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We compute certain polynomial invariants for the finite reflec-
tion groups of the types H3, H4 and F4. Using this result,
we explicitly determine the solution space of functions satis-
fying a mean value property related to the exceptional regular
polytopes, namely, the icosahedron and dodecahedron in three
dimensions and the 24-cell, 600-cell, and 120-cell in four di-
mensions.

1. INTRODUCTION

A classical theorem of Gauss and Koebe states that a

function is harmonic if and only if it satisfies the mean

value property with respect to a sphere. In this paper, we

study the following variant of this property for polytopes.

Given an n-dimensional polytope P and an integer

k ∈ {0, 1, . . . , n}, let P (k) be the k-dimensional skeleton
of P . An R-valued continuous function f ∈ C(Rn) is
said to be P (k)-harmonic if it satisfies the mean value

property:

f(x) =
1

|P (k)|
8
P (k)

f(x+ ry) dµk(y) (1—1)

for any x ∈ Rn and r > 0, where µk is the k-dimensional
volume element on P (k) and |P (k)| = µk(P (k)) is the

k-dimensional total mass of P (k). Let HP (k) denote the

set of P (k)-harmonic functions. We are interested in the

problem of characterizing the function space HP (k).

From our previous work [Iwasaki 97a], the following

facts are known: The space HP (k) is a finite-dimensional

linear space of polynomials. The space HP (k) is invariant

under partial differentiations, namely, it carries a struc-

ture of R[∂]-module, where R[∂] is the ring of partial dif-
ferential operators with constant coefficients. If the sym-

metry group G ⊂ O(n) of P is irreducible, thenHP (k) is a

finite-dimensional linear space of harmonic polynomials.

Our problem is of particular interest when the poly-

tope is a regular convex polytope. Now we recall the
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type polytope dimension
An regular simplex, self dual n ≥ 3
Bn cross polytope and measure polytope n ≥ 3
F4 24-cell, self dual n = 4
H3 icosahedron and dodecahedron n = 3
H4 600-cell and 120-cell n = 4
I2(m) regular convex m-gon, self dual n = 2

TABLE 1. Classification of regular convex polytopes.

classification of regular convex polytopes in terms of

their symmetry groups (see [Coxeter 73]). The symme-

try groups of the regular convex polytopes are the ir-

reducible finite reflection groups of types An, Bn, F4,

H3, H4, and I2(m) (see [Humphreys 90]). The corre-

spondence between the polytopes and the types is given

in Table 1. Observe that certain types, e.g., H3, corre-

spond to two polytopes, which are duals of each other.

Polytopes of the types H3, F4, and H4 are called the ex-

ceptional regular polytopes, as they appear sporadically

in the classification.

For any n-dimensional regular convex polytope P , one

has HP (n−1) = HP (n) by [Iwasaki 97a, Theorem 2.2].

Hence it is sufficient to consider the k-skeleton problem

for k ∈ {0, 1, . . . , n − 1}. For each regular convex poly-
tope, the 0-skeleton problem, or the vertex problem, was

thoroughly discussed by many authors [Kakutani and

Nagumo 35, Walsh 36, Beckenbach and Reade 43, Beck-

enbach and Reade 45, Friedman 1957, Flatto 63, Flatto

and Wiener 70, Haeuslein 70]. Our main concern is the

much more involved higher-skeleton problems. In this

direction, Flatto [Flatto 63] solved the (n − 1)-skeleton
problem for a regular n-simplex and an n-dimensional

cross polytope. However, attempts to deal with every

skeleton have begun only recently. Iwasaki [Iwasaki 97b]

settled the problem for all skeletons of a regular n-

simplex. This paper focuses on the same problem for

the exceptional regular polytopes and gives a complete

solution to it. The remaining polytopes will be discussed

elsewhere.

To obtain our result, we employ a criterion estab-

lished in an earlier paper [Iwasaki 99a] by one of the

authors. See (3—4) of Theorem 3.2. The new material

of the present paper consists of elaborate computations

needed to verify the criterion. For this purpose, we used

the computer algebra system, Maple.

2. MAIN THEOREM

We take the icosahedron, dodecahedron, 24-cell, 600-cell,

and 120-cell in such a manner that their vertices are as

polytope coordinates of vertices
Icosahedron {3, 5} (0,±τ,±1), (±1, 0,±τ), (±τ,±1, 0)
Dodecahedron (0,±τ−1,±τ), (±τ, 0,±τ−1), (±τ−1,±τ, 0)

{5, 3} (±1,±1,±1)
24-cell {3, 4, 3} the permutations of (±1,±1, 0, 0)

(±1,±1,±1,±1)
600-cell {3, 3, 5} the permutations of (±2, 0, 0, 0)

the even permutations of (±τ,±1,±τ−1, 0)
the permutations of (±2,±2, 0, 0)
the permutations of (±√5,±1,±1,±1)
the permutations of (±τ,±τ,±τ,±τ−2)

120-cell {5, 3, 3} the permutations of (±τ2,±τ−1,±τ−1,±τ−1)
the even permutations of (±τ2,±τ−2,±1, 0)
the even permutations of (±√5,±τ−1,±τ, 0)
the even permutations of (±2,±1,±τ,±τ−1)

TABLE 2. Vertices of the exceptional regular polytopes.

in Table 2, where τ stands for the golden ratio:

τ =
1 +
√
5

2
.

These polytopes are expressed as {3, 5}, {5, 3}, {3, 4, 3},
{3, 3, 5}, {5, 3, 3}, respectively, in Schläfli’s symbols.

Here {p, q} represents a regular polyhedron whose faces
are regular p-gons and whose vertex figures are regular

q-gons, while {p, q, r} represents a 4-dimensional regular
polytope whose cells are {p, q}s and whose vertex fig-
ures are {q, r}s (see [Coxeter 73]). Note that {3, 5} and
{5, 3} (respectively {3, 3, 5} and {5, 3, 3}) are duals of
each other.

For each 2 = H3, F4, H5, let G2 be a finite reflection

group of type 2 realized as the symmetry group of {3, 5},
{3, 4, 3}, {3, 3, 5}, respectively. The groups GH3

and GH4

are also realized as the symmetry groups of {5, 3} and
{5, 3, 3}, respectively. Then the fundamental alternating
polynomial ∆2 = ∆G of the group G2 is given in Table 3,

where the notation
�
is used in the following sense:�

(a0 ± a1 ± · · · ± am)
=
�

ε1=±1
· · ·
�

εm=±1
(a0 + ε1a1 + · · ·+ εmam).

The reflecting hyperplanes of the reflection group G2 are

given by the locus of the equation ∆2 = 0. Moreover, the

order of the group G2 is given by

|G2| =


120 (2 = H3),
1152 (2 = F4),
14400 (2 = H4).

The main theorem of the present paper is now stated

as follows:
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∆H3 = xyz
�
(τx± τ−1y ± z)�(τy ± τ−1z ± x)�(τz ± τ−1x± y)

∆F4 = xyzw
�
(x± y ± z ± w)�
(x± y)�(x± z)�(x± w)�
(y ± z)�(y ± w)�(z ± w)

∆H4 = xyzw
�
(x± y ± z ± w)�
(τx± τ−1y ± z)�(τy ± τ−1z ± x)�(τz ± τ−1x± y)�
(τx± τ−1z ± w)�(τz ± τ−1w ± x)�(τw ± τ−1x± z)�
(τx± τ−1w ± y)�(τw ± τ−1y ± x)�(τy ± τ−1x± w)�
(τy ± τ−1w ± z)�(τw ± τ−1z ± y)�(τz ± τ−1y ± w)

TABLE 3. Fundamental alternating polynomials.

Theorem 2.1. Let P be an n-dimensional exceptional reg-
ular convex polytope (n = 3 or 4) centered at the ori-

gin and let G be its symmetry group. Then for each

k ∈ {0, 1, . . . , n}, the fundamental alternating polynomial
∆G of the reflection group G generates the function space

HP (k) as an R[∂]-module, namely,

HP (k) = R[∂]∆G.

In particular, the space HP (k) is independent of the skele-

tons of P . The dimension of HP (k) is the order |G| of
the group G, that is,

dimHP (k) = |G|.

3. INVARIANT THEORY

The proof of Theorem 2.1 is based on some results in

invariant theory established by Iwasaki [Iwasaki 97c,

Iwasaki 99a]. Let G be a finite reflection group act-

ing on Rn. The ring of G-invariant polynomials in

R[x] = R[x1, . . . , xn] is generated by an n-tuple of alge-
braically independent homogeneous G-invariant polyno-

mials. Such an n-tuple (φ1, . . . ,φn) is called an invariant

basis for G, where φ1, . . . ,φn are arranged so that the

degrees di = degφi (i = 1, . . . , n) satisfy d1 ≤ · · · ≤ dn.
The degrees (d1, . . . , dn) depend only on G, that is, in-

dependent of a particularly chosen invariant basis. An

invariant basis (φ1, . . . ,φn) is said to be canonical if it

satisfies the system of nonlinear partial differential equa-

tions:

φi(∂)φj = �φi,φjX δij (i, j = 1, . . . , n),

where �f, gX is an inner product on R[x] defined by

�f, gX = f(∂)g|x=0 (f, g ∈ R[x]), (3—1)

and δij is Kronecker’s symbol. From a result of [Iwasaki

97c], any finite reflection group admits a canonical in-

variant basis, which is unique in the following sense:

if (φ1, . . . ,φn) and (ψ1, . . . ,ψn) are two canonical in-

variant bases, then φ1, . . . ,φn are linear combinations

of ψ1, . . . ,ψn and vice versa. In particular, if the de-

grees (d1, . . . , dn) satisfy d1 < · · · < dn, then for each

i ∈ {1, . . . , n} the i-th canonical invariant polynomial φi
is unique up to a nonzero constant multiple. The canon-

ical invariant bases of the types An, Bn, Dn, and I2(m)

were explicitly calculated in [Iwasaki 97c]. Other results

from our previous work that will be used in Sections 4

and 5 include:

Theorem 3.1. ([Iwasaki 97c]) Let (ψ1, . . . ,ψn) be an or-
thogonal invariant basis for G relative to the inner prod-

uct (3—1). Then the system of partial differential equa-

tionsF
ψi(∂)φj = �ψi,φjXδij (i, j = 1, . . . , n),
�ψi,φiX W= 0 (i = 1, . . . , n),

(3—2)

admits a solution (φ1, . . . ,φn) such that each φi is a G-

invariant smooth function on Rn with φi(0) = 0. More-
over, any such solution (φ1, . . . ,φn) of (3—2) is a canon-

ical invariant basis for G.

Theorem 3.2. [Iwasaki 99a] Let P be an n-dimensional

polytope having a finite reflection group G as its sym-

metry group. Assume that the degrees (d1, . . . , dn) of G

satisfy the condition

d1 < d2 < · · · < dn, (3—3)

and let (φ1, . . . ,φn) be the canonical invariant basis for

G. Then for each k ∈ {0, 1, . . . , n}, the fundamental al-
ternating polynomial ∆G of the group G generates the



156 Experimental Mathematics, Vol. 11 (2002), No. 2

function space HP (k) as an R[∂]-module and the dimen-
sion of HP (k) is the order |G| of G, if and only if P (k)
satisfies8

P (k)

φi(x) dµk(x) W= 0 (i = 1, . . . , n). (3—4)

In Section 4, we will apply Theorem 3.1 to compute

the canonical invariant bases for the groups G2 with 2 =

H3, F4, H4. In Section 5, we will verify the criterion (3—4)

of Theorem 3.2 to establish Theorem 2.1.

4. CANONICAL INVARIANT BASES

For each 2 = H3, F4, H4, we shall explicitly compute the

canonical invariant basis for the group G2. Recall that

the degrees of G2 are given by

(2, 6, 10) (2 = H3),
(2, 6, 8, 12) (2 = F4),

(2, 12, 20, 30) (2 = H4).

To state the result, we establish some notation. Given

a partition λ = (λ1, . . . ,λn) with λ1 ≥ · · · ≥ λn ≥ 0, let
Mλ denote the associated monomial symmetric polyno-

mial of the variables (x21, . . . , x
2
n), namely,

Mλ =
3

x2µ11 · · ·x2µnn ,

where the sum is taken over all permutations (µ1, . . . , µn)

of (λ1, . . . ,λn). If λ consists of mutually distinct numbers

p1 > · · · > pm with pj appearing kj times in λ, then we

put

Mλ = [p
k1
1 | · · · |pkmm ].

For example, if λ = (1, 0, 0), (2, 1, 0), (1, 1, 1), thenJ
1|02o = x21 + x

2
2 + x

2
3,

[2|1|0] = x41x
2
2 + x

4
2x
2
3 + x

4
3x
2
1 + x

2
1x
4
2 + x

2
2x
4
3 + x

2
3x
4
1,J

13
o
= x21x

2
2x
2
3.

Moreover, let ∆n be the fundamental alternating poly-

nomial of (x21, . . . , x
2
n):

∆n =
�

1≤i<j≤n

D
x2i − x2j

i
.

Theorem 4.1. For each 2 = H3, F4, H4, the canonical

invariant basis for the group G2 is given as in Tables 4,

5, and 6, respectively.

φ1 = [1|02]
φ2 = 2 [3|02]− 15 [2|1|0] + 180 [13] + 21√5∆3

φ3 = 5{2 [5|02]− 45 [4|1|0] + 42 [3|2|0] + 1008 [3|12]− 1260 [22|1]}
−33√5∆3{3 [2|02]− 11 [12|0]}

TABLE 4. Canonical invariant basis for GH3 .

We explain how to determine these canonical invariant

bases. We pick out the case 2 = F4 as an example. The

remaining cases 2 = H3, H4 can be treated in a similar

manner. We begin with an invariant basis constructed

by Mehta [Mehta 88]. As an invariant basis for the

group GF4 , he has given (ψ1,ψ2,ψ3,ψ4) = (I2, I6, I8, I12),

where

I2k = (8− 22k−1)S2k +
k−13
i=1

w
2k
2i

W
S2iS2(k−i)

(k = 1, 3, 4, 6)

with Sm = xm1 + xm2 + xm3 + xm4 . Since the degrees

(d1, d2, d3, d4) = (2, 6, 8, 12) are mutually distinct, the

invariant basis (ψ1,ψ2,ψ3,ψ4) is an orthogonal system

relative to the inner product (3—1). To determine the

canonical invariant basis (φ1,φ2,φ3,φ4), we try to solve

the system of partial differential equations (3—2). Taking

the degrees into account, we can find its solution in the

form
φ1 = ψ1,
φ2 = ψ2 + a1ψ

3
1 ,

φ3 = ψ3 + a2ψ2ψ1 + a3ψ
4
1 ,

φ4 = ψ4 + a4ψ3ψ
2
1 + a5ψ

2
2 + a6ψ2ψ

3
1 + a7ψ

6
1 ,
(4—1)

with some constants a1, a2, . . . , a7. The existence of such

constants is guaranteed theoretically. But we must deter-

mine them explicitly. Substituting (4—1) into (3—2), we

obtain a system of linear equations for a1, a2, . . . , a7. By

solving it, (φ1,φ2,φ3,φ4) can be determined explicitly.

This procedure is quite elaborate and requires computer-

assisted calculations (we use Maple for this purpose). De-

termining a1, a2, . . . , a7 in this manner, we are able to

φ1 = [1|03]
φ2 = [3|03]− 5 [2|1|02] + 30 [13|0]
φ3 = 3 [4|03]− 28 [3|1|02] + 98 [22|02]− 84 [2|12|0] + 1512 [14|0]
φ4 = [6|03]− 22 [5|1|02] + 143 [4|2|02] + 66 [4|12|0]− 308 [32|02]

+308 [3|2|1|0]− 5544 [3|13]− 2310 [23|0] + 4620 [22|12]

TABLE 5. Canonical invariant basis for GF4 .
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φ1 = [1|03]
φ2 = [6|03]− 22 [5|1|02] + 99 [4|2|02] + 198 [4|12|0]− 176 [32|02]

−66 [3|2|1|0]− 4752 [3|13]− 330 [23|0] + 3960[22|12]− 462√5∆4

φ3 = 3 [10|03]− 190 [9|1|02] + 2907 [8|2|02] + 5814 [8|12|0]− 14820 [7|3|02]
−63270 [7|2|1|0] + 61560 [7|13] + 31122 [6|4|02] + 238602 [6|3|1|0]
+414960 [6|22|0]− 311220[6|2|12]− 36556[52|02]− 204516 [5|4|1|0]
−1110018 [5|3|2|0]− 3361176 [5|3|12] + 5913180 [5|22|1]
+1934010 [42|2|0] + 6802380 [42|12]− 62244 [4|32|0]
−3267810 [4|3|2|1]− 28009800 [4|23|0] + 5228496 [33|1]
+17428320 [32|22] + 1254√5∆4{15 [4|03]
−76 [3|1|02] + 158 [22|02]− 24 [2|12|0] + 4032 [14]}

φ4 = 2 [15|03]− 290 [14|1|02] + 10962 [13|2|02]
+21924 [13|12|0]− 160080 [12|3|02]− 580725 [12|2|1|0]
−156600 [12|13] + 1124562 [11|4|02] + 6347172 [11|3|1|0]
+10445220 [11|22|0] + 2401200 [11|2|12]− 4011338 [10|5|02]
−39631806 [10|4|1|0]− 74993478 [10|3|2|0] + 93454704 [10|3|12]
−163041480 [10|22|1] + 6894112 [9|6|02] + 153571414 [9|5|1|0]
+234767325 [9|4|2|0]− 789274440 [9|4|12] + 487555656 [9|32|0]
+361940880 [9|3|2|1] + 3353275800 [9|23]− 3877938 [8|7|02]
−350953389 [8|6|1|0]− 414939366 [8|5|2|0] + 2156133528 [8|5|12]
−1281658509 [8|4|3|0] + 1977748380 [8|4|2|1]− 2823138864 [8|32|1]
−11401137720 [8|3|22] + 465352560 [72|1|0] + 219749820 [7|6|2|0]
−1551175200 [7|6|12] + 3221273832 [7|5|3|0]− 13029871680 [7|5|2|1]
+116338140 [7|42|0] + 5584230720 [7|4|3|1] + 44208493200 [7|4|22]
+4343290560 [7|32|2]− 4234708296 [62|3|0] + 23526157200 [62|2|1]
−218457174 [6|5|4|0]− 7528370304 [6|5|3|1]− 42347082960 [6|5|22]
+9074374920 [6|42|1]− 70578471600 [6|4|3|2] + 237143664576 [6|33]
+739393512 [53|0]− 4436361072 [52|4|1] + 186327165024 [52|3|2]
−33272708040 [5|42|2]− 186327165024 [5|4|32] + 299454372360 [43|3]
+957

√
5∆4{105 [9|03]− 1827 [8|1|02] + 8661 [7|2|02] + 32167 [7|12|0]

−14937 [6|3|02]− 136078 [6|2|1|0]− 721221 [6|13] + 7350 [5|4|02]
+219203 [5|3|1|0] + 408861 [5|22|0] + 2676017 [5|2|12]− 204250 [42|1|0]
−335350 [4|3|2|0]− 1700975 [4|3|12]− 9676225 [4|22|1]
+695970 [33|0] + 8701810 [32|2|1] + 7709820 [3|23]}

TABLE 6. Canonical invariant basis for GH4 .

obtain the result in Table 5 after suitable renormaliza-

tions; recall that the canonical invariant polynomials are

unique only up to nonzero constant multiples.

Also in the cases 2 = H3, H4, the same procedures as

explained above with the invariant bases constructed by

Mehta [Mehta 88] lead to the results in Tables 4 and 6.

5. MEAN VALUE PROBLEM

The proof of Theorem 2.1 consists of verifying the crite-

rion (3—4) by using the explicit formulas for the canon-

ical invariant bases obtained in Section 4. If F (k) is a

fundamental region for the action of G on P (k), then the

criterion (3—4) is equivalent to the nonvanishing of the

multiple integrals:

Ii(k) =

8
F (k)

φi(x) dx (i = 1, . . . , n).

If P is a regular convex polytope in Rn, then one can take
a fundamental region F (k) in the following manner: Take

a sequence P0, P1, . . . , Pn of regular polytopes with Pn =

P such that Pi is a face of Pi+1 for each i ∈ {0, 1, . . . , n−
1}. Denote by pi the center of Pi (note that pn = 0). Let
F (k) be the k-simplex having p0, p1, . . . , pk as its vertices.
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p0 = (τ, 1, 0)
{3, 5} p1 = (τ, 0, 0)

p2 = τ2

3 (τ, 0, τ
−1)

p0 = (τ, 0, τ−1)
{5, 3} p1 = (τ, 0, 0)

p2 = τ√
5
(τ, 1, 0)

p0 = (1, 0, 0, 1)
{3, 4, 3} p1 = ( 12 ,

1
2 , 0, 1)

p2 = ( 13 ,
1
3 ,

1
3 , 1)

p3 = (0, 0, 0, 1)
p0 = (τ, 1, τ−1, 0)

{3, 3, 5} p1 = (τ, 1, 0, 0)
p2 = 2τ

3 (τ, τ
−1, 0, 0)

p3 = τ2

4 (τ
2, 1, 0, τ−2)

p0 = (τ2, 1, 0, τ−2)
{5, 3, 3} p1 = τ (τ, τ−1, 0, 0)

p2 = 2τ√
5
(τ, 1, 0, 0)

p3 = τ2

2 (τ, 1, τ
−1, 0)

TABLE 7. Vertices of characteristic simplices.

It is easy to see that F (k) becomes a fundamental region

for the action of G on P (k). The simplex F (n − 1) is
called the characteristic simplex of P in [Coxeter 73].

For each exceptional regular convex polytope, the ver-

tices p0, p1, . . . , pn of its characteristic simplex are given

as in Table 7. With these data, using Maple, we can eval-

uate the multiple integrals Ii(k) and check that they do

not vanish (see [Iwasaki et al. 01] for full details). This

implies that the criterion (3—4) of Theorem 3.2 is veri-

fied and therefore Theorem 2.1 is established. Without

computer assistance, the proof presented here would not

have been possible. We wonder whether there exists a

more conceptual proof of the theorem.
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