 29 · 131 · 3331 · 868032338256361/1332

TABLE 2.

l L(12; l, 17)

1 221 · 35 · 53 · 7 · 2389/1712

3 217 · 35 · 52 · 7 · 477200018623/1714

5 220 · 35 · 54 · 7 · 23 · 29 · 997 · 46316422211/1720

7 222 · 38 · 53 · 73 · 167 · 11003 · 322079 · 915248119/1724

9 230 · 310 · 55 · 72 · 43 · 892028959 · 1604767911433/1727

11 220 · 310 · 54 · 72 · 11 · 20790457101154865002708553/1721

TABLE 3.

l L(18; l, 5)

1 213 · 34 · 7 · 11 · 13/513

3 213 · 34 · 7 · 11 · 13 · 227 · 769/517

5 218 · 34 · 7 · 11 · 13 · 397 · 140407/520

7 217 · 36 · 73 · 11 · 13 · 1279 · 2959715807/524

9 220 · 38 · 72 · 11 · 13 · 673 · 1709 · 43867/528

11 222 · 37 · 72 · 113 · 13 · 23 · 79265243 · 681985859041/531

13 230 · 39 · 73 · 112 · 133 · 79 · 63077797 · 1535138971999/535

15 231 · 311 · 73 · 112 · 132 · 673 · 10420198073 · 99670080988216447/538

17 224 · 310 · 72 · 112 · 132 · 17 · 131 · 263 · 205502593 · 31922855977/545

TABLE 4.

our case, as suggested by the referee, arguing as in
Theorem 14.2 of [Dummigan 01], one would expect
that Eisenstein primes should divide the numerator of
L(k; k/2, q) under certain conditions when k/2 is odd.
The value L(18; 9, 5) shows that this observation is true
in the case k = 18 and q = 5, because 43867 is an
Eisenstein prime.

Example 5.1.2. The values of the standard zeta func-
tions at s = 1 are particularly important. To explain
this, let q be a prime number congruent to 1 modulo
4, and let �Q(

√
q) be the ring of integers in Q(

√
q). As-

sume that the class number of Q(
√
q), in the narrow

sense, is one. Let Sk,k(SL2(�Q(
√
q))) be the space of cusp

forms of weight (k, k) with respect to SL2(�Q(
√
q)). Then

Sk,k(SL2(�Q(
√
q))) has the following decomposition:

Sk,k(SL2(�Q(
√
q))) =

Ŝk(Γ0(1))⊥Ŝk
(
Γ0(q),

(q
∗
))

⊥S0
k,k,

where Ŝk(Γ0(1)) (respectively Ŝk(Γ0(q), ( q∗ ))) is the im-
age of Sk(Γ0(1)) (respectively Sk(Γ0(q), ( q∗ ))) under the

Doi-Naganuma map, and S0
k,k is the orthogonal comple-

ment of Ŝk(Γ0(1))⊥ Ŝk(Γ0(q), ( q∗ )) in Sk,k(SL2(�Q(
√
q)))

with respect to the Petersson product. Take a primitive
form g ∈ S0

k,k and for an integral ideal � in Q(
√
q) let

c(�; g) be the �th Fourier coefficient of g. Let Kg be the
field generated over Q by all c(�; g) and K+

g the sub-
field of Kg generated by c((p); g) for all rational primes
p. We denote by D(Kg/K

+
g ) the relative discriminant of

Kg/K
+
g . Assume that S0

k,k is nonsplitting, that is, it is
spanned by all Galois conjugates of a primitive form in
S0
k,k. Then, D(Kg/K

+
g ) does not depend on g. Hence we

denote this value by Dk,q. Then, on page 567 of [Doi et
al. 98] Doi, Hida, and Ishii, among others, conjectured
the following:

Any odd prime factor of Dk,q divides either the
numerator of NKf

(Λ(f, 1, ( q∗ ))) for some prim-
itive form f in Sk(Γ0(1)) or the numerator of
NKf

(Λ̃(f, 1,1)) for some primitive form f in
Sk(Γ0(q), ( q∗ )).

This is actually a counterpart of the conjecture for-
mulated in Goto [Goto 98]. Doi, Hida, and Ishii [Doi et
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k D L(k; 1, 5)

24 144169 229 · 39 · 74 · 114 · 13 · 17 · 19 · 109 · 54449/539 · 144169
28 131 · 139 226 · 38 · 73 · 112 · 133 · 17 · 19 · 23 · 66876860429/544 · 131 · 139
30 51349 226 · 310 · 74 · 112 · 13 · 17 · 19 · 23 · 3253 · 20017939/543 · 51349
32 67 · 273067 226 · 310 · 74 · 11 · 132 · 17 · 19 · 23 · 37 · 157 · p1/554 · 67 · 273067
34 479 · 4919 226 · 310 · 73 · 113 · 132 · 19 · 23 · 29 · 191 · 3191 · p2/551 · 479 · 4919
38 181 · 349 · 1009 228 · 38 · 74 · 112 · 13 · 17 · 23 · 29 · 31 · p3/560 · 181 · 349 · 1009

TABLE 5. p1 = 222142617427425679, p2 = 121120620073, p3 = 24539630352019799615221087

al. 98] computed an exact value of L̃(k, q; 1, 1) and veri-
fied the above conjecture in some cases. Goto [Goto 98]
computed the value L(20, 1, 5) and Hiraoka [Hiraoka 00]
computed the values L(22; 1, 5) and L(24; 1, 5). Then,
combining the results of [Doi et al. 98], they verified
the conjecture for (k, q) = (20, 5), (22, 5), and (24, 5).
Now let k = 12 and q = 13. In this case, S0

12,12 and
Sk(Γ0(13), ( 13

∗ )) are nonsplitting. Furthermore, accord-
ing to Table 1 of [Doi et al. 98], the odd prime factors of
D12,13 are 13, 563, and 6205151, and the numerator of
L̃(12, 13; 1, 1) is 5 · 7 · 1329 · 6205151. Thus it is expected
that 563 appears in the numerator of L(12; 1, 13). Table 2
shows that this is true.

Now we compute L(k; 1, 5) for 16 ≤ k ≤ 38. For other
numerical examples, see [Stopple 96].

First, let k = 16, 18, 20, 22, 26. Then, we have

dimSk(Γ0(1)) = 1.

Take a unique primitive form f(z) =
∑∞
m=1 a(m)e(mz)

in Sk(Γ0(1)). Then, we have

L(12; l, 5) = a(5)−1t(1; 1).

Thus we have Table 6.

k L(k; 1, 5)

16 213 · 34 · 73 · 11/514

18 213 · 34 · 7 · 11 · 13/513

20 215 · 34 · 7 · 11 · 13 · 977/518

22 215 · 35 · 72 · 13 · 17 · 71/518

26 213 · 34 · 7 · 11 · 17 · 19 · 337 · 1409/522

TABLE 6.

Next let k = 24, 28, 30, 32, 34, 38. Then we have
dimSk(Γ0(1)) = 2. Take a basis f1, f2, of Sk(Γ0(1)),
consisting of primitive forms. Then, Kf1 = Kf2 is a
real quadratic field, thus this field can be expressed as
K = Q(

√
D) with D a nonsquare positive integer. Let

ΦT (2)(X) = X2 +b1X+b2. Then, by (2) of Theorem 4.6,
we have

L(k; 1, 5) =
t(1; 1)t(2; 1)b1 + t(2; 1)2 + t(1; 1)2b2

(−b21 + 4b2)NK(a(5))
,

where a(5) is the fifth Fourier coefficient of f1. The poly-
nomial Φ(X) and the value NK(a(5)) can easily be com-
puted by the trace formula (see [Miyake 89]). Thus we
have Table 5.

Example 5.2. We compute L̃(k, q; l, 1) and L̃(k, q; l, q)
when Sk(Γ0(q), ( q∗ )) is nonsplitting. In Proposition 4.4,
let t(m; l) = p−1/2t(m; 2,−1/2) or t(m; l+1, 0) according
to whether l = 1, or not. Let χ = ( q∗ ). Then for l ≥ 1 we
have

t(m; l) = 1/3(q + 1)q−l

×
{

2
∑

1≤r<2
√
m

∏
p|�[1,m,r]

Fp([1,m, r], χ(p)pl−2)

×Bl,(χχ[1,m,r])(0)
Gk−l−1
l+1 (m, r)

× q(l−3/2)(ordq(4 det[1,m,r])+ordq(�[1,m,r]))

× (1 − (χχ[1,m,r])(0)(q)q−l)−δ(l;m, r)(1 − q)/12
}

where δ(l;m, r) = 1 or 0 according to whether l = 1 and
4m−r2 = 0, or not. Furthermore, in (1) of Theorem 4.6,
for l ≥ 3 let t̃(m; l) = (1 − q−l)−1t(m; l + 1, 0). Then, by
Equation (2–7), we have

t̃(m; l) = 2/3(q + 1)q−k/2−l+1/2

×
∑

1≤r≤2
√
qm

∏
p|�[q,m,r]

Fp([q,m, r], pl−2)

×B
l,χ

(0)
[q,m,r]

Gk−l−1
l+1 (qm, r)χ(r).

Assume that Sk(Γ0(q), ( q∗ )) is nonsplitting. Take a
primitive form

f(z) =
∞∑
m=1

a(m)e(mz) ∈ Sk

(
Γ0(q),

(q
∗
))

and set K = Kf . Let α = a(2) and assume that
Φ′
T (2)(α) �= 0. Write ΦT (2)(X) =

∑e
i=0 be−iX

i and

βi+1 =
[i/2]∑
r=0

(iCr − iCr−1)qr(k−1)t(qi−2r; l),
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as in Section 4. We also define β̃i+1 by replacing
t(qi−2r; l) with t̃(qi−2r; l). Then, we have

L̃(k, q, l, 1) =

NK(
∑e−1
i=0

∑e−1
j=i βe−jbj−iα

i)

ΦT (q)(q(k−1+l)/2)ΦT (q)(−q(k−1+l)/2)NK(Φ′
T (2)(α))

for l ≥ 3 and

L̃(k, q; 1, 1) =

NK(
∑e−1
i=0

∑e−1
j=i βe−jbj−iα

i)

ΦT (q)(q(k−1)/2)ΦT (q)(−q(k−1)/2)NK(Φ′
T (2)(α))

.

Furthermore,

L̃(k, q; l, q) =
NK(

∑e−1
i=0

∑e−1
j=i β̃e−jbj−iα

i)
NK(Φ′

T (2)(α))
.

We note that the value of L̃(k, q; 1, 1) can also be ob-
tained by Zagier’s method in [Zagier 77]. On the other
hand, the value of L̃(k, q; l, q) cannot be obtained by his
method.

Here we mention the special values of the standard
zeta function of the Doi-Naganuma lift

f̂ ∈ Sk,k(SL2(�Q(
√
q)))

for a primitive form f ∈ Sk(Γ0(q), ( q∗ )). For a prime
number p, let αp, βp be the complex numbers in Equa-
tion (3–6). For a prime ideal � of �Q(

√
q) let

A� = αmp and B� = βmp ,

if N(�) = pm, where N(�) = NQ(
√
q))/Q(�). Then, we

define the standard zeta function L(f̂ , s) of f̂ as

L(f̂ , s) =
∏
�

{
(1 −A�B�N(�)−s−k+1)

×(1 −A2
�N(�)−s−k+1)(1 −B2

�N(�)−s−k+1)
}−1

.

For the precise definition of the standard zeta function
of a general Hilbert modular form, see [Zagier 77]. Set

Λ(f̂ , l) =(
Γ(k − 1)Γ(k + l − 1)Γ(l + 1)

22k+2l−5πk+2lΓ(k − l)

)2
qk(q + 1)L(f̂ , l)

B2,( q
∗ )〈f̂ , f̂〉

,

where 〈f̂ , f̂〉 denotes the normalized Petersson product of
f̂ in Sk,k(SL2(�Q(

√
q))). By [Zagier 77, page 158, Equa-

tion 97], we have

L(f̂ , s) = L̃(f, s,1)L̃
(
f, s,

(q
∗
))

.

Thus we have

Λ(f̂ , l) = Λ̃(f, l,1)Λ̃
(
f, l,

(q
∗
)) 4qk(q + 1)〈f, f〉2

B2,( q
∗ )〈f̂ , f̂〉

.

On the other hand, we have

Λ̃(f, 1,1) =
4B2,( q

∗ )〈f̂ , f̂〉
qk(q + 1)〈f, f〉2

(see page 158 in [Zagier 77]). Thus we have

Λ(f̂ , l) =
Λ̃(f, l,1)Λ̃(f, l, ( q∗ ))

Λ̃(f, 1,1)
. (5–1)

Let q = 13, k = 8. Then S8(Γ0(13), ( 13
∗ )) is nonsplitting

and dimS8(Γ0(13), ( 13
∗ )) = 6. Then, by [Doi and Goto 93]

we have

ΦT (13)(X) = X6 + 2 · 13 · 193X5 + 72 · 133 · 29 · 31X4

+ 22 · 5 · 136 · 47 · 179X3

+ 72 · 1310 · 29 · 31X2

+ 2 · 1315 · 193X + 1321,

ΦT (2)(X) = X6 + 449X4 + 37224X2 + 205776,

and

NK/Q(Φ′
T (2)(a(2))) = 24 · 32 · 54 · 412 · 14292 · 251042812.

Thus we have

L̃(8, 13; 1, 1) =
22 · 76 · 1314 · 43572

312 · 412 · 14292 · 251042812

(see Table 1 [Doi et al. 98]). Furthermore,

L̃(8, 13; 3, 1) =
230 · 34 · 76 · 134 · 52

412 · 251042812
,

L̃(8, 13; 5, 1) =
222 · 518 · 76 · 3132

412 · 251042812
,

L̃(8, 13; 3, 13) =
230 · 310 · 58 · 76 · 45832 · 100792

1316 · 412 · 251042812
,

and

L̃(8, 13; 5, 13) =

238 · 310 · 518 · 76 · 45832 · 100792 · 204476878959232

1328 · 412 · 251042812
.

Set
L̂(8, 13; l) = NK/Q(Λ(f̂ , l)).

Then by (5–1), we see that the prime number 4357, a
prime factor of the numerator of L̃(8, 13; 1, 1), appears
in the denominators of L̂(8, 13; 3) and L̂(8, 13; 5). This
phenomenon is closely related to the above conjecture.
We will discuss this topic more precisely in a subsequent
paper.
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