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Consider the collection of all integer partitions whose part sizes
lie in a given set. Such a set is called monotone if the generating
function has weakly increasing coefficients. The monotone
subsets are classified, assuming an open conjecture.

1. INTRODUCTION

Suppose P is a set of positive integers, and let a,
be the number of integer partitions of n whose part
sizes lie in P. It is well known [Andrews 1976] that
the generating function for the sequence a,, is

Rl =3 = [
n=0

peEP

Bateman and Erdds [1956] found necessary and
sufficient conditions on P so that the k-th dif-
ference of the sequence a, is asymptotically pos-
itive. In this paper we consider £ = 1. We seek a
stronger conclusion, namely that a, .1 > a,, for all
n > 1, or, equivalently, that all of the coefficients
in (1 — q)Fp(q) past the linear term are nonneg-
ative. A set P of positive integers satisfying this
condition is called monotone.

Let n be the smallest element of P. Clearly any
P containing 1 is monotone, so we can assume
n > 1. If P is monotone, the coefficient of ¢g"*?
in (1 — q)Fp(q) is nonnegative, and we must have
n+1 € P. In fact, it is easy to see in this way that
{n,...,2n — 1} C P. In Theorems 3.5 and 3.6
we classify all monotone P with n > 6, assuming
Conjecture 2.2 below.

A set P is called asymptotically alternating if
there exists a large enough k so that the k-th dif-
ferences of a, alternate in sign. We classify the
asymptotically alternating sets P in Theorem 5.2.
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We shall use NN to denote nonnegative terms in
a power series F'(g), and SPP(¢*) to denote strictly
positive terms past ¢*. For example, we have —q +
1/(1—¢*) =1—¢q+NN and ¢*/(1 — q) = SPP(¢?).

2. THE CONJECTURE

In this section we concentrate on properties of the
function

___l-q
P @ = gy

We formulate a conjecture on f, ,,(q) below, and
use it to classify monotone sets P in Section 3.
We are particularly interested in the values of m
for which f,.(¢) = 1 — ¢ + NN, because P =
{n,...,m} is monotone for such m.

Proposition 2.1. We have

faoo(@) =1—q+NN=1-q+NN+SPP(¢"").

Proof. Applying the g-binomial theorem [Andrews
1976] we obtain

fnoo 1_qZ A

k=0 i= 1 ]‘ - ql)
q2n o nk
=1l—-g+q¢"+ + 5 ,
1—¢? s [ima (1 —¢)
=1 —q—i—NN—l—SPP(q?’"“). O

n

Conjecture 2.2. Ifn > 1 is an odd integer, we have
faon-1(¢) = 1 —q+ NN. If, in addition, n > 7,
then

fn,2n71(q) =1- q-—+ NN + SPP(q3n+4)
If n > 1 is even, then
fn,2n+1(Q) =1- q+ NN + SPP(q3n+7)

It is easy to see that the even part of this conjecture
follows from the odd part. If A, .m(q) = fam(q) —
1+ g = NN, then

1

—qn(hn—i-l,Zn—i-l(q) +q"—q

n+1
1-— )

hn,2n+1 (Q) =

If n is even, hp11,20+1(¢) contains ¢"**. This shows
that hy 2,+1(¢) = NN, and that A, 2,41(q) = NN +

SPP(¢*™*7) for n > 6. One can prove the cases
n = 2 and n = 4 separately.

A natural way to prove Conjecture 2.2 for a
given n is to use the asymptotics to verify the large
coefficients, and check the small coefficients sepa-
rately. For this one needs an effective bound for
the positivity of the large coefficients. In turns out
that a recurrence relation can find this effective
bound empirically, using Mathematica or a tradi-
tional programming language.

Proposition 2.3. Congecture 2.2 holds for n < 37.

Proof. We verify the case of n odd. Let a(n,n+1)
denote the number of partitions of k into parts of
size n, ..., 2n — 1 whose largest part is n + ¢, for
0<7<n-—1. We must show that
n—1
8(k) = (ar(n,n+1i) — ax_1(n,n+14)) > 0
i=0

for k£ > 2. By removing this largest part, we have

ann—l—z

Zak noilm,n+4). @20

Suppose that, by applying (2.1) recursively to §(k),
we can express 6(k) as the sum of §(k — t) with a
nonnegative linear combination of a;(n,n+1)’s. If
we verify that 6(2),...,6(t + 1) > 0, then Conjec-
ture 2.2 holds.

For example, if n = 3, we have

6(k) = 6(k — 20) + ar—21(3,3),

and we check that 6(2),...,6(21) > 0. This is fea-
sible as long as t = t(n) does not grow too rapidly
with n. Empirically, we find ¢(n) = (2n—2)(2n—1).
If the smallest part is used to generate a recur-
rence analogous to (2.1), the empirical result is
t(n) = n(n + 1) if 3 does not divide n, otherwise
t(n) = 4n(n + 1). In this way Conjecture 2.2 was
verified for n < 37. O

We shall need the lemma below in the next section.

Lemma 2.4. If n > 7 is an odd integer, the coeffi-
cient of ¢t in fr2n—1(q) is at least 2.
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Proof. The g-binomial theorem implies that

fron-1(g) =1 —q—f—Z[n—i_Z_ !
k=1

The only terms in this expression that contribute
to ¢°"™! are k = 4 and k = 5. It is easy to see that
the desired coefficient is equal to the coefficient of
q2n+2 iIl

]q(l —q)q"".

q 1

1-)(1-¢)(1-¢*) (1-¢)(1-g")(1—¢")

n 1
(1-¢")(1—¢*)(1-¢*)(1—¢")
An elementary injection shows that this coefficient
is at least 2, for n > 7 odd. We do not give the
details. O

3. MONOTONE SUBSETS

In this section we use Conjecture 2.2 to classify the
monotone subsets P, in Theorems 3.5 and 3.6. For
most of this section we shall assume that n is odd.
Basically we need a method to change the set P
from an interval {n, ..., 2n — 1} to a larger class
of sets. The lemma below accomplishes this.

Lemma 3.1. Suppose that
H(q) =1—q+ NN+ SPP(¢?%),

and
H(q)
HSGS(]‘ - qs) ’
where S is any set of positive integers. If s > a for

all s € S, then H(S,q) =1 —q+ NN.

Proof. We must show that ¢(S,q) = H(S,q) — 1+
g = NN. An easily verified recurrence for b ¢ S is

H(Saq) =

g(SU{db},q) = (9(S,9)+¢"—¢"). 3.1

1—¢b
For S the empty set, g(&,q) is positive past ¢%,
thus positive at ¢®*1. So (3.1) implies g({b},q) =
NN + SPP(g¢**!), and the argument follows for fi-
nite S by induction on |S|. If S is infinite, to
check that the coefficient of ¢’ is nonnegative, we

apply the finite part this lemma for the finite set
Sn{z:z<j} O

We next find monotone sets P from Lemma 3.1
and Conjecture 2.2.

Proposition 3.2. If Conjecture 2.2 is true, then P =
{n, ..., 2n — 1} U Q is monotone, where n > 7 is
odd and Q is any subset of {3n+ 4, 3n+5, ...}

Suppose that P is monotone and satisfies {n, ...,
2n — 1} ¢ P C {n,...,3n —2}. It is easy to
see that if an even number e > 2n is in P, then
so is e + 1. The next proposition shows that this
condition characterizes such monotone sets P.

Proposition 3.3. If Conjecture 2.2 is true, then P =
{n, ..., 2n—1}UFEUO is monotone, wheren > 7 is
odd, E and O are subsets of {2n, ..., 3n—2} con-
taining even and odd elements, respectively, and
the translate E + 1 is contained in O.

Proof. Suppose n > 7 is odd, and put, for any
subset S C {2n, 2n+1, ...},

_fnon-1()
Hses(l - q°)

The coefficients of f, 2,—1(g) up to ¢ can be ex-
plicitly found, so that Conjecture 2.2 implies that

g(n,S)z —1+g¢

3n+4

(n—3)/2
g(n, @) ="+ > ¢TI LSPP (¢,
i=0
(3.2)
To go from g(n, @) = NN to g(n, EUO) = NN
we add either a single odd a or consecutive entries
a and a + 1, one being even and the other odd. In
the first case we have

_ "¢ +g(n,5)
1—q° ’

g(n,SU{a}) (3.3)

for a ¢ S, while in the second we have

qa N q2a+2 _ qa+2 + g(n, S)
—q¢* (1-g*)(1—g*t)
(3.4)
for a,a +1 ¢ S. We see from (3.2) that g(n, @)
contains all of the even powers of ¢ from 2n + 2 to

g(n,SU{a,a+1}) = 1
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3n — 1. If a is odd, (3.3) implies that g(n,{a}) is
nonnegative and contains all of the even powers of
q from a + 2 to 3n — 1. If the smallest element a of
EUO is even, (3.4) implies that g(n, {a, a+1}) is
nonnegative and contains all of the even powers of
q from a + 3 to 3n — 1. We continue by induction,
noting that the single negative term in (3.3) and
(3.4) is an even power past the new term which
is added, and thus is always cancelled. All of the
other coefficients must increase. We obtain

g(n, EUO) = NN+SPP(¢*™) (3.5

for n > 7 odd. O

Proposition 3.4. If Conjecture 2.2 is true and n > 7
is odd, then P = {n,...,2n —1} UEUOUQ
is monotone, where E, O, and @ are in Proposi-
tions 3.2 and 3.3.

Proof. This follows from (3.5) and Lemma 3.1. O

Suppose we generalize Proposition 3.4 to the case
wheren > 7isodd, P = {n,...,2n—1}UEUQOUA,
and A C {3n—1, 3n, 3n+1, 3n+2, 3n+3, 3n+4}.
From (3.5) we know that

g(n, EUO) = NN+ SPP(¢**).

We will use (3.3), (3.4), and analogous versions for
three and four in a row (see (3.6) and (3.7) below)
to conclude that

g(n, EUO U A) = NN + SPP(¢*"*),

for the appropriate sets A.

From (3.2) there is exactly one term in g(n, @)
from ¢*" to ¢*"**, namely +¢***3. For g(n, E U
O U A), the possible new partitions in this range
whose differences we must take are:

d {3%— 1}7

o {3n},{n,2n},

o {3n+1},{n, 2n+1},{n +1, 2n},

o {3n+2},{n,2n+2},{n+1,2n+ 1},{n + 2,

2n},
o {3n+3},{n, 2n +3},{n+1, 2n + 2},{n + 2,
2n 4+ 1}, {n + 3, 2n},

o {3n+4},{n,2n+4},{n+1,2n+ 3}, {n+2,
2n+ 2}, {n+3, 2n+ 1},{n +4,2n}.

If 3n — 1 € A, nonnegativity implies either 2n € F
or 3n € A. If 2n € E we use (3.3) with a =
3n — 1 to get strict positivity past 3n + 4. The
case where 3n — 1 ¢ A and 3n € A is done by
the same argument. If 3n — 1 and 3n € A we use
(3.4), and must check the coefficient of ¢***! in
gn, EUO U {3n —1,3n}). Again we must have
either 3an+1 € Aor2n+1€ O. If 2n+1 € O, then
(3.4) gives strict positivity past 3n 4 4. Otherwise
3n—1,3n,3n+1€ A, and we use

gln, EUOU{a, a+1, a+2})

a 2a+4
(1—g)(1—g**2) (1 —q*™)(1—q*™?)
3a+3 __ ,a+3 + n, EUO
It BUO)
(1—¢*)(1—q*t)(1 — ¢got?)

for a = 3n — 1. If 2n + 2 € E, the term ¢*"*?
appears in g(n, EUO), and (3.6) implies that

g(n, EUOU{3n —1,3n,3n+1}) = NN + SPP(¢*" ™).

If 2n + 2 ¢ E, clearly we must have 3n — 1, 3n,
3n+1, 3n+ 2 € A. This time we use

gln, EUOU{a,a+1,a+2,a+3})
¢
(1—q*)(1—q**2)(1 —q**3)
N q2a+4 +q3a+3
(1—g2)(1—g*™)(1 —q+?)
2ot 4 glatT _ gatd _ 2043 | o(n U O)
(1—g*)(1—g*)(1 - g*+?)(1 - ¢**?)
(3.7)

for a = 3n — 1. Since g(n, Q) contains ¢*"3, the
¢°™ term is cancelled in (3.7). From Lemma 2.4,
g(n, @) contains at least +2¢%"**; thus g(n, EUO)
does also, and (3.7) implies that

+

g(n, EUOU{3n —1, 3n, 3n+ 1, 3n + 2})
= NN + SPP(g****).

Finally, if 3n+3 € A, we must have either 2n+4 €

E or 3n+4 € A, and we retain strict positivity past
3n+4
q .
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Applying Lemma 3.1, we have proved the main
theorem.

Theorem 3.5. If Conjecture 2.2 is true, the mono-
tone subsets P whose minimum wvalue n is odd,
n>7areP={n,....2n—1}UEUOUAUQ,

where
e FE is a set of even integers from {2n, ..., 3n—2},
e O is a set of odd integers from {2n, ..., 3n—2}

such that E+1 C O,
o A isa subset of {3n—1,...,3n+ 3} such that if
3n+1i € A fori# 2, then either3n+i+1€ P
or2n+1+1¢€ P, and
Q is a subset of {3n+4,3n+5,...}.

For even values of n, the coefficient of ¢3**! eas-

ily implies 2n + 1 € P. The analog of (3.2) for
n > 6 that follows from Conjecture 2.2 is

n/2
fa2n-1(q) _ 1—qg+q" + 2n+1+z 2n44+2i
1 _ q2n+1 - q q q q
=0
+ 2q3n+6 + SPP(q3n+7) (38)

A complicated injection proves that (3.8) also holds
for n = 4. Completely analogous arguments based
upon (3.8) yield the next theorem. We do not need
an even version of Lemma 2.4, because the largest
gap in (3.8) from 3n + 2 to 3n + 6 has width 2, not
width 4, as in (3.2).

Theorem 3.6. If Conjecture 2.2 is true, the mono-
tone subsets P whose minimum value n is even,
n>4,are P={n,...,2n—1,2n+1} UEUOU
AU Q, where

e FE is a set of even integers from {2n + 2, ...,
3n + 1},

e O is a set of odd integers from {2n + 2, ...,
3n+ 1} such that E+ 1 C O,

o A is a subset of {3n+2,...,3n+ 6} such that
if 3n + 2i € A then either 3n +2i+1 € P or
2n+2i+ 1€ P, and

o Q is a subset of {2n,3n+7,3n+8,...}.

Propositions 2.1, 3.2 and 3.3 imply that f, .»(q) =
1—¢q+ NN if

e me{2n—1,2n+1,2n+3,...,3n—2,3n—1
3n,...,00} for n odd, or
e me{2n+1,2n+3,2n+5,...,3n+1, 3n+ 2,

3n+3,...,00} for n even.

We cannot prove a weaker version, namely that
for any fixed n, there is some finite m for which
fam(q) = 1—q+NN. Nonetheless, we do have the
following result:

Proposition 3.7. Suppose n is odd. If f, m(q) =1 —
¢+ NN for some m =mgy > 3n—2, then f, m(q) =
1— g+ NN for all m > m,.

Proof. Upon adding my+1, from (3.1), we need only
show that the coefficient of g™ in f,, ,,,(¢) —1+¢
is > 1. But this coefficient equals the coefficient of
g™ % in f, -(q). From the proof of Proposition 2.1
we have

q2n q3n
fr,o(@) = 1—q+¢"+ + +NN,
@ 1-¢ (1-¢)(1-¢%
and any term past ¢** ™! appears with coefficient >

1 in the fourth summand. Since n is odd, ¢*"*!

and
¢*™ ! appear in the third summand. Clearly ¢*"
appears in the fourth summand. So my > 3n — 3
is sufficient. However, we already know that m, =

3n — 3 fails, so mg > 3n — 2. [l

4. INJECTIONS

The most natural proof of Conjecture 2.2 would be
an injection from partitions of £ — 1 into partitions
of k. We have found such injections for n < 9, but
not for general n. One may also change Conjec-
ture 2.2 to an equivalent injection on larger sets by
using the g-binomial theorem. For example,

1—qg+4q" +Z

k=2 i= 2 1 —q )
© k(m+1)
O e

An injection from the set representing the second
term on the right side to the set for the left side is
equivalent to Conjecture 2.2. One may hope that
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large values of m would make an injection easier
to find.
One may also begin with

fn,n+1(Q) L a

:1_qn_1_qn+1’

all of whose terms are known, and try adding n+2,
n+3,...,2n — 1, to reach Conjecture 2.2. We
use an injection to completely classify the negative
terms for f,, ,12(q).

Theorem 4.1. Suppose n =21+ 1> 1 is odd. All of
the coefficients in f, n2(q) are at least —1. More-
over the coefficient of ¢* is —1 if and only if

k=an+bn+2)+1,

where 0 < b=nj+7 for 0 <r <1l—1, and
0<a<a+j<r.

For example, if n = 5, then r = 0 gives k = 1, and
r =1 gives k = 8,13, 43 as the four negative terms

of f5,7(Q)-

Proof. We construct an injection from partitions
of k — 1 whose parts are from {n, n + 1, n + 2},
to partitions of k whose parts are from {n, n + 1,
n+ 2}.

First, if n + 1 is a part, add 1 to it to create a
part of size n + 2. So we assume n + 1 is not a
part, and the partition is n®(n + 2)°. We need a
partition of an + b(n + 2) + 1 into parts of size n
and n + 1.

Let b = nj + 7, where 0 < r < n —1. De-
fine the injection by mapping an + b(n + 2) + 1 to
ntItn=r(n 4 1)"+20=0 if p > [ and to n®ti"1 x
(n+1)m+2r+1if 0 < r < [—1. It is routine to check
the map is an injection where it is well defined. It
is not well defined if and only if the multiplicity of
n in the second case is negative. These are the co-
efficients stated in Theorem 4.1, because they yield
distinct integers for an + b(n + 2) + 1. a

5. RELATED QUESTIONS

It is natural to ask when f,, ,, 1., (q)/(1—q) is strictly
positive.

Theorem 5.1. There is an integer partition of k into
parts of size {n,n+1,...,n+ m} for all

n+m—2]

o[

Moreover, this bound is best possible.

Proof. The g-binomial theorem implies, in terms of
g-binomial coefficients,
> rm+1i
Frmim(@)/ (=) = D™

:| qin‘
i=0 a

If i > [(n+m—2)/m], the degree of the g-binomial
coefficient is at least n — 1, so all terms between ¢'®
and ¢(*+Y"~1 appear. O

Friedman and Zeilberger [1993] proved that the co-
efficients of

fzn,2n+2j (Q)(l - Q)j

alternate in sign, so P = {2n, ..., 2n + 25} is
asymptotically alternating. The next theorem clas-
sifies the asymptotically alternating sets P.

Theorem5.2. P = {ay,..
ternating if and only if oo > o for all j, where «;
is the number of indices i such that j | a;.

., ay} 18 asymptotically al-

(As usual, k | n means that k divides n.)

Proof. We shall use the following fact from [Hardy
et al. 1988]. If p(q) is a real polynomial such that
p(0) = 1 and p(q) > 0 for ¢ < 0, there exists an
integer a such that the coefficients of (1 — q)*p(q)
alternate in sign.

First assume that a; > «; for all j. Let

(1—g)" (1 -
[T (1 —gq%)

It is easy to check using cyclotomic polynomials
that p(q) is a polynomial in ¢ with p(0) = 1, and
that p(¢) has no negative real roots. Thus there
exists an integer a > 0 such that (1 — ¢)®p(q) is

qalag...an)az

p(q) =
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alternating, or equivalently (1+ ¢)*p(—¢) has non-
negative coeflicients. Since a;a,...a, is even, we
see that

(1+ gt

[Lo (= (—9)*)

has nonnegative coefficients. Replacing ¢ by —q
gives the first part of the theorem.

Next, suppose that a, < «; for some j. We
can assume that o; is maximized, so that j must
be odd. We show that the coeflicients cannot be
alternating, by showing that the leading terms in
the asymptotic expansion for the coefficients are
not alternating for a large.

The leading term in the partial fractions decom-
position for the rational function is A/(1 — wq)%,

where w is primitive j-th root of 1, and

(1—w™t)e ‘
Hj|ai a; Hj’(ai(l —wT)

The absolute value of the coefficient of ¢* is a poly-
nomial in k, whose leading term is

A=

Awkkaj—l
We first determine which primitive j-th roots w

maximize this quantity. Putting w = exp(2mim/j),
we find

|A| = ¢(2sin(mm/7))%,

where c is a constant independent of a. If a is
large enough, the largest value of |A| occurs if m =
3(j £1), which is primitive. If there are many
values of j that maximize «;, the largest such j

with m = 1(j £ 1) gives the largest value of |A|.

Let J denote the largest of these values of j.
Adding these two terms, we see that the sign of

the coefficient of ¢*, for large k, is the same as that

of
(D 1),

where ¢ is an angle independent of k. This implies
that the sign behavior of the large coeflicients is
determined modulo J, not modulo 2. O

There is also a version of Theorem 5.2 that allows
numerator factors. Odlyzko [1988] proved that the
k-th difference for P = {1,2,...} is initially alter-
nating, and then immediately nonnegative, for all
large values of k.
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