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The theory of automatic groups (groups that can be treated by
means of finite-state automata), and in particular the techniques
of automatic coset enumeration developed by Redfern, are
applied to the problem of computing limit sets of a large class of
Kleinian groups. We discuss in detail the case of groups in the
Maskit embedding of the Teichmiiller space of the punctured
torus.

1. INTRODUCTION

Computer drawn pictures of limit sets of groups
in the Maskit embedding of the Teichmiiller space
of the punctured torus led David Wright to make
various conjectures about these groups and their
parameter space [Wright 1987). Many of these con-
jectures were proved in a paper [Keen and Series
1993] that began the theory of pleating coordinates
for Teichmiiller space.

In extending this theory to Teichmiiller spaces
other than the punctured torus, Keen, Parker and
Series needed pictures of limit sets for other groups
[Keen et al.]. Producing such pictures is an ideal
application for the techniques developed by Red-
fern [1993] for enumerating coset systems using
finite-state automata. There are several autom-
ata that can be used for this, each one depending
on a choice of generators for the group. Making
the right choice of generators is vital if detailed
pictures are to be drawn efficiently. This is illus-
trated by Figure 1, which represents five attempts
to plot the same limit set, with various degrees of
success. The only difference among the first three
plots (on page 154) is the choice of generating set
used to derive the automaton.
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FIGURE 1. Five attempts to draw the limit set of the Kleinian group G, generated by the fractional linear
transformations (2.1), with x4 = 0.7082909515 + 1.617996654i. The three plots on the facing page are obtained
with cut-off radius rey = 1077 and visibility radius 7., = .0005 (roughly speaking, we examine circles of
radius greater than rcy;, and plot those of radius greater than rys; see Section 5). Each plot on this page has
Tewt = 10710, and otherwise the same parameters as the plot to its left on the facing page. The decrease in
Tcut yields an improvement in quality, but at a significant cost in running time. (Thé notation “N out of M
circles” indicates that M circles of radius greater than r.,, were examined, and of those N had radius greater
than ryis. The running time is proportional to M.)

A more efficient way to get higher quality is to choose a better generating set {u,w} (Section 6) for the
finite-state automaton. Thus the plot immediately above and the one immediately to the left are of’ equal
quality, but one took ten times longer than the other to run. The generating set for each example is given in
terms of the transformations S and T of (2.1), with ¢t = T=1. See also the discussion on page 164.

All our limit sets will be invariant under the translation S': z — 2z + 2 and bounded by the “circles” Imz = 0
and Imz =Img, the extended real axis and its image under T'.
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The methods we describe can be used for any
Kleinian group whose limit set is a circle packing
or, more generally, the closure of the orbit of a cir-
cle under the group. Examples of such groups are
the points in the Maskit embedding of the Teich-
miiller space of any Riemann surface of finite type
[Maskit 1974], and the tetrahedron groups consid-
ered in {Bullett and Mantica 1992]. In practice the
methods have been used for the Maskit embedding
of the punctured torus, the twice punctured torus
[Keen et al.], the four-punctured sphere, and the
closed surface of genus two, as well as for a tetrahe-
dron group. But full details have only been worked
out in generality for the punctured torus, and it is
on this case that we focus here.

The goal of this paper, then, is to explain how
finite-state automata can be used to draw pictures
of limit sets of groups in the Maskit embedding for
the punctured torus, and what factors influence
the quality of the output. We have implemented
these ideas in a C program, which we used to gen-
erate all the plots of limit sets shown here. Using
the program on a desktop Sun IPC, a useful plot
can be generated in a minute, and higher-quality
plots in about an hour, corresponding to several
million circles being examined and several tens of
thousand being plotted. On one of the University
of Warwick’s fast SparcServer 2000’s, this time is
reduced to a matter of minutes.

We begin with an outline of the Maskit embed-
ding in Section 1. Sections 2 and 3 give background
on the automata, much of which can be found in
[Epstein et al. 1992] or [Redfern 1993]. Sections 4
and 5 are the real heart of the paper, and explain
how to use the automata to draw limit sets in an

efficient manner. Sections 6 and 7 are concerned

with measuring this efficiency.

2. THE MASKIT EMBEDDING FOR THE PUNCTURED
TORUS

Recall that Kleinian groups are discrete subgroups
of PSL(2,C). A Kleinian group G acts on the Rie-
mann sphere C by Mobius transformations. The

set of limit points of G-orbits on C is called the
limit set A(G) of G, and is the smallest closed G-
invariant subset of C. The complement of A(G) is
called the ordinary set of G and is denoted Q(G).
The action of G on Q(G) is properly discontinu-
ous and, when G is finitely generated, the quotient
Q(G)/G is a finite union of Riemann surfaces of
finite type (Ahlfors’ finiteness theorem).

For details on the material in the remainder of
this section, see [Keen and Series 1993].

For p € C in the upper half-plane (Imy > 0),
let G, be the group generated by

s=(g 1) amd T=T.= (¥ 2). @
Let M,,; be the set of u such that G, is a Kleinian
group and Q(G,)/G,, is topologically the union of
the punctured torus X, ; with the thrice punctured
sphere ¥y 3. The punctured torus is covered by a
single connected component §2(G,) of G,), in-
variant under the group, and the thrice punctured
sphere is covered by infinitely many disks.

M, 1 gives a parametrization of the Teichmiiller
space of the punctured torus, that is, each com-
plex structure on ¥;,; up to isotopy arises as the
structure on the punctured torus component of
Q(G,)/G,, for exactly one u € M, ;. We call M, ;
(or its image under the correspondence u — G,)
the Maskit embedding of the Teichmiiller space of
the punctured torus.

Now fix 4 € M;,;. One of the components of
2(G,) that cover the thrice punctured sphere is
the lower half-plane H* = {z € C : Im z < 0}, and
A(G,) is the closure of all the G-images of the
extended real axis R = RU {oo}. The stabiliser of
R is the subgroup

H=(s=(g 1) T7sT=(3 1))

so precomposing by an element of H does not affect
the image circle.

To obtain a good approximation to the limit set
of G, we must draw all of these circles that are
larger than the smallest dot our drawing method
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can produce. For efficiency’s sake, we want to draw
each circle only once and in the simplest way pos-
sible. We choose a set of generators for G,—not
necessarily S and T' (but the group itself remains
the same). Every element of G, has an expression
as a string in these generators. Our goal is to find
a unique shortest string representing each coset of
the stabilizer H of R in G,; these strings, when
applied to lfl will give us the desired circles. We
shall use a finite-state automaton to do this enu-
meration, as expla.lned in the next three sections.

The construction applies to any Kleinian group
G whose limit set is the closure of all G-orbits of
a circle v with stabiliser H. In the case of a group
in the Maskit embedding of the punctured torus,
G = G, is a free group on two generators and
v =R, as just discussed.

Before moving on, we stress a technical point of
great practical importance. Traditionally, in hy-
perbolic ‘geometry groups act on the left, so the
cosets appear on the right; whereas in' combinato-
rial group theory groups act on the right and so
the cosets appear on the left. Using left and right
actions inconsistently leads to disastrous results—
circles are plotted not once but hundreds of times,
and so on. We were deceived more-than once be-
cause of this. So we now establish the convention
that, throughout this paper, groups act on the left.
In particular, strings should be read from right to
left, and we will say “suffix” where a combinatorial
group theorist would say “prefix”.

3. REWRITE RULES

Let G be a group generated by the elements g,,..,,
gn- We assume thisset of generators is closed under
inversion, and we write G; for g;'. (and likewise for
other letters). Let w be a string over theialphabet
A = {gr,:..,9n}, that is, an element of the free
monoid on ‘g;,...,9,. The image of w in G, de-
noted 0, is defined in the obvious way: formally, it
is characterized inductively by the conditions & = 1
(where ¢ is the empty string) and 7w = vw. We
denote by |w| the length of w, and by w(t) the suf-

fix of w of length ¢t. We can think of w as a path
from 1 to w in the Cayley graph of G. Shortest
strings correspond to geodesic paths.

In the language of combinatorial group theory,
our problem is: Given a group G with presenta-
tion (gi,...,9n | Ri1,.-.,Rm) and a subgroup H =
{h1,...,hi), find a finite-state automaton whose
language contains, for each coset wH, precisely one
string in gy, . . ., gn that represents wH and is more-
over as short as possible with this property. (For
the definition of an automaton and its language,
see Section 3.) If there is such an automaton, the
coset system G/H is automatically enumerable.

To characterize a unique shortest string, we pick
an order g; < - -+ < g, for the alphabet A, and use
lexicographic ordering (from right to left!) among
strings of the same length. Together with the or-
dering by length, this gives the so-called ShortLez
ordering on the set of strings over A, making this
monoid into.a well-ordered set.

We will describe the coset system in terms of
rewrite rules. A rewrite rule |l = r.is a pair of
equivalent strings (that is, ! = 7) such that | > r;
any occurrence of [ as a substring of a string can
be replaced by r without changing the ima.ge in the
group, and vice versa.

We always have the rewrite rules ¢;G; = ¢ and
G;g; = € for each generator, where ¢ is the empty
string. If the group is not free, we also have the
rule R; = ¢ for each relator.

We also need rules to describe the coset system:
we introduce them by adding the new letter .H to
our alphabet. For each chosen generator h; of H
we have the rules h;H = H and H;H = H.

We can get. from any string of the form wH to
its least equivalent by repeatedly substituting one
side of a rewrite rule by the other. This is called re-
ducing a string to an irreducible equivalent string.
Unfortunately, to do this we may need to use rules
backwards, -that is, to make the string longer be-
fore.it becomes shorter again. A complete system
of rules is one in which rulés need only be ap-
plied in the forward. direction to.reduce a string
to its least equivalent. Since applying rules in the
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forward direction makes strings lesser under the
well-ordering, having a complete system of rules
means that any string can be reduced to its small-
est equivalent in a finite number of steps.

A complete system of rules always exist (the triv-
ial instance being the set of all possible reduction
rules), but unless we can generate it in some man-
ageable way this reduction algorithm is not of much
use. Fortunately, we have the following result:

Proposition 3.1.. Let G be a free group of rank n, with
ge.n.erators 915+ s GnsyGn+1 = Gl, cesGon = G'n If
H is a finitely generated subgroup, G/H has a fi-
nite complete rewrite rule system.

Proof. Let H be generated by h,, ..., ks (also closed
under inversion). We first show:that H is quasicon-
vez. This means that if v is a shortest string in the
generators of G whose image is in H, the image
of any suffix of v is in a p-neighborhood of H in
the Cayley graph of G, for some fixed p. In other
words, walking along a geodesic toward a point of
H never takes us far from H.

To show this, let w be a shortest string in the
h; with @ = v, and let u be obtained from w by
replacing each h; with its expression in the gener-
ators of G. Because G is free, we can get v from u
by cancellation of inverses (rewrite rules g;G; = ¢
and G;g; = ¢), so given a suffix of v there is a
suffix of u with the same image in G. This image
is therefore within distance p from H, where p is
half the maximum of the lengths of the expr&ssmns
of the h; in terms of the g;.

Let E be the set of rewrite rules whose left-hand
side has length at most p + 1 (plus cancellation of
inverses). This set can be constructed because we
can solve the word problem in G. We shall show
that any reducible string uH can be reduced using
E, and thus that F is complete.

We can assume that u is reduced in G. Suppose
uH = vH, with v < u likewise reduced in G. Set
u = rp and v = rq, where r is the largest (possibly
trivial) common prefix of u and v. Then §~!p € H,
so pH = ¢H is a rewrite rule that apph&s to reduce
u (we have g < p because deleting a common prefix

preserves order). If |p| < p + 1, this rule is in
E and we are done. Othermse, note that ¢~ 'p
is irreducible in G, since G is free and we have
removed the largest common prefix. Thus ¢~p
gives a geodesic to a point-in H. Consider the suffix
p(p + 1). By the quasiconvexity of H, there is h €
H and some string z of length at most p such that
p(p+1) = zh. We deduce the rule p(p + 1)H =
zH, which is again in E. 0

Remark. This proof is a special case of a more gen-
eral existence argument that shows that quasicon-
vex subgroups of hyperbolic groups are coset auto-
matic [Epstein et al. 1992].

In practice, E can be much smaller than in the
proof just given. Still assuming that G is a free
group, it is enough to take one rule for each h;, as
follows: write h; in the form Rl without cancella-
tion, with r, the “string inverse” to R, being less
than I, and ! being as short as possible (about half
the length of h;). Then add the rule {H = rH. So
if h; = abe, the rule is BAH = cH.

The condition that the generating set be inverse-
closed and free is not necessary to guarantee that
G/ H is coset automatic; it is needed for finite com-
pleteness, however.

4. MAKING AN AUTOMATON

Given the finite complete set of rewrite rules just
constructed, we want to make a finite-state autom-
aton that has as its language the set of irreducible
strings. This will allow us to enumerate the unique
ShortLex string representing each coset.

A deterministic finite-state automaton over an
alphabet A is a finite directed graph whose edges,
or arrows, are labelled with letters from A, so that
at each node, or state, has exactly one outgoing
arrow for each letter in A. Some nodes are special:
there are zero or more accept states, and exactly
one start state. .

A string is accepted by such an automaton if,
by starting at the start state, and following the
path described by the string, we finally arrive at



McShane, Parker and Redfern: Drawing Limit Sets of Kleinian Groups Using Finite State Automata 159

an accept state. The set of accepted strings is the
language of the automaton.

bc

&

-0=-0— -0 -@—~(abe
‘\/

b,e

a,c

FIGURE 2. An automaton that rejects exactly those
strings over the alphabet {a,b, ¢} that contain the
substring acab. The start state is at the left, and
the accept states are shown in black. Arrows with
same source and destination have been combined.

Now suppose we have a set of k rules of the form
l; = r; and want to construct an automaton to
decide whether a string is reducible or not. For
each [;, it is easy to construct an automaton M;
that rejects exactly those strings that have [; as a
substring: see Figure 2. Then we take the cartesian
product M of the automata M;, as follows: the
states of M are k-tuples of states of the M;, and
the arrows. act independently on each entry of the
k-tuple. The accept states of M are k-tuples of
accept states of the M;. Clearly, a string is'rejected
by M if and only if it is rejected by one of the M;.

Remark. This construction is a particular case of a
well-known procedure due to Kleene, Rabin, and
Scott to find automata for so-called regular lan-
guages. See, for example, [Epstein et al. 1992,
Ch. 1}.

An important feature of the language of our autom-
aton is that it is suffiz-closed, that is, if a string is
accepted by the automaton, so is any suffix of it
(remember that strings are read right-to-left). If
a string is rejected, any extension of it is also re-
jected. We can in effect remove the reject states
from the automaton and the arrows that lead to
it, getting what is called a partial automaton. A

string is accepted if we can follow the path it pre-
scribes without getting stuck at a state lacking an
outgoing arrow for the next letter.

The discussion above has focused on the case
when G is a free group. An automaton to recog-
nize least strings in the ShortLex order can also
be constructed when G is the fundamental group
of any closed surface of finite type. In this case
the coset system does not have a finite complete
rewrite rule set, so alternative methods have to be.
used, which involve generating a large sample of
the rule set and deducing the automaton behind
it. This algorithm is contained in [Redfern 1993]
and is too long to describe here. Background can
be found in [Epstein et al. 1992, Chs. 2, 5 and 6],
for example.

5. USING THE AUTOMATON

Having an automaton, we can list all the strings it
accepts, that is, all possible paths from the start
state: conceptually, this amounts to untying all
the loops in the automaton to produce a (gener-
ally infinite) tree, as in Figure 3. (We’re thinking
in terms of the partial automaton: see two para-
graphs above.)

Of the two basic methods for traversing a tree,
depth-first and breadth-first, we choose the first
because it is easy to program and requires very
little storage space. Essentially all that we have
to keep track of is where we are in the tree, and
we store that information in the form of a “cur-
rent string”. Beginning at the start state with the
empty string, we follow the arrow with the least
label (a in Figure 3), and append that label to our
current string. From the new state we again fol-
low the arrow with the least label, and write down
that label to the left of the first in the current string
(now aa in the figure). We keep going until we hit a
state from which no arrows issue: at that point we
must backtrack. We return to the previous state
and take the next greater arrow out of it, replacing
the last label written by the label of the new arrow
(so we get the string ab in the figure). If we run out
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of arrows going out of a state, we must backtrack
another level, and so on.

There is one problem with this: if there are
loops in the automaton—and there must be, un-
less the accepted language is finite—we start go-
ing ever deeper, writing ever longer strings, along
the branch: corresponding to the first loop we en-
counter. Later branches, such as the branch start-
ing with b in Figure 3, are never reached. Obvi-
ously, we need a cut-off criterion. One solution is to
stop going along a branch when we reach a certain
depth. But our purpose is really to draw the circles
associated with the strings we’re generating—those
circles that fall within the page and are bigger than
some visibility radius ry,. If we go down to the
same depth on every branch, we typically generate
enormous numbers of uninteresting circles for the
sake of a few interesting ones. What we need are
geometric criteria for cut-off.

We can’t use an out-of-bounds cut-off because,
no matter how far out, a circle might still ' map
within bounds if we were to persevere along that
branch.

What we' can do is pick a cut-off radius re..
that is much smaller than the visibility radius, and
stop following a branch when the circle gets smaller
than the cut-off radius, on the assumption that no
circle further down along that branch will be visi-
ble. This assumption is false, but in Section 6 we
show how to overcome the problems it introduces.

FIGURE 3.
aa, ab, aba, abd, abba,

We also do impose a depth cut-off, but make it
very large.

To summarize, then, we use a depth-first search
with two cut-off criteria: depth and circle radius.
The cut-off radius is significantly smaller than the
radius of the smallest circle we are interested in.
As already indicated, this method is economical in
terms of storage space; there is no need to store a
list of circles for the next pass, as there would be
with a breadth-first search. Overhead is minimal,
and virtually all the time is spent in multiplying
matrices and trying matrices on points to deter-
mine the image circle. Since there are infinitely
many circles in A(G,,) and our procedure only plots
a finite number, it will miss almost all circles—in
fact it will usually omit some visible circles, as just
explained. It will nevertheless give an acceptable
picture provided the presentation for the group is
chosen correctly, as explained in the next section.

6. GEOMETRICAL CHOICE OF GENERATORS

We stress that the true picture, that is, the limit
set A(G,), does not change when we alter the pre-
sentation of G,,. But a change in presentation does
affects the order in which coset representatives are
enumerated, and therefore the part of the circle
distribution that the depth-first search shows us.
We now turn to the question of how to change the
presentation advantageously.

\\
\\

“a.a "o.b
1 1

The tree of accepted strings implied by an automaton. A depth-first search yields the strings ¢, a,
."... A cut-off criterion must be imposed if all branches are to be visited.
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We are free to choose any set of generators for
G,, in any order (and the order generally matters).
To take advantage of the especially simple situation
covered by Proposition 3.1, however, we will work
with generator sets of four elements—two pairs of
mutually inverse transformations. Within these re-
strictions, the idea is to try to ensure that elements
of the group that have undesirable properties are
not represented by short strings in the resulting
language of least representatives in the ShortLex
order.

Since the limit set is invariant under the trans-
lation S : z — 242 of (2.1), we can concentrate on
a fundamental domain for S, say the strip —1 <
Rez < 1. We want circles that meet this strip to
have low depth (correspond to short strings) in our
enumeration. Similarly, we want circles with large
radii to have low depth.

(Reaching the circles of interest at low depth is
important not only to save time but also to re-
duce the number of arithmetic operations required.
Each time we generate a new node in the tree we
multiply the matrix held in the parent node by
some generator; since we are using floating point
arithmetic, this introduces a rounding error. The
cumulative error over hundreds of multiplications,
say, could result in visible inaccuracies.)

If S can be expressed as a short string in the
chosen generators, this expression is likely to oc-
cur as a suffix of many strings in the (truncation
of the) language of least representatives, and cir-
cles lying outside the fundamental domain of in-
terest will appear frequently. Thus one strategy is
to avoid generating sets in terms of which S has a
short expression.

Another goal is to try to avoid clumping, a phe-
nomenon illustrated by the following example. (In
the next section we will see how to measure it quan-
titatively.) Let A and B be a pair of Mdbius trans-
formations with 4 loxodromic with a long transla-
tional component. Let L, be the set of strings in A
and B having length at most n. If n is small and 2
is a point of the complex plane not fixed point by
A, the translates {yz | v € L,} will tend to cluster

round the attracting fixed point of A. To see this,
consider the proportion of strings in L, that have
arun of (say) 3n or more A’s as a prefix. There are
around 2"/2 such strings, out of a total of 2"*+! — 1.
For large n this ratio rapidly approaches zero, but
for n small it is significant. Thus, for small n, a
significant proportion of the vz for v € L,, will be
found in a neighbourhood of the attracting fixed
point of A (see the first plot on page 155).

We conclude that to reduce clumping we should
not choose loxodromic generators with long trans-
lational parts. To see how to do this in practice,
we must explore in more detail the structure of the
groups G .

Every element of G, represents a homotopy class
of closed curves on Q(G,)/G,. It is well known
that the homotopy classes of simple closed curves
on L, are naturally parametrised by Q U {oo}.
The parametrisation, associating to each p/q (in
lowest terms, with ¢ > 0) an element W, € G,,,
is easy to describe. First, W, = W,,, = S},
Wy = WO/I =T and W, = w1/1 = ST Then,
given any rational number in lowest terms, write it
as (p+r)/(q + s), where p, g, r, s are integers with
ps — qr = 1; the rationals p/q and r/s are called
Farey neighbours and (p +r)/(q + s) is their Farey
sum. We then have

W(P+r)/(q+-) = Wp/qwr/r

For example, W,,, = S~!T™ for all positive inte-
gers n.

Generically, W,,, is a loxodromic transforma-
tion, but by varying u we can make its trace tend
to two, and so, in the limit, become parabolic (the
exception is p/qg = 1/0, since S = W,y is al-
ready parabolic). Geometrically, this corresponds
to making the length of the geodesic in the given
homotopy class tend to zero—in the limit, the two
sides of the neck around the geodesic become two
punctured disks. This process is called pinching
[Maskit 1970], and the group produced in this way,
which lies on the boundary of the Maskit embed-
ding M, ,, is called a cusp group. The value of
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f = o = 0.0487530129 + 1.8964072513

FIGURE 4. Sequence of limit sets as G, approaches the cusp group for p/q = 1/9 along the pleating ray [Keen
and Series 1993]. Notice the complementary family of circles in the case of the cusp group (last panel). The
following parameters are common to all plots: generators u = t85, v = tu; radii rvis = 0.0005, 7y = 10~7
Note the steady increase in the number of circles examined (and plotted) as we approach the cusp group.

p for which W, is pinched is denoted p,/,. See
Figure 4.

For a cusp group, the ordinary set £(G,) no
longer has a group-invariant simply connected com-
ponent covering 3, ;; this component becomes a
‘infinite collection of discs on which the group acts
transitively. Let A, be one of these disks, and &,
its boundary [Keen and Series 1993]. The images
of 8o under the group are part the limit.set: A(G,)
has become a circle packing. Because of this, bet-
ter pictures of the limit set are obtained by drawing
not only those circles that are images of R, but also
those that are images of 6.

The condition tr(W,,,) = 2 gives a polynomial
equation in u of degree g. The particular root p,/,
that leads to pinching of the curve associated with
W, is characterised as follows [Keen and Series
1993]. Take the locus of y values for which tr(W,,)
is real, and remove the set of points where tr(W,/,)
equals 2. There is a unique component of this set
that is asymptotic to the line Rey = p/q. The
finite endpoint of this component is y,/,. In prac-
tice it is often easier to search for the correct root
by trial and error: taking the root with the largest
imaginary part usually suffices. -

Remark. Cusp groups are dénse in the boundary of
M,,1 (compare [McMullen 1991]), and it is conjec-
tured that OM, ; is a Jordan curve.

Let’s return to the choice of generators. It is clear
from the preceding discussion that, when we are
at or close to the cusp p,/,, the element W, is
a loxodromic with small translation length, or a
parabolic. We therefore choose W = W/, as one
of the generators, and must choose a complemen-
tary generator, hopefully with the same good prop-
erties. '

At the cusp there is always a complementary
generator U whose trace is —ipu,/, (see Proposi-
tion 7.1 below). If —1 < p’/q < 1, this is close
to two, and U has a small translation length. For
other values of p’/q, we compose U with powers of
Wo/q to get one with short translation length.

- We found that these choices are not good enough
when g is large. Because the generators have rather
small isometric circles in this case, the detail is still
concentrated around the fixed points, although the
attraction is slower than when we use a loxodromic
generator with large translational part. This can
be avoided by using W,,, and a complementary
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generator, where s is around 10 and |ps — gr| is as
small as possible. For example, /s can be a trun-
cation of the continued fraction expansion of p/q.

The three first plots in Figure 1 (page 154) il-
lustrate this phenomenon. The value of u for that
figure is equals p13/34. The middle picture is ob-
tained using Wy3/34 and a complementary gener-
ator; it has good definition around &, (the circle
tangent to the real axis at —1), but quality drops
noticeably for Rez > 0. The much better picture
at the bottom is obtained using the automaton cor-
responding to W;/s and a complementary genera-
tor. The top figure, using W11, is characterized
by clumping around two small regions. The re-
maining two plots in Figure 1 show how quality
may be improved by decreasing the cut-off radlus,
but at a high cost in running time.

A similar situation arises in Figure 5, which dis--

plays the limit set of G, for p = 10/109. At the
top, we use Wig 10 and a complementary genera-
tor, and the result is'poor. In the middle, we de-
crease the visibility radius; all that happens here is
that the area with most detail becomes very black
and the detail is obscured, while the areas where
there were few circles before remains unchanged.
By contrast, in the bottom plot we change the gen-
erators; this gives a much better picture (but the
running time increases substantially).

7. THE DUALITY OF CUSPS

The next section will describe a method for assess-
ing how good an approximation to the limit set
we. obtain with the algorithm above. The method
applies equally well to groups in the interior of
the Maskit embedding and to. cusp groups on-its
boundary. For the latter we need some auxiliary
results, which we develop in this section.

As we have seen,; for a cusp group G =G, the
set (G) consists of two families of discs, G acting
transitively on each. The quotient of each:family
is a thrice punctured:sphere, one puncture on each
corresponding to K = [T!,S-1] and the other
pair corresponding to S on one and W/, on. the

other. We now show that there is an involution on

the set of cusp groups that swaps these two families
of discs.

Proposition 7.1. For every coprime p,q € Z there is
a Mébius involution P and an integer p’ coprime to
g such that P conjugates G = G,,p L t0G' =G, ,

and sends each family of discs in Q(G) to the other
Jamily in Q(G").

Proof. Let T = T, . . The group element W/,
for G is parabolic, and there is U € G such that

G = (U,W,,) and that

= [T_ 1] = [ p/q’ _1]

(see [Keen and Series 1993); in fact we may take
U= W/,, where ps — gr = —1). Because G =
(U, W,,,) and W, is parabolic, we can find P €
PSL(2,C) so that PW,,,P~! = § and PUP~! =
T, for some y' € C. In other words, conjugation
by P renormalises G so that W, becomes the dis-
tinguished parabolic generator. Furthermore, .

PKP~! = PW; U™ W, UP™}
= S‘IT“_IIST“/ = K_l

Since P conjugates the parabolic element K to its
inverse, it has order two:

Now write S in terms of W/, and U. Replac-
ing Wy by S and U by T = T,/ in this ex-
pression gives PSP~!, which is parabolic. Thus

= (5,T") is a cusp group, that is, i’ = py /e
and PSP~! = W, for G,». We now show that
g = q. Observe that ¢ is the intersection num-
ber of the curves represented by S and W,,,, and
this is the same as the intersection number ¢’ of
the curves represented by PSP~! = W, and
PW, ;P! = S. 1t follows also that p’ and g are
coprime:

Next, P must fix —1: and send oo to the fixed
point of W,,. This means that P sends R to the
circle through that fixed point and tangent to R
at —1. ‘This is the basic circle §, for: the other
family [Keen and Series 1993]. The boundaries of
the second family of discs in Q(G,/,) are given by



McShane, Parker and Redfern: Drawing Limit Sets of Kleinian Groups Using Finite State Automata 165

57430 out of 6 --107 circles

Ty 7

NI -
£

-]

ol n N
al
AT o
" . 5y @
x O .
.“*‘:, i ,{i( :I;. ~
Iﬁ"g(‘ R Q'@ = .)';L -

' x".l 12 AN A ‘\ YT
e g A
v o .,a’.‘:‘ . N ,._\r~' (\)
S0 e) Yoot
Sy o AT T

Co {
‘.6” ,y‘.: A/
CI7S . !

=W

tl

O

28, ryis = .0001

R

FIGURE 5. The limit set of G, for u = py9/109- The parameter rey, = 10~7 is common to the three plots.
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U 9(60) = U 9(P@) = P(|J 9(®)).

g€G geG geG’

These are the circles bounding the first family of
discs in Q(G’). As P swaps the two families of
circles, it also swaps the two families of discs. O

Remark. From this proof we see that

Wosa(losq) = PSP =PSP™! = o 1a(kpt 1)

We can explicitly obtain p’ from p and ¢. First note
that p’ is only determined up to congruence mod
g, since adding an integer to p/q does not change
Gyp/q, it merely changes the generators. Now con-
sider the curves represented by S and W,,, on
a punctured torus; call them v,/ and 7,/,. On
another punctured torus consider the curves v, /4
and 71y represented by Wy, and S. There is
an (orientation-reversing) element of the mapping
class group of the punctured torus sending 7,0
to Yy and v,/ to 7110. Composing with the
orientation-reversing element of the mapping class
group sending 7, to y_. for all z € QU{oo}, we get
an element of PSL(2, Z), the orientation-preserving
mapping class group of the punctured torus, send-
ing 7170 t0 Ypr/q and y_p/q to 71/0. Such an element

B

BT T
4 gg‘*‘
iy

c

must be of the form (’;I ;) This implies pp’ = 1
modulo ¢, and determines p'.

Example 7.2. If p = 1, we can choose p’ = 1. Thus
PG,;P~! = Gy/;. We now show this explicitly.
We have already seen that Wy, = W = S~1T9.
We may take U = S~!T'S as the other generator.
Now W-1U? = § and W-'UW = T. As above,
we can find a map P satisfying PWP~! = S and
PUP-! = T'. Then S7'T"" = PW-UIP! =
PSP~1, which is parabolic. Since there is a unique
value of u for which the group is a cusp group
with §~1T"? parabolic, we see that p’ = p;/, and
PUP~! =T, as required.

Example 7.3. If p = 2 and ¢ = 7, we get p' = 4.
This situation is illustrated in Figures 6 and 7. Al-
though the pictures of the limit sets for G3;7 and
Ga/7 look quite different (in particular, py/; and
ta/7 have different imaginary parts), they are re-
lated by a Mébius transformation that swaps the
two families of circles (the family arising from §, is
in each case not drawn explicitly, but only implied
by the accumulation of circles of the other family).
The circle 6, and the fixed point of W,,, are the
same in both cases.

SRy R
h-;

s
.. }%{%@%
' PN

3 h

FIGURE 6. The limit set of G, for 4 = py/7 ~ 0.448059 + 1.6708:. This cusp group is conjugate to that of
Figure 7; corresponding disks are marked with the same letters.
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8. CALCULATING THE CIRCLE PACKING EXPONENT

We now state a performance test for the algorithm
of this paper. Let G, be a group in the Maskit
embedding. Our primary performance criterion is
how successfully we are able to enumerate large
circles, and to do this we first estimate the circle
packing exponent of A(G,) (defined below). We
begin by showing that for any u € M, the circle
packing exponent of A(G,) equals the Hausdorff
dimension of A(G,,) (see [Parker] for a more general
version of this result).

Recall that we defined Qy(G,,), for p € M, ;, as
the unique G ,-invariant component of Q(G,). The
only other (S)-invariant components of §2(G,) are
the lower half-plane H* and its image under T, the
half-plane Im z > Im p.

Let ©,(G,) = Q(G,)UH* UT(H*) be the union
of the three (S)-invariant components, and choose
a fundamental domain E for (S) such that 8E C
A(GL) U (G,). Also, define

K= (C —QW(Gu))N E;

this is a compact subset of C. The intersection
Q(G,) N E is a collection of disjoint open discs,
one from each (S) orbit of components of Q(G,) —
Q,(G,). Each of these discs is the image of H*

under an element of G,. Removing these discs
gives a circle packing II of K.

Let r denote the radius of an arbitrary circle in
II. The circle packing exponent of II is defined as
[Boyd 1973; Bullett and Mantica 1992]

e=sup(t: Z r‘=oo)=inf(t: Z r‘<oo).

circles in I circles in Il

It is clear that e < 2, because for t = 2 the sum is
Area(K)/r.

The radius of the image of R under the map
g(z) = (az + b)/(cz + d), where ad — bc = 1,
is |cd — de|™*. In order to count each circle in
IT exactly once we need to sum over the cosets
(S)\G./H excluding the coset of the identity I
and the coset of T (since these give the lines R
and T(R)). We index these cosets by considering
the points g~!(o0) in a given fundamental domain
D for the action of H on Q(H) = C — R [Parker].
Thus Y rfequals

circles in II

> led—de™t= ) led—dg™

(SN\Gu/H-{1,T} 97! (o0}eD

The fundamental domain we choose is

D={z:-1<Rez<1,|2z-1| > 1, |2z+1| > 1}.

FIGURE?7. The limit set of the cusp group G, for u = ug/7 =~ 1.13661 + 1.63996:. Compare Figure 6, and see

also Example 7.3.
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Furthermore, each point g=!(o00) must be in A(G,,)
and so does not lie in H* nor in any of the discs
Aoy, S(Ap) or. T-}(H") (recall that A, is the disc
in Q(G,) with boundary &,). These discs are tan-
gent to R at the points —1, +1 and 0 respectively.
Thus there exists a positive constant € so that
Im g~!(c0) = Im(—d/c) > ¢ for g~!(c0) € D. So,
for t < 2, we have

S led-ddt @)t Y Jel

g~ (o0)ED g—1(c0)ED

<@)? Y I

g~ 1(o0)EE!

where E’ is the strip {z : —1 < Rez < 1}, the last
inequality being a consequence of D C E’. Now
E’ is a fundamental domain for (S), so the points
g7 1(o0) in E’ index the cosets (S)\G,/(S) — {I}.
Thus we obtain

> e S

g~ (co)e B (SNG./(85)-{1}

It follows that

e< sup(t : le|=% = oo)
(SNGL/(S)-{1}
= inf(t : Z le]=% < oo),

(SNGL/(S)-{1}

which is just the exponent of convergence of the
Poincaré series-[Beardon 1968]. Since G, is geo-
metrically finite, this is the Hausdorff dimension
d = d(u) of I [Nicholls 1989, Theorem 9.3.6]. In
other words, e < d." But it is known that e > d
for all sphere packings of compact subsets of R*
[Larman 1966]. It follows that e = d.

This proof also works for cusp groups p = pp/q
in the boundary of M, ;, because they are also ge-
ometrically finite [Keen et al. 1993]. For a cusp
group the component (G, ,,) has itself degener-
ated to a circle packing. By Proposition 7.1, there
is an involution P € PSL(2,C) and p’ such that
the second family of circles in A(G,,,,) become the
first family of circles in' A(G,, ) and vice versa.

Because the Hausdorff dimension is a Mdbius in-
variant, we have

€(tip/q) = d(ppsq) = Ak /q) = €(bipr/q)-

So we only need to consider one family of circles
and it does not matter which we choose.

To estimate the circle packing exponent we use
the following procedure [Bullett and Mantica 1992].
We plot the number of circles of radius at least z
against z in double logarithmic scale; the slope of
the resulting graph is the circle packing exponent.
More precisely, we start with, say, a thousand in-
tervals along the z-axis, which we think of as num-
bered empty buckets. When we draw a circle of
radius r we add one to the count in bucket number
—|1001log,, ). We then plot the log of the cumula-
tive sum of the counts on the y-axis against bucket
number on the z-axis. The resulting graph is of
course discontinuous, but for radii less than .01,
say, the jumps are small enough that they don’t
matter. If, in that region, the log-log graph is
linear with slope a, the number of circles found
that have diameter greater than r is proportional
to r—¢.

If the algorithm for plotting the limit set were
100% accurate we would get a linear graph ev-
erywhere (apart from the early discontinutities),
with slope equal to the circle packing exponent;
this follows from the definition of the exponent by
a simple reasoning. In practice, the graph starts
approximately linear and then tails off. The point
where it begins to tail off marks where the algo-
rithm breaks down. The algorithm can be regarded
as a good way of enumerating circles larger than
this radius.

Figure 8 shows these graphs for the first three
plots of Figure 1 (page 154). The true graph would
be a line with slope equal to the circle packing ex-
ponent. The solid line, corresponding to the bot-
tom plot on page 154, is approximately linear for
r < 10~° (which is less than the visibility radius).
Notice, however, we don’t know that the slope is
in fact the true circle packing exponent.
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11 102
FIGURE 8. Cumulative number of circles against
radius for the plots of page 154. The poor plot
at the top of page 154 gives a graph that tails
off very quickly (dotted line). The middle plot
gives the graph in the middle, and the best plot,
at the bottom of page 154, gives the solid line,

which remains roughly linear until » is down to
about 10~° (solid line).

"10~4 10— 10-8

There 'is one case where theoretical estimates
of the circle packing exponent exist, namely, the
group G, for u = 2i. The limit set of this group is
the circle packing of Apollonius, shown in Figure 9,
for which the circle packing exponent is known to
be 1.300197 < e < 1.314534 [Boyd 1973]. With
parameters as in Figure 9, for values of the ra-
dius between 102 and 107%, we get a slope of
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FIGUREY. The Apollonius circle packing, A(Gy;).
Generators: W = T and U = s. Radii: ;s = .0005
and 7y, = 10~7. There were 6447 circles plotted
out of 2.1-108.

10—10

1.300393. We conclude that, at least for this group,
the algorithm described in this paper gives an effi-
cient method of enumerating large circles first, and
hence generates good pictures of the limit set.
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