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We review previous methods of computing the modular degree
of an elliptic curve, and present a new method (conditional in
some cases), which is based upon the computation of a special
value of the symmetric square L-function of the elliptic curve.
Our method is sufficiently fast to allow large-scale experiments
to be done. The data thus obtained on the arithmetic character
of the modular degree show two interesting phenomena. First,
in analogy with the class number in the number field case,
there seems to be a Cohen–Lenstra heuristic for the probability
that an odd prime divides the modular degree. Secondly, the
experiments indicate that 2r should always divide the modular
degree, where r is the Mordell–Weil rank of the elliptic curve.
We also discuss the size distribution of the modular degree, or
more exactly of the special L-value which we compute, again
relating it to the number field case.

1. INTRODUCTION

Let E be an elliptic curve over the rationals. We can as-

sume that E is in the form y2+a1xy+a3y = x
3+a2x

2+

a4x+ a6 and that this is a minimal Weierstrass equation

for E; we will refer to such a curve as [a1, a2, a3, a4, a6].

By the work of Wiles and others ([Wiles 95, Breuil et

al. 01]), it is known that there is a surjective morphism

(called a modular parametrisation) φ : X0(N) → E,

where X0(N) is the (compactification of the) standard

curve classifying cyclic N -isogenies and N is the conduc-

tor of E. The curve X0(N) can also be viewed as the

upper half-plane modulo the action of the group

Γ0(N) =
a b
c d

: N |c, ad− bc = 1 ,

with appropriate cusps added. Since both E and X0(N)

can be realised as Riemann surfaces, this modular para-

metrisation has a topological degree. We call this the

modular degree of E, and denote it by degφ. Equiva-

lently, this degree is also the usual notion of degree from

algebraic geometry, namely the index of the pullback of
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the function field of E in the function field of X0(N). It

shall be our goal to compute the modular degree for a

large set of elliptic curves, and study its size and arith-

metic properties.

There are a few problems when talking about the run-

ning time of an algorithm to compute the modular de-

gree. The first is that good upper bounds on the modular

degree are only known under the assumption of the ABC-

conjecture. To avoid problems with the time needed sim-

ply to output the result and questions of precision needed

in our calculations, we tacitly assume that there is a poly-

nomial bound (in N) on the modular degree, as would

follow from the ABC-conjecture. As such, our time esti-

mates are heuristic. Secondly, some of the algorithms we

present below require the computation of the pth trace

of Frobenius of E for various primes p. There is an algo-

rithm in [Schoof 85] which does this in time O (log p)8 .

However, for our range of interest, the asymptotically in-

ferior baby steps/giant steps method of Mestre (see [Co-

hen 93]), which takes O(p1/4) time, is faster. This is the

more practical running time estimate, and the one which

we report below; we also leave out powers of logN in our

time bounds.

There is a number of algorithms known for computing

the modular degree. The first to appear in the literature

seems to be [Zagier 85], whose method (explicit only for

prime N) involves triangulating the fundamental domain

for Γ0(N), and then traversing this, noting how different

edges glue together. The proper choice of fundamental

domain is very effective in the case of prime N , giving an

algorithm which, using the fast Fourier transform, runs

in O(N5/4) time and O(N) space. However, in the gen-

eral case when N is composite, the algorithm becomes

markedly more complex and the running time appears

then to be no better than N2. For comparison with the

other algorithms, we note that Zagier’s method computes

neither theX0(N)-optimal curve nor the Manin constant,

but given one of the two, the other can be computed (see

below for the definitions of these). Another method is

given in [Mestre 86], involving the “method of graphs”

which utilises supersingular j-invariants. Again this is

described explicitly only for prime N , but here the rela-

tive gains from a generalisation to composite N are suffi-

cient to make such possibly worthwhile. This algorithm

takes about N2 time, and computes both the Manin con-

stant and theX0(N)-optimal curve. Via the use of sparse

matrix techniques, the memory requirements can be kept

to size about N . In the early 1990s, Elkies (personal

communication) used this method to compute the mod-

ular degree of the rank 4 curve [0, 1, 1,−72, 210]. Re-

lated to this is the method of [Birch 91], which uses

ternary quadratic forms. However, it only works for the

−1 quotient, i.e., those curves whose L-function satisfies
an even functional equation. This is a special case of

the method of Brandt matrices developed in [Eichler 73],

and generalised in [Pizer 1976]. Finally, there are meth-

ods using modular symbols, one of which is explained

in [Cremona 95], it being described as a variant of Za-

gier’s method. But one can alternatively give such meth-

ods a more algebraic formulation; for instance, [Frey and

Müller 99] expresses the modular degree in terms of an

intersection pairing, which can then be computed using

the techniques of [Merel 93]. A similar approach appears

in [Merel 95]. And [Kohel and Stein 00] expresses the

modular degree as the square of the order of a cokernel of

a natural restriction map involving modular symbols (as

such, it is computable given the modular symbols, and

works for all quotients of the Jacobian, not just the ellip-

tic ones). The computation of modular symbols näıvely

takes around N3 time, due to matrix operations on ma-

trices of size N by N , but sparse matrix techniques might

reduce this (and the memory requirements). Admittedly,

these methods using modular symbols do much more

than just compute the modular degree (and the Manin

constant and X0(N)-optimal curve)–for instance, they

enumerate all the elliptic curves of a given conductor.

Our method is to compute a special value of a cer-

tain L-function, which is related to the modular degree

via a formula that comes from a Rankin-Selberg convo-

lution. Indeed, as in [Flach 93] (reformulating a result of

[Shimura 76]), we have that

L(Sym2E, 2)

πiΩ
=
deg φ

Nc2
p2|N

Up(2), (1—1)

where L(Sym2E, s) is the (motivic) symmetric-square L-

function, Ω =
E(C)

ω∧ω̄ is the complex volume (which is
2/i times the volume of the fundamental parallelogram;

see below for the definition of the Néron differential ω), c

is the Manin constant, and the product over bad primes

can be described explicitly (see Section 2). The L-value

here is at the edge of the critical strip, and there is a

strong link with Dirichlet’s class number formula. The

quantity Ω plays the role of the regulator–one major

difference is that Ω can be computed extremely rapidly

to high precision, via the arithmetic-geometric mean of

Gauss. If the analogy to the class number formula holds,

then deg φ corresponds to the class number, and in Sec-

tion 4 we shall comment on the group that is associated

to the modular parametrisation. The product over bad
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primes comes from two sources. The first is the possibil-

ity of our elliptic curve not being minimal in its family

of quadratic twists–this corresponds to a nonfundamen-

tal discriminant in Dirichlet’s case. The other effect of

bad primes is more subtle. In Section 2, we define the

symmetric-square L-function in full generality; when N

is squarefree, it is quite straightforward, but square di-

visors of N cause enough problems for there to be two

notions of the symmetric-square (analytic and motivic)

and in this case, Up(2) measures the difference between

the two. Finally, to expound further on the links to al-

gebraic number theory, we mention that similar to the

theory of genera for number fields (which involves the 2-

divisibility of the class number), here we have a theory

of Atkin-Lehner involutions through which the modular

parametrisation map often factors, correspondingly af-

fecting the 2-divisibility of the modular degree. As we

shall see in Section 4, there appears to be another influ-

ence on the 2-divisibility of the modular degree, namely

the rank of the elliptic curve. Also in Section 4, we shall

give some experimental evidence that a Cohen—Lenstra

heuristic (see [Cohen and Lenstra 84]) holds for the di-

visibility of the modular degree by odd primes–and also

some evidence that such a heuristic does not hold.

But how does Formula 1-1 help us compute deg φ?

Using the work of [Shimura 75] and [Gelbart and

Jacquet 78], we know that L(Sym2E, s) (the motivic

version if N is not squarefree) has an analytic con-

tinuation to an entire function, and Λ(Sym2E, s) =

(Ñ2/4π3)s/2Γ(s)Γ(s/2)L(Sym2E, s) satisfies the func-

tional equation Λ(Sym2E, s) = Λ(Sym2E, 3 − s). Here
Ñ is the symmetric-square conductor (fully defined in

Section 2), which always divides N and is equal to it if

the conductor is squarefree. This functional equation is

almost all that is needed to compute L(Sym2E, 2) fast.

The appendix of [Cohen 00] gives a method (whose roots

date back to Hecke, but are generalised in a form suit-

able for us by [Lavrik 67]) for computing any (reasonable)

special L-value to a precision of D bits using only knowl-

edge of the functional equation and the first O(Dg
√
C)

terms of the Dirichlet series, where C is the conductor of

the functional equation, and g is the number of Γ-factors

in the functional equation. How much precision do we

need for L(Sym2E, 2)? Assuming the ABC-conjecture,

we need only compute a constant times the number of

digits of N , so that the Dg term is a power of logN .

The conductor here is Ñ2, so the method requires com-

putation of about Ñ series coefficients. The series coeffi-

cients follow immediately upon calculation of the traces

of Frobenius, and thus, using the baby steps/giant steps

algorithm, our time estimate is Ñ5/4. This is a smaller

exponent than any of the methods mentioned above (save

Zagier’s for prime N), and it works for any elliptic curve.

The main downside of our algorithm is that we need to

know the Manin constant.

In order to obtain degφ from Equation (1-1), we

must also have good algorithms for computing the ob-

jects other than L(Sym2E, 2). The conductor N can be

obtained about as fast as the discriminant can be fac-

tored using the algorithm in [Tate 1975]. In Section 2,

we describe the bad Euler factors Up(s), and these fol-

low immediately (from divisibility and congruence con-

ditions) once the conductor is known. The complex vol-

ume can be computed to high precision extremely fast

(quadratic convergence) using the arithmetic-geometric

mean, a process essentially known to Gauss (see [Co-

hen 93]). Hence, the above method computes 1
c2deg φ in

time no worse than N5/4 (times some power of logN),

with the dominant amount of time being the computa-

tion of the coefficients of the L-series from the traces

of Frobenius. This is fast enough to be used in some

large-scale experiments. The differential ω in the defi-

nition of the complex volume is the heart of the prob-

lem with the Manin constant. The canonical Néron dif-

ferential ω on E = [a1, a2, a3, a4, a6] is defined to be

dx/(2y + a1x + a3). Under the modular parametrisa-

tion map φ, this pulls back to a differential on X0(N).

Letting f(z) = n lne
2πinz be the weight 2 level N

newform associated to E (so that lp is the pth trace of

Frobenius of E), we know that f(z) dz is also a differen-

tial on X0(N), which by the multiplicity-one theorems of

[Atkin and Lehner 70] differs from ω by a constant. The

Manin constant c is defined (up to sign, taken positive)

by φT(ω) = 2πicf(z) dz. It is conjectured in [Manin 72]

that c = 1 for the so-called optimal (or strong) curve in

an isogeny class.

The work of [Katz and Mazur 85] implies that c is

an integer; this is treated (without reference) as a well-

known fact on page 310 of [Gross and Zagier 86], and

is mentioned in [Frey 87] as being an observation of

Oesterlé. The most general upper bounds for c are due

to [Edixhoven 91]–he has indicated that he has sharper

results in unpublished work. His paper appears to be

the first to write down the 1-paragraph derivation (after

Katz—Mazur) of the integrality of c, and in his thesis,

Edixhoven indicates that the correct attribution for this

might belong to Gabber (unpublished). Most relevant to

our experiments is [Abbes and Ullmo 96], which shows

that (in particular) when N is odd and squarefree, we

have c = 1 for the optimal curve. If another conjecture
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(of Stevens, regarding which curve is optimal for para-

metrisations from X1(N)) is assumed, we can quickly

determine which isogenous curve is X0(N)-optimal (see

Section 3). If the curve we are given is not optimal, it is

easy to determine the relative factor between its modu-

lar degree and that of the optimal curve (this applies to

all the algorithms). Thus assuming both the Manin and

Stevens conjectures, we are able to compute the mod-

ular degree of any elliptic curve using our method (the

assumption of the ABC-conjecture is only needed for es-

timates on the running time).

While herein we consider the value of L(Sym2E, s) at

the edge of the critical strip (which is the point s = 2),

some work has been done for s = 3, particularly with

respect to values of elliptic trilogarithms and their rela-

tion to conjectures of Beilinson and Bloch—Kato. Notable

is Section 10 of the recent [Zagier and Gangl 00], while

[Mestre and Schappacher 91] has many computations,

and indicates that Henniart has probably anticipated

much of the calculations in our Section 2; however, the

“table numérique” (Section 3.3) of this latter work un-

fortunately seems replete with errors–for instance, the

curve [0, 0, 0,−15,−50] is asserted to have conductor 900,
while its conductor is actually 3600. Furthermore, the

Euler factor at 2 is often incorrect, possibly due to the

incompleteness (see below) of the classification of [Coates

and Schmidt 87].

It should also be noted that similar work to ours has

already been done for the symmetric cube L-function.

Buhler, Schoen, and Top [Buhler et al. 97] investigate the

experimental validity of a Birch—Swinnerton-Dyer type

formula which relates the central value L(Sym3E, 2) to

the Griffiths group. As the critical value is shifted to the

center, the behaviour is very much different, and hence

the results are not all that comparable. We also make a

practical note on the implementation of the computation

of the special L-values. We need to compute what might

be called “incomplete K-Bessel functions,” in analogy

with the incomplete Γ-functions which come up when

(say) computing the analytic rank of an elliptic curve.

There are some sophisticated ways of doing this, but we

found that the fastest was simply to compute the rele-

vant functions (and sufficiently many derivatives) once

and for all on a mesh of values, and then use local power

series to interpolate. In fact, the derivatives of the func-

tions in question satisfy recurrence relations, making the

task even simpler. We also used the memory-efficient

algorithm of [Buhler and Gross 85] for computing mul-

tiplicative sums, but with the memory sizes of today’s

computers, this might be unnecessary.

2. SYMMETRIC-SQUARE L-FUNCTIONS
AND MINIMAL TWISTS

Let L(E, s) = p(1−αp/ps)−1(1−βp/ps)−1 be the stan-
dard L-function for E. Here, for p not dividing N , we

have βp = ᾱp and αp + βp = lp, where lp is the pth

trace of Frobenius of E. For p,N , we have βp = 0 and

α2p = 1, while βp = αp = 0 when p2|N . The analytic
symmetric-square L-function is now defined as

LA(Sym2E, s) =
p

LAp (Sym
2E, s)

=
p

(1− α2p/ps)−1(1− αpβp/ps)−1(1− β2p/ps)−1.

This is the “imprimitive” D(E, s) in Equation (1.11) of

[Coates and Schmidt 87]; it is not stable under quadratic

twists, though twisting by a fundamental discriminant D

does not affect the Euler factors of primes not dividingD.

In the derivation of Formula 1-1, this is the more useful

symmetric-square L-function due to the fact that it is

a convolution of L(E, s) with itself, and hence can be

analysed via the Rankin-Selberg method of unfolding as

in [Shimura 76], from which we get the formula

LA(Sym2E, 2)

πiΩ
=
deg φ

Nc2
.

However, for the functional equation to hold, we must

adjust LA(Sym2E, s) by appropriate Euler factors

when p2|N . This is described automorphically in

[Gelbart and Jacquet 78] and via techniques of Iwa-

sawa theory in Coates—Schmidt. We give an explicit

formulation involving nothing more than divisibility

and congruence conditions, largely following the ex-

position of Coates—Schmidt, and correcting a couple

of errors therein. We define the Euler product U(s)

via LM (Sym2E, s) = LA(Sym2E, s) · U(s) where

ΛM (Sym2E, s) = (Ñ2/4π3)s/2Γ(s)Γ(s/2)LM (Sym2E, s)

satisfies the functional equation given by

ΛM (Sym2E, s) = ΛM (Sym2E, 3 − s). This motivic

L-function is stable under quadratic twists; Theorem 2.4

of Coates—Schmidt makes explicit that it satisfies the

functional equation (they denote it by script-D). Denote

by Up(s) the local factor of U(s) at a prime p. Below

we shall see that this is identically 1 unless p2|N , in
which case, its description is more complicated. So if

N is squarefree, that is, E is semistable, U(s) itself is

identically 1. There is also the aspect of the symmetric-

square conductor Ñ in the functional equation, which is

also easy in the semistable case, where Ñ = N .
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2.1 Quadratic Twists and Minimality

We define the notion of a p-minimal quadratic twist Ep of

an elliptic curve E (in minimal Weierstrass form). We let

En be the nth quadratic twist of E, and for odd primes p

write p̃ = −1
p
p. For each odd prime p, we let Ep be

either E or Ep̃, choosing the one which has a smaller

local conductor, with ties being broken by smaller local

discriminant. For p = 2, we let E2 be one of E, E
−4,

and E±8, again choosing the one with the smallest local
conductor then discriminant, and (arbitrarily) taking the

curve with c6 ≥ 0 if twisting by −1 results in curves with
the same local conductor and discriminant. For p ≥ 5,
we have that Ep = E

p̃ if and only if p2|c4 and p3|c6. A
more complicated criterion can be written down for p = 2

and p = 3 (see [Stein and Watkins 02]). In particular, if

p2 does not divide NE , then E is p-twist-minimal, and

twisting by fundamental discriminants ensures that we

do not affect minimality at other primes. By iteratively

minimising a curve locally prime-by-prime, we end up

with a global minimal twist. Since the symmetric-square

L-function of an elliptic curve is isogeny-invariant, the

form of the functional equation must end up the same

no matter which isogenous curve we use. As such, the

fact that p-twist-minimality is not necessarily isogeny-

invariant for p = 2 or p = 3 is not overly important.

There are reasons to make the primary sorting by dis-

criminant instead of conductor (this possibly affects only

p = 2), but here we regard conductor as more important.

Let F be the global minimal twist of E, letting NF
and NE be their respective conductors. We compare the

modular degrees of E and F , using the above formula,

proceeding prime-by-prime. We have LAp (Sym
2F, s) =

LAp (Sym
2Ep, s) since the Euler factor is stable under

twists by fundamental discriminants coprime to p. So

if Ep = E, then LAp (Sym
2E, s) = LAp (Sym

2F, s). For

primes with Ep W= E, we have that p2|NE , and thus
LAp (Sym

2E, s) ≡ 1. We write

deg φE = deg φF · c
2
E

c2F
·
p

Vp,

so that Vp = 1 when Ep = E and Vp =
ΩEp
ΩE

· NE

NEp
·

LAp (Sym
2Ep, 2)

−1 when Ep W= E. Every term in Vp is

easily computed, and thus it is quite straightforward

to determine the modular degree of a curve once that

of its minimal twist has been found (if we assume the

Manin constants are the same). When p W= 2 and

Ep W= E, we can describe Vp more directly. Firstly,

if Ep has good reduction at p, then we compute that

LAp (Sym
2Ep, s)

−1 = 1−bp/ps+pbp/p2s−p3/p3s where

bp = l
2
p−p and lp is the pth trace of Frobenius of Ep. Eval-

uating this at s = 2, we get 1
p3 (p−1)(p+1−lp)(p+1+lp).

We have that NE/NEp = p
2 and ΩE/ΩEp = 1/p. Thus

Vp = (p− 1)(p+ 1− lp)(p+1+ lp) (this appears already
in [Zagier 85]). Secondly, if Ep has multiplicative re-

duction at p, we have LAp (Sym
2Ep, s)

−1 = (1 − 1/ps).
Again ΩE/ΩEp = 1/p, but here NE/NEp = p. So

Vp = (p−1)(p+1) in this case. Finally, if Ep has additive
reduction at p, then the twisting does not change the L-

function or the conductor, but does increase the volume

by a factor of p, thus decreasing the modular degree by

Vp = p.

2.2 Calculating U(s) for a Global Minimal Twist

We have reduced the problem to computing the modular

degree of a global minimal twist, which we continue to

call F . We define local conductors δp by NF = p p
δp ,

and write the symmetric-square conductor as a product

of local conductors as Ñ = p p
δ̃p . If F has good reduc-

tion at p, then Case 1 of Coates—Schmidt on page 107

implies that LMp (Sym
2F, s) = LAp (Sym

2F, s) (and so

Up(s) ≡ 1) while δ̃p = 0. If F has multiplicative re-

duction at p, then Lemma 1.2 of Coates—Schmidt im-

plies that LMp (Sym
2F, s) = LAp (Sym

2F, s) again, and

their comments below Lemma 2.12 on page 119 show

that δ̃p = 1. This leaves the most difficult case where F

has additive reduction at p. Note that LAp (Sym
2F, s) ≡ 1

in this case, so that LMp (Sym
2F, s) = Up(s). We write

F as y2 = x3 − 27c4x − 54c6; the fact that this model
is not minimal at 2 and 3 will not matter. Because F

has additive reduction at p, we have p|c4 and p|c6. From
Lemma 1.4 of Coates—Schmidt, there are three possibili-

ties for Up(s): (1± p/ps)−1 or identically 1.
We first consider p ≥ 5, where the argument follow-

ing Lemma 2.12 of Coates—Schmidt tells us that δ̃p = 1.

Letting F3 be the set of coordinates of the 3-torsion

points of F , Lemma 1.4 of Coates—Schmidt tells us that

Up(s) = (1 − p/ps)−1 if Qp(F3)/Qp is an abelian ex-

tension, and Up(s) = (1 + p/ps)−1 if it is not. Let

G = Gal Qp(F3)/Qp , and Φp be the inertia group

of this extension, recalling that G/Φp is cyclic. There

are three possibilities for Φp: it is cyclic of order 3, 4,

or 6 (see page 108 of Coates—Schmidt). We also have

G ⊆ GL2(F3), due to the fact that the 3-torsion is iso-
morphic to Z/3Z × Z/3Z. We let Qp(F

x
3 ) be the ex-

tension of Qp by just the x-coordinates of the 3-torsion.

Factoring out by scalars, we obtain the Galois group H

of this extension, so that H ⊆ PGL2(F3). We let Cn be
the cyclic group of order n and D2n is the dihedral group
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of order 2n. If Φp ∼= C3, the requirement that G/Φp be
cyclic implies that G is C3, C6, or D6. By the conjuga-

tion action, the first two lead to H ∼= C3, and the third to
H ∼= D6. If Φp ∼= C4, then G is one of C4, C8, D8, or the
quarternion group of order 8, denoted Q8. The last two

imply that H ∼= C2 ×C2, while if G is C8, then H ∼= C4,
and if G is C4, then H ∼= C2. When Φp ∼= C6, we get that
either G is C6 and H ∼= C3 as before, or G ∼= D12 and

H ∼= D6. So the question of the abelian nature of G can
be answered by determining H–we see that G is abelian

iff H is cyclic. This turns out only to depend on the con-

gruence class of p mod 12 and various p-divisibilities of

c4 and c6. Let p
α,c4 and pβ,c6. Because p ≥ 5 and F

is twist-minimal, we cannot have both α ≥ 2 and β ≥ 3,
and so it follows that either α ≥ β ≥ 1 or α = 1 and

β ≥ 2. We have the following theorem and corollary.

Theorem 2.1. Assume that p ≥ 5 is prime and pα,c4 and
pβ,c6. If α ≥ β ≥ 1, then G is abelian iff p ≡ 1 (3). If
α = 1 and β ≥ 2, then G is abelian iff p ≡ 1 (4).

Corollary 2.2. Assume F is twist-minimal with additive

reduction at a prime p ≥ 5. The minus sign always occurs
in Up(s) when p ≡ 1 (12), and the plus sign always occurs
when p ≡ 11 (12). When p ≡ 5 (12) the minus sign

occurs iff p2|c6 and p,c4, and when p ≡ 7 (12) the plus
sign occurs exactly when p2|c6 and p,c4.

The corollary follows immediately from Theorem 2.1

and Lemma 1.4 of Coates—Schmidt. For a curve of the

form y2 = x3 + ax + b, the x-coordinates of the 3-

torsion points are the roots of the polynomial 3x4 +

6ax2 + 12bx − a2. We divide out by powers of 3 to

get that the field Qp(F
x
3 ) is defined by the roots of the

polynomial f(x) = x4 − 6c4x2 − 8c6x − 3c24. We now
compute H = Gal Qp(F

x
3 )/Qp in the various cases.

We write c4 = pαu4 and c6 = pβu6. First suppose

that α ≥ β ≥ 1. Here f(x) factors as (x − ξ)g(x) =

(x − ξ)(x3 + ξx2 + Ax + B) with ξ = −3u248u6
p2α−β +

O(p2α−β+1), A = ξ2 − 6u4pα = −6u4pα + O(pα+1), and
B = 3u24p

2α/ξ = −8u6pβ +O(pβ+1). We have disc(g) =
ξ2A2− 4ξ3B− 4A3+18ξAB− 27B2 = −27B2+O(p3α),
which is a square in Qp iff −3 is a square, that is, iff
p ≡ 1 (3). When disc(g) is a square, we have H ∼= C3,

while H ∼= D6 if not. Using the H-G-correspondence

then gives us the first statement of the theorem.

Next suppose that α = 1 and β ≥ 2. Here f has no
roots modulo p2, and thus none in Qp. We try to fac-

tor f(x) as (x2 + Ax + B)(x2 − Ax + C), getting the 3

equations B+C −A2 = −6u4p, A(B−C) = 8u6pβ , and
BC = −3u24p2. We write B̃ = B/pu4 and C̃ = C/pu4,

so that we have the mod-p-congruences B̃ + C̃ ≡ −6
and B̃C̃ ≡ −3. These imply that

√
3 ∈ Qp, so that

there is no solution (and hence f(x) is irreducible) when

p ≡ ±5 (12)–we return to this possibility below. When
p ≡ ±1 (12), we substitute the first equation into the
square of the second to eliminate A, and then eliminate

C by using the third. This gives us that B̃ is a root of

the sextic polynomial (y2+6y− 3)(y2+3)2 − 64u26p
2β

p3u34
y3.

Since β ≥ 2, the last term is 0 mod p. We note that

the polynomial y2 + 6y − 3 has distinct roots mod p, so
by Hensel’s Lemma, there is some Qp-root of this sextic,

and from it we get a factorization B = pu4ω+ + O(p
2),

C = pu4ω− + O(p2), and A = 2u6√
3u4
pβ−1 + O(pβ),

where ω± = −3 ± 2√3. Now we have that Qp(F
x
3 ) =

Qp

√
A2 − 4B,√A2 − 4C , and compute that A2−4B

A2−4C =
ω+
ω−

+ O(p) = −7 + 4√3 + O(p), and −7 + 4√3 is a
square exactly when p ≡ 1 (12). Thus H ∼= C2 when p

is 1 mod 12, and H ∼= C2 × C2 when p is 11 mod 12,
so by using the H-G-correspondence, we get half of the

second statement of the theorem. We now analyse the

cases p ≡ ±5 (12) for which f(x) is irreducible in Qp.

The discriminant ∆ of f is −21233(u34p3 − u26p2β)2, and
since none of the above possibilities for H contains A4,

the resolvent cubic must factor. When p ≡ 7 (12),

the discriminant is a Qp-square, so that H ∼= C2 × C2
and G is nonabelian. When p ≡ 5 (12), the discrimi-

nant is not a square. However, the above factorization

of f(x) into quadratics works in the discriminant field

Qp(
√
∆) = Qp(

√−3) = Qp(
√
3). Thus H ∼= C4, and

G ∼= C8 is abelian. This proves the theorem.
We next discuss p = 2. Here the minimal twist will

have neither 16 nor 64 exactly dividing its conductor (this

follows from the table on page 121 of Coates—Schmidt,

or more simply from an analysis of Tate’s algorithm),

so that δ2 is neither 4 nor 6. If δ2 is odd, the Coates—

Schmidt table tells us that U2(s) ≡ 1 and δ̃2 = (1+δ2)/2.
If δ2 = 2, again there is not much problem; the table

says that U2(s) = (1 + 2/2s)−1 and δ̃2 = 1. The case

of δ2 = 8 is the most difficult. The appendix of Coates—

Schmidt makes two errors, leading to the classification

being incomplete. The first error they make is on the

fifth line of the r = 2 case on page 151: The quoted

work of Atkin and Li requires the underlying form to

have 16 dividing the level, and if the level of the absolute

minimal quadratic twist of the form f associated to F

(no longer necessarily rational, i.e., the twisted form can

have a nontrivial Nebentypus character) is exactly divis-
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ible by 23, this does not apply. An explicit example is

the curve 768H (given by [0, 1, 0, 1,−3]) for which the
absolute minimal twist is of level 24. Another error is

on page 153 in the analysis of the case where the inertia

subgroup is Q8, where they state that “G is obviously a

2-Sylow group of GL2(F3), hence dihedral of order 16.”

This should be semidihedral of order 16. This causes

them to miss the possibility that the absolute minimal

twist can have 27 exactly dividing its level. An exam-

ple is 256B (given by [0, 0, 0,−2, 0]) where the absolute
minimal twist is of level 128. So with δ2 = 8, this gives

three different types of behaviour for the absolute min-

imal twist: It can have 23, 26, or 27 exactly divide its

level. We can write U2(s) = (1 + w/2s)−1. The first
case corresponds to w = −2, the second case to w = 2,

and the third case to w = 0. The local symmetric-square

conductor δ̃2 is respectively 3, 3, or 4. Both of these

statements follow from a corrected Coates—Schmidt ta-

ble. Finally, we reinterpret this in terms of congruences

for c4 and c6.

Theorem 2.3. If 28|NF and F is twist-minimal, then

25,c4 and 28|c6. If 29|c6, then U2(s) ≡ 1 so that δ̃2 = 4.
If 28,c6, then δ̃2 = 3, and if c4 ≡ 32 (128), we have that
U2(s) = (1 + 2/2s)−1, while if c4 ≡ 96 (128), we have

that U2(s) = (1− 2/2s)−1.
The first statement follows from an exercise using

Tate’s Algorithm. By Lemma 1.4 of Coates—Schmidt,

to find U2(s), it suffices to determine whether the iner-

tia group Φ2 of the extension Q2(F3)/Q2 is cyclic and

whether the Galois group G of this extension is abelian

(the statements concerning δ̃2 follow as above, using the

corrected Coates—Schmidt table). The corrected table

tells us that when 28|N , we have that Φ2 is either C4 or
Q8. We first show that Φ2 ∼= Q8 iff H ∼= D8. At the top
of page 153, Coates—Schmidt (corrected) shows that if

Φ2 ∼= Q8, then G ∼= SD16, the semidihedral group of or-
der 16, and consideration of the conjugation action then

implies that H ∼= D8. Conversely, conjugation tells us

that if H ∼= D8, then G ∼= SD16. Since G/Φ2 is cyclic,

but SD16/C4 is not, we must have Φ2 = Q8 here. As

before, everything follows upon determination of H .

We write c6 = 28u6 and c4 = 25u4, so that u4 is

odd, but u6 need not be. We remove some powers of 2

from the 3-torsion polynomial, transforming it to x4 −
223u4x

2 − 25u6x− 223u24. This has no Q2-roots, and we

try to factor it as (x2 −Ax+B)(x2 +Ax+C). Writing
B̃ = B/2u4 and C̃ = C/2u4, as in the p ≥ 5 case, we find
that B̃ satisfies a sextic relation, which we write here as

(y2+6y− 3)(y2+3)2 = 27 u26
u34
y3. For 27 to divide the left

side, we must have y be 3 mod 4, and then the left side

is 384 mod 512. So if u6 is even or u4 is 3 mod 4, there

are no Q2 solutions to this sextic, implying that f(x)

is irreducible over Q2–we return to these cases below.

When u6 is odd and u4 is 1 mod 4, we substitute y =

3+4z into the above sextic, getting a new sextic relation

g(z) = (2z2 + 6z + 3)(4z2 + 6z + 3)2 − u26
u34
(4z + 3)3 = 0.

We compute that 2,gI(α) for all α ∈ Z2, and note that
u26/u

3
4 is congruent to u4 modulo 8. By taking z = 0 if

u4 is 1 mod 8 and z = 1 if u4 is 5 mod 8 we get a mod 8

root of g. By Hensel’s Lemma, this then lifts to aQ2 root

of g, and thus a Q2 solution to the y-sextic. This gives us

a factorization of f(x) into quadratics. Since B̃C̃ = −3,
we find that B̃ and C̃ are congruent modulo 4, but not

modulo 8. Thus 22,A, and we get that A2 − 4B and

A2 − 4C are also congruent mod 4, but not mod 8. So

Q2(F
x
3 ) = Q2

√
A2 − 4B,√A2 − 4C has Galois group

C2×C2, implying that Φ2 is cyclic, G is nonabelian, and
U2(s) = (1 + 2/2

s)−1.

We now return to cases where f(x) is irreducible over

Q2. As with p ≥ 5, the resolvent cubic must have a root
in Q2, while the discriminant ∆ is −21833(u34 − 2u26)2,
so that the discriminant field Q2(

√
∆) is Q2(ω) where

ω2 + ω + 1 = 0.

We first consider the case where u6 is odd and u4
is 3 mod 4, and look at the g(z)-sextic. We have that

2,gI(α) for all α ∈ Z2[ω]. When u4 is 7 mod 8, we

find that 3 + 3ω is a mod 8 root of g, while if u4 is

3 mod 8, we get that 1 + 7ω is one. This root of g then

lifts to Q2(ω), which gives us a factorization of f(x) over

Q2(
√
∆). Thus H ∼= C4, Φ2 is cyclic, G ∼= C8 is abelian,

and U2(s) = (1−2/2s)−1 in this case. For the case where
u6 is even, we show that there is no solution in Z2[ω] to

the previous y-sextic. Writing y = a + bω, we see that

the left side of the sextic relation is not divisible by 28

unless a is odd and 2,b. But in this case, we get that
22,(y2+6y−3), so that the left side has even 2-valuation
while that of the the right side is odd. Thus there are no

solutions to the y-sextic in Q2(
√
∆), implying that f(x)

is irreducible in this field. So H ∼= D8, Φ2 ∼= Q8 is not

cyclic, and U2(s) ≡ 1. This proves the theorem.
We lastly consider the case where F has additive re-

duction at p = 3. The table on page 121 of Coates—

Schmidt tells us that if δ3 = 3 or δ3 = 5, then U3(s) ≡ 1
and δ̃3 = (1+δ3)/2. Furthermore, in the case δ3 = 2, the

same table says that we must have U3(s) = (1+ 3/3
s)−1

and δ̃3 = 1. It is only in the case δ3 = 4 that there is

ambiguity, though here we have always have δ̃3 = 2 and

U3(s) = (1± 3/3s)−1.
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Theorem 2.4. If 34,NF with F twist-minimal, then either
c4 ≡ 9 (27) with 33,c6, but c6/27 W≡±1 (9), or else 33,c4
and 35,c6. If c4 ≡ 9 (27), then U3(s) = (1 + 3/3s)−1 if
c6 ≡ ±54 (243) and U3(s) = (1 − 3/3s)−1 if c6 ≡ 108

(243). If 35,c6, then U3(s) = (1 − 3/3s)−1 if c4 ≡ 27

(81) and U3(s) = (1 + 3/3
s)−1 if c4 ≡ 54 (81).

Again the first statement follows from an exercise us-

ing Tate’s Algorithm. For the second part, we com-

pute whether G = Gal Q3(F4)/Q3 is abelian, which

by Lemma 1.4 of Coates—Schmidt will tell us which

sign occurs in U3(s). We write H for the quotient of

G by the conjugation operation, so that H is the Ga-

lois group of Q3(F
x
4 )/Q3, the extension by just the x-

coordinates of the points of exact order 4, noting that

H ⊆ PGL2(Z/4Z).
We first consider the case c4 ≡ 9 (27) and 33,c6 with

c6/27 W≡±1 (9), writing u4 = c4/9 and u6 = c6/27.

The 2-torsion polynomial x3 − 35u4x − 362u6 has no
Q3-roots (thus is irreducible) and its discriminant is

22315(u34 − u26). When u26 is 4 mod 9, this is non-

square, and so Gal Q3(F
x
2 )/Q3

∼= D6. This is a quo-

tient group of G which is hence also nonabelian, so that

U3(s) = (1 + 3/3
s)−1. When u26 is 7 mod 9, the discrim-

inant is square, implying that Q3(F
x
2 ) is a normal cubic

subfield of Q3(F
x
4 ), which gives us a normal index 3 sub-

group in H by the Galois correspondence. Ramification

theory implies that the wild inertia group of order 3 is a

normal subgroup of the Galois group G, and its quotient

upon conjugation becomes an order 3 normal subgroup

in H . The only subgroups of PGL2(Z/4Z) that have

normal subgroups of both index 3 and order 3 are C3
and C6. (In actuality, an arduous computation shows

the exact-4-torsion polynomial is always irreducible in

Q3 in this case, so that H ∼= C6.) Considering the ac-

tion of conjugation, these H-possibilities imply that G is

one of C3, C6, or C6 × C2, in each case abelian. Thus
U3(s) = (1− 3/3s)−1 in this case.
We finally turn to the case where 33,c4 and 35,c6,

writing u4 = c4/3
3 and u6 = c6/3

5. The 2-torsion

polynomial x3 − 36u4x − 382u6 is irreducible and has
discriminant 22318(u34 − 3u26). This is nonsquare when
u4 is 2 mod 3, which as above implies that G is

nonabelian, so that U3(s) = (1 + 3/3
s)−1. This discrim-

inant is square when u4 is 1 mod 3, so Q3(F
x
2 ) is again

a normal cubic subfield, and it follows as above that G

is abelian and U3(s) = (1 − 3/3s)−1. This proves the
theorem and completes the description of the extra Euler

factors and symmetric-square conductor in the functional

equation.

As an example of all the above, take E =

[0, 0, 0,−8892, 731025], where N = 22 · 32 · 192 · 37 · 1697.
Twisting by −3 gives F = [0, 0, 0,−988,−27075] which
has good reduction at p = 3. Since l3 = 0 for this latter

curve, the modular degree of E is 32 times that of F (as-

suming each Manin constant is 1). We have that δ2 = 2

so that U2(s) = (1 + 2/2s)−1 and δ̃2 = 1. We compute

(using F ) that c4 = 47424 and c6 = 23392800, so that

192|c6, but 19,c4. Hence U19(s) = (1 + 19/19s)−1 and
Ñ = 2 · 19 · 37 · 1697, which is much less than N .

3. OPTIMAL CURVES

Let φ be a modular parametrisation from X0(N) to E.

We say that φ (and also the parametrised curve) is op-

timal if every modular parametrisation (from X0(N))

to an isogenous curve of E factors through φ. By al-

gebraic considerations, there is a unique such curve in

any isogeny class (see [Birch and Swinnerton-Dyer 75],

where the concept is called strong). Similarly, if we

consider parametrisations from X1(N), there is again

the notion of optimality. Alternatively, we can view

the parametrisations as coming from the relevant Jaco-

bians, and then optimality simply means that the ker-

nel is connected. Taking the canonical Néron differen-

tial ω = dx/(2y + a1x + a3), we define the complex

volume Ω =
E(C)

ω ∧ ω̄ (which is 2/i times the vol-

ume of the fundamental parallelogram). In terms of the

Parshin—Faltings height H , we have that H = 2π/iΩ.

In [Stevens 89], we find the following conjectures: In any

isogeny class, the curve with largest |Ω|, that is, minimal
height, is optimal for X1(N) (Conjecture II, page 77),

and has Manin constant (from X1(N)) equal to 1 (Con-

jecture I, page 76). Indeed, this latter conjecture implies

that the X1(N)-Manin constant for any curve is 1 (see

the comments on page 85). This is not true for X0(N),

as [0, 1, 1, 0, 0] has a X0(11)-Manin constant of 5. How-

ever, if the optimal curves for X0(N) and X1(N) are the

same (as they frequently are–only 95 counterexamples

exist for N ≤ 10000), and the X0(N)-Manin constant

for the strong curve is its conjectural value of 1, then all

the isogenous curves have X0(N)-Manin constant of 1

also (this follows in the same manner as the argument

on page 85 of [Stevens 89]). Moreover, by assuming this

Stevens conjecture, we can ameliorate the seemingly dif-

ficult process of determining the X0(N)-optimal curve.

Note that the process of [Cremona 92, Section 3.8] al-

lows us to list all the isogenous curves for a given curve,

and computing Ω for each takes little time, so under our
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assumption of the Stevens conjectures, computing the

optimal curve for X1(N) is easy.

We next show how to pass from the X1(N)-optimal

curve to the X0(N)-optimal curve. We first define the

full period lattice ΛGf of a congruence group G ⊆ Γ0(N)
for a weight 2 newform f of level N . This is defined

as the image of the homomorphism If : G → C given

by If (γ) = 2πi
γ(∞)
∞ f(z) dz. Under our assumptions it

follows that ΛGf is a discrete rank 2 subgroup of C, and

if we let EGf = C/ΛGf , then E
G
f is the G-optimal curve

(see [Birch and Swinnerton-Dyer 75]). We next define

the invariant period lattice of E. For simplicity of expo-

sition, assume that the discriminant of E is positive (see

Algorithm 7.4.7 of [Cohen 93] for the other case). We

write E in the form y2 = g(x) = 4x3 + b2x
2 + 2b4x+ b6,

and let e1 > e2 > e3 be the (necessarily real) roots

of g(x). Put ω1 = π/agm
√
e1 − e3,√e1 − e2 and

ω2 = iπ/agm
√
e1 − e3,√e2 − e3 , where agm is the

arithmetic-geometric mean. Then the invariant period

lattice of E is that which is generated (over Z) by ω1
and ω2. For an optimal curve, the Manin constant can be

shown to be the lattice index of the invariant period lat-

tice in the full period lattice (see [Birch and Swinnerton-

Dyer 75]). Note that the full period lattice depends on

the group, but not which isogenous curve is chosen (be-

ing a function only of the newform), while the invariant

period lattice depends on the choice of isogenous curve

but not the group. There appears to be no standard ter-

minology in the literature for this distinction between the

lattices.

Lemma 3.1. Let f be a weight 2 newform of level N .

Let L0 and L1 be the full period lattices of Γ0(N) and

Γ1(N) for f respectively, and M a lattice with L1 ⊆
M ⊆ L0. Then we have a surjective homomorphism

h : Z/NZ
∗ → L0/M .

Corollary 3.2. Let f be a weight 2 newform of level N .

Suppose that M is a lattice with L1 ⊆ M ⊂ L0. Then
there is some prime p which divides φ(N) and some sub-

group P of (Z/NZ)T of order p such that h(d) W= id for

any d for which dφ(N)/p generates P .

We note that the surjective homomorphism If :

Γ0(N) → L0 restricts to a surjective homomorphism

Īf : Γ1(N) → L1, and so induces a surjective homo-

morphism Z/NZ
∗ ∼= Γ0(N)/Γ1(N) → L0/L1. Now if

M is any lattice with L1 ⊆ M ⊆ L0, we obtain an in-
duced surjective homomorphism h : Z/NZ

∗ → L0/M .

Explicitly, h(D) = If (γ) (mod M) where γ ∈ Γ0(N) is

any matrix with D as its lower-right entry. Since all

the groups involved are finite and abelian, the corollary

follows directly from the classification of finite abelian

groups.

In our case, we can limit the choices for p by consider-

ation of the p-isogenies of E. So now our algorithm is as

follows: Given an elliptic curve E, find all the isogenous

curves using [Cremona 92], and specifically the one of

minimal height, which we denote by Ẽ. By our assump-

tion of the Stevens conjecture, the full period lattice of

Γ1(N) for f associated to E is the invariant period lat-

tice of Ẽ, which we callM . For each plausible p-subgroup

of (Z/NZ)T (or better, a basis for them), we find some

d such that dφ(N)/p generates the subgroup, and see if

h(d) = id. If it is, we continue, while if not, we enlargeM

and iterate. At the end of the process, we have L, the full

period lattice of Γ0(N). If there is a curve in the isogeny

class with L as its invariant lattice, then this curve is

the desired X0(N)-optimal curve, or the Manin constant

of the optimal curve would be nonintegral. There is no

proof that L must be the invariant lattice for some curve

in the isogeny class, but if it is not, then the X0(N)-

Manin constant would not be 1, contrary to conjectural

behaviour. Computing h(d) is expedited by a method

of [Cremona 97], and can be done in (d
√
N)5/4 time in

practice. Standard conjectures of analytic number theory

imply that we need not take d very large, so this amount

is very reasonable compared to the other parts of the

modular degree algorithm. Alternatively, in [Stein and

Watkins 02], the authors conjecture what they believe

to be a complete classification of curves with differing

optimal curves from X1(N) and X0(N); they find 3 fam-

ilies (one being the Setzer—Neumann curves considered

below) where the optimal curves (conjecturally) differ by

a 2-isogeny, and a family where they differ by a 3-isogeny,

to go with the 4-isogeny examples 15A and 17A and the

5-isogeny example 11A.

As an example, we consider E = [0, 1, 1,−3343, 73293]
of conductor 8027. This curve is of minimal height in its

isogeny class, having real volume≈ 0.422966, while the 3-
isogenous curve F = [0, 1, 1,−3243, 77986] has a volume
smaller by a factor of 3. Now φ(8027) equals 7656 which

is divisible by 3. Using d = 2, we have 27656/3 ≡ 2699 W≡ 1
(mod 8027), and find that

If
4024 1

8027 2
≈ −3.591969,

which is −4/3 times the real period ω1 of E (≈ 2.6947).
Hence h(d) W= id, and we quickly conclude (subject to our



496 Experimental Mathematics, Vol. 11 (2002), No. 4

belief of the Stevens conjecture) that F is the X0(N)-

optimal curve.

4. EXPERIMENTAL RESULTS

There are four main data sets of isogeny classes of elliptic

curves with which we did experiments. The first set is

simply the 38042 classes with conductor less than 10000,

a list which has been compiled by Cremona, using his

modular symbol technique. We call this set S1. The oth-

ers are (almost) subsets of the large set of data found in

[Brumer and McGuinness 90], who made a list of 310716

curves for which |∆| is prime and less than 108. How-
ever, the curve [0, 0, 1,−10000, 384900] inexplicably ap-
pears twice in their data, and a pair of isogenous curves

are computed by their method for N = 11, 17, 19, 37.

Hence there are only 310711 isogeny classes. Our set S2
is related to the 860 Setzer—Neumann curves (see [Set-

zer 75], [Neumann 71], and [Neumann 73]) with prime

discriminant p ≤ 108 of the form p = u2 + 64, but we

choose a different representative in the isogeny class than

Brumer—McGuinness does. Other than the four above

examples, these are the only curves with prime (absolute

value of) discriminant for which there is more than just

the one curve in the isogeny class, there being two isoge-

nous curves in this case. A direct computation shows that

the curve with prime discriminant p = u2+64 is the one

of minimal height, while the work of [Mestre and Oesterlé

89] (following directly from the appendix of [Mazur 77])

implies that the isogenous curve with discriminant −p2
is the X0(p)-optimal curve. We denote by S2 this set of

860 optimal curves. The third set of curves we consider

is all the non-Setzer—Neumann curves in the Brumer—

McGuinness list with |∆| ≤ 107, additionally exclud-

ing the four above curves possessing nontrivial isogenies.

This set (called S3) has 52878 curves. Finally, the fourth

set (S4) is the 804 curves in the Brumer—McGuinness list

which have rank 4. We have also computed the modular

degree for the 5 rank 5 examples of Brumer—McGuinness,

and about 50 other rank 5 curves from the data of Tom

Womack [Womack 02]

The set S1, while being the most comprehensive,

is perhaps the worst for data analysis, as it contains

quadratic twists and other nonsemistable phenomena

such as the motivic/analytic symmetric-square differ-

ence. However, it does provide a good testing ground for

an implementation of the algorithm. On the other hand,

the set S2 has some very nice properties, especially that

Ω follows a simple trend. The set S3 is sufficiently large

to produce data on a larger scale. The fact that there

is only one prime dividing the conductor also helps to

make this a useful set for analysis. Finally, the set S4 was

taken simply to accrue more data for the rank conjecture

(see below). For much of S1, Cremona has rigourously

determined the X0(N)-optimal curve and corresponding

Manin constant (and even the modular degree); in par-

ticular the verification is complete for N < 8000, and will

be continued for all of S1. By the work of [Abbes and

Ullmo 96] and the aforementioned [Mestre and Oesterlé

89], we know the optimal curve and Manin constant for

the other three sets. So, except for a few cases in S1, we

can be assured that we are actually computing the mod-

ular degree of the optimal curve for each of the curves

considered. In all known cases, the Manin constant of

the optimal curve is indeed 1.

4.1 Size Distribution of degφ and L(Sym2E, 2)

First we consider the size distribution of degφ. This

is largely controlled by Ω, with L(Sym2E, 2) playing a

lesser role (similar to the number field case with the reg-

ulator and L-function). For curves of prime conductor,

the ABC-conjecture predicts that Ω ≈ N−1/6, while we
can show that L(Sym2E, 2) U (logN)3. In particular,

average behavior is not as relevant as are the extreme

cases vis-a-vis the ABC-conjecture. Instead of looking at

the distribution of the modular degree, we look at how

L(Sym2E, 2) is distributed. The set S3 is the largest, and

we look at it first. One thing to which we can compare

this is L(1,χ) where χ is a quadratic character, so that

this is the value at the edge of the critical strip of the L-

function of a quadratic field. We chose to consider only

imaginary quadratic fields since the L-values are slightly

easier to compute in this case. We can also restrict the

(absolute value of the) discriminant to be prime in order

to correlate better with the data from S3 which we have

for L(Sym2E, 2). The distribution of L(1,χ)-values for

the prime discriminants up to 107 is displayed in Fig-

ure 1. Therein we also display the distribution of L(1,χ)

for all negative fundamental discriminants up to 106, and

those of the motivic and analytic L(Sym2E, 2) for the

20726 minimal quadratic twists in the set S1. We use

the logarithm of the L-value as it seems to be the more

natural measure, due to the Euler product representation

of the L-function, implying its positivity at the edge of

the critical strip. In fact, by the appendix of [Hoffstein

and Lockhart 95], we have the equivalent of “no Siegel

zeros” for the symmetric-square L-function. In the fig-

ure, the horizontal axis is divided into 100 parts, and

the vertical axis indicates what proportion of the data

falls into the intervals implied by the division, with each
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FIGURE 1. Symmetric square critical values compared to those from imaginary quadratic fields.

FIGURE 2. Special L-value distributions for sets S2, S3, and S4.

data set being line-connected in order to ease the view-

ing. There seems to be much more difference between

the sets S1 and S3 than there is between the correspond-

ing sets of fundamental discriminants. If we restrict S1
to semistable curves, this does not change matters much.

Many authors have determined the distribution function

for L(1,χ) when averaging over all negative fundamen-

tal discriminants. The first appears to be [Chowla and

Erdős 51] who used methods of additive functions. A sim-

ilar technique appears in [Elliott 80], while [Barban 64]

used the large sieve to evaluate the moments of L(1,χ),

from which the distribution is recoverable. The author

has obtained a similar result for L(Sym2E, 2). The main

tool is the large sieve for GLn of [Duke and Kowalski 00].
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FIGURE 3. L-value distribution demarcated by rank.

When averaging over all weight 2 modular forms (and not

just the rational ones as here), the resulting distribution

has already been found in [Royer 01] (see also the Maaß

form case in [Luo 99]), again using the Duke—Kowalski

large sieve. While of theoretical value, these results do

not imply much beyond the fact that the distributions

should be different.

We next turn to the sets S2 and S4. Now all the

curves in S2 have rank zero, while the ones in S4 have

rank four. This could have an effect. It turns out to have

more of an impact on S4, and we try to explain why.

Figure 2 shows the L(Sym2E, 2) distribution for S2, S3,

and S4. The graph for S2 takes a much different shape

from that of S3, being more peaked around the mean. It

is unclear why this should be so, perhaps simply because

the Ω-N correspondence is better behaved. Meanwhile,

S4 is violently different, suggesting that we might want

to sort the data by rank. Figure 3 considers the four

subsets of S3 with fixed ranks 0-3, and also includes set

S4. As can be seen, the rank 0-3 data is largely similar,

while rank 4 is rather different. My guess is that we do

not have enough data; when the rank is comparatively

large vis-a-vis the conductor, we might expect most of the

small Frobenius traces lp to be as negative as possible, or

near −2√p. Upon squaring and subtracting p to get the
symmetric-square coefficient, we are left with 3p, oriented

strongly in the positive direction. Hence, we could expect

the L(Sym2E, 2) value to be larger than expected. But

as the conductor gets large with respect to a fixed rank,

there is no reason to expect such behaviour. So while the

data show some indication of a rank effect on the size of

the L-value, it might be misleading. Finally, the extreme

values of L(Sym2E, 2) in the data samples are ≈ 12.68 for
the rank 0 curve [0, 0, 1,−7,−89] of conductor 3380723,
and ≈ 0.4176 for the rank 1 curve [0, 0, 1,−58,−118] of
conductor 6497461. As evinced by the figures, there is

much more clustering around the lower value.

4.2 Arithmetic Properties of degφ

Next we turn to the arithmetic properties of degφ. The

first conjecture suggested by the data is:

Conjecture 4.1. If an elliptic curve has rank r, then 2r

divides its modular degree.

This conjecture holds for all curves checked in the ex-

periment, in particular for the rank 4 and rank 5 curves,

while the rank 0 curves often had odd modular degree.

For some high-rank composite-conductor examples, even

more powers of 2 divide the modular degree, as might be

suggested from an analysis of Atkin-Lehner involutions.

Using a refined Eisenstein Theorem due to Emerton, in

joint work with M. Baker and W. Stein, we have shown

that about half of the Setzer—Neumann curves have the
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p 3 5 7 11 13 17 19 23 29 31 37

number 23771 12770 8607 5233 4305 3263 2822 2459 1802 1788 1415

data% 44.84 24.15 16.28 9.90 8.14 6.17 5.34 4.65 3.41 3.38 2.68

100 · CL(p) 43.99 23.97 16.32 9.92 8.28 6.23 5.54 4.54 3.57 3.33 2.78

TABLE 1. Percentages of curves from S3 with a given odd prime dividing the modular degree, compared to the percentage
predicted by the Cohen—Lenstra heuristic.

property that the X0(p)-optimal curve in the isogeny

class has odd modular degree. Writing the prime discrim-

inant of the minimal height curve as p = u2 + 64 with u

congruent to 3 mod 4, the modular degree of the optimal

curve is odd if and only if u is 3 mod 8–unfortunately, we

cannot prove that there are infinitely primes of this form.

In this case of Setzer—Neumann isogeny classes, the data

also suggest that if u is 7 mod 8, then 2 exactly divides

the modular degree, while if u is 7 mod 16, then 4 divides

the modular degree (with there being no apparent pat-

tern in 2-divisibility beyond this). However, this does not

seem to follow from Emerton’s refined Eisenstein Theo-

rem, and there is even some reason to think it might fail

occasionally. The data also suggest the following:

Conjecture 4.2. If an elliptic curve of prime conductor
p has odd modular degree, then either p = 17, p is of the

form u2 + 64, or p is 3 mod 8.

There are 29436 curves in S3 with p not 3 mod 8, of

which 8240 have rank 0, yet all have even modular degree.

On the other hand, there are 7322 rank 0 curves in S3
with conductor congruent to 3 mod 8, of which 4589 have

odd modular degree.

In general, for a prime p, we could ask how often p di-

vides the modular degree. For odd primes and the set S3,

the answer appears to be given closely by the Cohen—

Lenstra heuristics [Cohen and Lenstra 85], namely p di-

vides the modular degree 1 − k(1 − 1/pk) = 1/p +

1/p2− 1/p5+ · · · of the time, a quantity which we shall

call CL(p). Of course, distinguishing between CL(p) and

a function of the form p2

p2+1
1
p−1 is not necessarily easy.

Also, there seems to be a statistically significant differ-

ence between the expected and computed percentage for

p = 3 (see Table 1). We exclude p = 2 from the table,

as the Cohen—Lenstra heuristics are silent here, and we

have already discussed the 2-divisibility above. As for the

nonzero congruence classes modulo p, the modular degree

appears to be equidistributed amongst them. Yet data

from S1 gives a vastly different percentage of curves with

(e.g.) 3 dividing the modular degree (even when 3 does

not divide the level), and Cremona’s data also has non-

equidistribution in nonzero congruence classes. We con-

sider why Cremona’s nonprime conductor curves might

cause such a difference, but first we restrict ourselves to

just the prime conductor curves.

If the Cohen—Lenstra heuristic is correct, one would

expect there to be a relevant finite group whose order

determines the data; indeed, the heuristic comes from as-

suming that groups appear randomly, except weighted by

the number of their automorphisms. The desired groups

come from lattices. We follow the exposition of [Zagier

85]. Let E be an elliptic curve of conductor N , and f

the weight 2 newform of level N associated to it. Let S

be the space of integral weight 2 forms of level N with

integral coefficients, so that S = S2 Γ0(N) ∩Z [q] . Let
L = [f ]⊥ ∩ S, where [f ]⊥ is the span of eigenforms other
than f , or equivalently, the orthogonal complement of f

with respect to the Petersson inner product. Let e be the

exponent of the finite group G = S/(Zf + L). If N is

prime, we have that e = degφ, which Zagier attributes

to Ribet. If we expect G to be a random group in the

sense of Cohen—Lenstra, and note that a prime divides

the exponent of a group if and only if it divides the or-

der of the group, we do indeed recover the heuristic that

p should divide the modular degree about CL(p) of the

time. However, there might be reasons to expect that G

is not totally random, especially when N is not a prime.

In general (note that Zagier’s claim is transposed), we

have degφ|e and also e|N idegφ for some i. One of the

referees informed us that Ribet has recently shown that

if p,N , then the powers of p dividing e and degφ are
equal (this was a conjecture of Agashe and Stein).

Data from [Jacobson 98] on real quadratic fields might

give some indication on how fast we could expect conver-

gence to the Cohen—Lenstra number (assuming that it

is correct), but things still seem unclear, particularly for

p = 3. We discuss some reasons why the Cohen—Lenstra

heuristic might fail for S1. With this set, we find that the

modular degree is a multiple of 3 about 78% of the time,

far distant from the 44% of Cohen—Lenstra. There are a

number of things which could be affecting this. The first

is that when 3 divides the level, the above heuristic argu-

ment fails, and there is even doubt simply when there are
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square divisors of the level. The existence of a 3-isogeny

is a third factor possibly affecting the heuristic. After

removing the curves for which 3 divides the level, we still

have 10768/14816 or almost 73% whose modular degree is

divisible by 3. Further pruning the nonsemistable curves

gives 4125/6555 or 63%. Adding the no-3-isogeny restric-

tion gives 3668/6004 or 61%. So even with these three

considerations, there still seems to be another factor af-

fecting divisibility of the modular degree. Suppose that

there are (say) 15 isogeny classes for a given conductor,

and there is a 3-congruence involving a linear combina-

tion of 13 of the associated newforms. This would have

an influence on the 3-divisibility of the modular degree of

all 13 curves involved. In other words, the p-divisibility

probabilities for the different isogeny classes at a given

level are often not independent. This appears to have

little effect on the prime level data, possibly because of

the small expected number of curves with the same con-

ductor. We could try to ameliorate this problem by using

just the 1023 squarefree and coprime-to-3 levels for which

there is only one isogeny class. This gives 510/1023 (just

under 50%), which is somewhat outside the error bounds

of the Cohen—Lenstra number. So it appears that the

number of isogeny classes at a given level has a strong ef-

fect on the heuristic. Unfortunately, there are few good

heuristics for the number of such isogeny classes, the best

results being the upper bounds of [Brumer and Silver-

man 96], recently improved by [Wong 01]. And even

with all the adjustments to the heuristic, it is still un-

clear why the prime conductor results match closely with

the Cohen—Lenstra prediction while the Cremona data

has more variance. Finally, the elimination of non-level-

unique curves does not fix the slight p = 3 anomaly in

our data.
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