Noncyclotomic \mathbb{Z}_p -Extensions of Imaginary Quadratic Fields

Takashi Fukuda and Keiichi Komatsu

CONTENTS

- 1. Introduction
- 2. Criteria
- 3. Construction of K_n
- 4. Computation of K_2
- 5. Experimentation for p=3 References

Let p be an odd prime number which splits into two distinct primes in an imaginary quadratic field K. Then K has certain kinds of noncyclotomic \mathbb{Z}_p -extensions which are constructed through ray class fields with respect to a prime ideal lying above p. We try to show that Iwasawa invariants μ and λ both vanish for these specfic noncyclotomic \mathbb{Z}_p -extensions.

1. INTRODUCTION

Let p be a prime number. Then the rational number field \mathbb{Q} has the unique \mathbb{Z}_p -extension \mathbb{Q}_{∞} . Iwasawa proved elegantly that the class numbers of all intermediate fields of $\mathbb{Q}_{\infty}/\mathbb{Q}$ are prime to p ([Iwasawa 56]). Consequently, Iwasawa invariants $\mu(\mathbb{Q}_{\infty}/\mathbb{Q})$ and $\lambda(\mathbb{Q}_{\infty}/\mathbb{Q})$ are both zero. This is based on the fact that there is a unique prime ideal of \mathbb{Q} ramified in \mathbb{Q}_{∞} which is totally ramified. Our purpose in this paper is to consider a noncyclotomic analog to Iwasawa's theorem in the case where the base field is an imaginary quadratic field. We give some numerical evidence for our expectation.

Let K be an imaginary quadratic field and p an odd prime number which splits into two distinct primes $\mathfrak p$ and $\bar{\mathfrak p}$ in K. We denote by $K'_n = K(\mathfrak p^{n+1})$ the ray class field of K modulo $\mathfrak p^{n+1}$ and put $K'_\infty = \bigcup_{n=0}^\infty K'_n$. Then there exists a unique $\mathbb Z_p$ -extension K_∞ of K in K'_∞ . In the same way as $\mathbb Q_\infty/\mathbb Q$, there is a unique prime ideal of K which is ramified in K_∞ . One of the differences is that the prime $\mathfrak p$ of K is not always totally ramified in K_∞ . We are led to the following problem.

Problem 1.1. If \mathfrak{p} is totally ramified in K_{∞} over K, do the Iwasawa invariants $\mu(K_{\infty}/K)$ and $\lambda(K_{\infty}/K)$ vanish?

We note that our situation can be also considered as an analog to Greenberg's conjecture which states that both μ and λ vanish for the cyclotomic \mathbb{Z}_p -extension of any totally real number field. Since an imaginary quadratic

field has no nontrivial units, our situation is simpler even in comparison with Greenberg's conjecture for the real quadratic case. We hope that studies of this problem provide a somewhat new approach to the original conjecture of Greenberg.

2. CRITERIA

We begin with some notation. Let k be an algebraic number field. We denote by \mathfrak{O}_k the integer ring of k, by I_k the ideal group of k, by P_k the principal ideal subgroup of I_k , and by h_k the class number of k. Let L be a Galois extension of k. We denote by G(L/k) the Galois group of L over k and $N_{L/k}$ the norm mapping of L over k.

Now, as mentioned before, let K be an imaginary quadratic field and p an odd prime number which splits into two distinct primes $\mathfrak p$ and $\bar{\mathfrak p}$ in k. We denote by $K'_n = K(\mathfrak p^{n+1})$ the ray class field of K modulo $\mathfrak p^{n+1}$ and put $K'_\infty = \bigcup_{n=0}^\infty K'_n$. Then there exists a unique $\mathbb Z_p$ -extension K_∞ of K in K'_∞ . We set $\Gamma = G(K_\infty/K)$.

Let K_n be the *n*-th layer of K_{∞} over K, A_n the *p*primary part of the ideal class group of K_n , $B_n = A_n^{\Gamma} =$ $\{c \in A_n \mid c^{\sigma} = c \text{ for any } \sigma \in \Gamma\}, B'_n \text{ the subgroup of }$ A_n consisting of ideal classes containing ideals invariant under the action of $G(K_n/K)$, and D_n the subgroup of A_n consisting of classes which contain an ideal, all of whose prime factors lie above p. Note that the definition of D_n here is different from that in [Greenberg 76]. If $m \geq n$, we can define a homomorphism $i_{n,m}: A_n \to A_m$ by sending the ideal class $cl(\mathfrak{a})$ to $cl(\mathfrak{a}\mathfrak{O}_{K_m})$ for any ideal \mathfrak{a} of K_n . We set $H_{n,m}=\operatorname{Ker} i_{n,m}$. We also define a homomorphism $N_{m,n}:A_m\to A_n$ by sending the ideal class $\operatorname{cl}(\mathfrak{a})$ to $\operatorname{cl}(N_{k_m/k_n}(\mathfrak{a}))$ for any ideal \mathfrak{a} of K_m . Moreover, we denote by λ_p and μ_p the Iwasawa invariants of the \mathbb{Z}_p -extension K_{∞}/K . It is well known that $\mu_p = 0$ by [Gillard 85] and [Schneps 1987]. On the other hand, few results are known about λ_p .

We concentrate our attention on the case where $\mathfrak p$ is totally ramified in K_∞ . If h_K is prime to p, then $\lambda_p=0$ by Iwasawa's theorem [Iwasawa 56]. So we are interested in the case $A_0\neq 0$. We first note that the order of B_n is explicitly known because K has no nontrivial units. The following lemma is the direct consequence of the genus formula ([Yokoi 1967]).

Lemma 2.1. Assume that \mathfrak{p} is totally ramified in K_{∞} over K. Then, $|B_n| = |A_0|$ for all $n \geq 0$.

The following proposition is the fundamental criterion for $\lambda_p = 0$. Though the proof is essentially the same as

in [Greenberg 76, Theorem 2], we include a proof as a convenience.

Proposition 2.2. Assume that \mathfrak{p} is totally ramified in K_{∞} over K. Then $\mu_p = \lambda_p = 0$ if and only if $B_n = D_n$ for some integer n > 0.

Proof: Assume $B_n=D_n$ and let $m\geq n$. Since the prime of k_n lying over $\mathfrak p$ is totally ramified in k_m , both $N_{m,n}:A_m\to A_n$ and $N_{m,n}:D_m\to D_n$ are surjective. Then Lemma 2.1 implies the injectivity of $N_{m,n}:B_m\to B_n$ and hence, the injectivity of $N_{m,n}:A_m\to A_n$, which means $|A_m|=|A_n|$. Hence, $\mu_p=\lambda_p=0$. Conversely, assume $\mu_p=\lambda_p=0$. Then $A_0=H_{0,n}$ for some $n\geq 0$ ([Greenberg 76, Proposition 2]). Hence, the genus formula yields $B_n=B'_n=i_{0,n}(A_0)D_n=D_n$.

Corollary 2.3. Assume that \mathfrak{p} is totally ramified in K_{∞} over K. Then $\mu_p = \lambda_p = 0$ if and only if every ideal class of A_0 becomes principal for some $n \geq 0$. [Minardi 86]

Proof: Assume $A_0 = H_{0,n}$ for some $n \ge 0$. Then the genus formula yields $B_n = B'_n = i_{0,n}(A_0)D_n = D_n$. Hence, $\mu_p = \lambda_p = 0$ by Proposition 2.2. The converse is a part of [Greenberg 76, Proposition 2].

As an application of Proposition 2.2, we have the following proposition. We note that for Proposition 2.4, $\mu_p = \lambda_p = 0$ even when $\mathfrak p$ is not totally ramified in K_∞ .

Proposition 2.4. If $h_K = p$, then $\mu_p = \lambda_p = 0$.

Proof: If the initial layer K_1 of K_{∞} over K is the absolute class field of K, then $\lambda_p = 0$ by the genus formula. Assume that \mathfrak{p} is totally ramified in K_{∞} . Since $h_K = p$, there exists a prime number q with $q \equiv 3 \pmod{4}$ such that $K = \mathbb{Q}(\sqrt{-q})$. Let χ be a Dirichlet character associated to K. Then, since $\left(\frac{-1}{q}\right) = -1$, we have

$$\begin{split} p &= h_K = \frac{1}{q} \sum_{\nu=1}^{q-1} \chi(\nu) \nu = \frac{1}{q} \sum_{\nu=1}^{\frac{q-1}{2}} \left(\chi(\nu) \nu - \chi(\nu) (q - \nu) \right) \\ &= \frac{1}{q} \sum_{\nu=1}^{\frac{q-1}{2}} \chi(\nu) (2\nu - q) \leq \frac{1}{q} \sum_{\nu=1}^{\frac{q-1}{2}} (q - 2\nu) = \frac{(q - 1)^2}{4q} < \frac{q}{4}. \end{split}$$

We assume that \mathfrak{p} is a principal ideal of K. Then there exist integers $x, y \in \mathbb{Z}$ with $\mathfrak{p} = \left(\frac{x+y\sqrt{-q}}{2}\right)$, which implies that $p = \frac{x^2+y^2q}{4} < \frac{q}{4}$. This is a contradiction. Hence, we have $D_0 = A_0$, and thus $\mu_p = \lambda_p = 0$ by Proposition 2.2.

In Sections 4 and 5, we apply Proposition 2.2 and Corollary 2.3 for K_n constructed explicitly by computer when p=3. For that, the discriminant $d(K_n)$ of K_n is needed.

Lemma 2.5.
$$d(K_n) = p^{(p^n-1)(n+1-\frac{1}{p-1})+n} d(K_0)^{p^n}$$
.

Proof: Apply the conductor-discriminant formula for K_n/K_0 .

3. CONSTRUCTION OF K_n

We use the same notation as in Section 2. We explain a method for constructing K_n using complex multiplication for an odd prime number p and an imaginary quadratic field K different from $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$. It is well known that an abelian extension of an imaginary quadratic field is generated by a special value of the j-function, but the j-function produces polynomials with huge coefficients and is not useful in actual computations. There are several methods to find polynomials which generate a ray class field of an imaginary quadratic field and have small coefficients using Weber function or Weierstrass σ -function ([Schertz 97], [Stevenhagen 2001]). We shall provide a similar, but slightly different, approach using Siegel functions.

First we define Siegel functions: Let a_1, a_2 be rational numbers and τ a complex number with positive imaginary parts. The Siegel functions are defined by

$$g(a_1, a_2)(\tau) = -q_{\tau}^{(1/2)(a_1^2 - a_1 + 1/6)} e^{2\pi i a_2(a_1 - 1)/2} (1 - q_z)$$

$$\cdot \prod_{n=1}^{\infty} (1 - q_{\tau}^n q_z) (1 - q_{\tau}^n q_z^{-1}),$$

where $q_{\tau} = e^{2\pi i \tau}$, $q_z = e^{2\pi i z}$ and $z = a_1 \tau + a_2$. Then $g(a_1, a_2)(\tau)$ is a modular function of some level and K_n is generated using special values of q.

Let $I_{\mathfrak{p}}$ be the subgroup of I_K generated by the ideals which are prime to \mathfrak{p} . We put $S_{\mathfrak{p}^n} = \{ (\alpha) \in P_K \mid \alpha \equiv 1 \}$ $(\text{mod } \mathfrak{p}^n)$ }. Let C be an element of the ray class group $I_{\mathfrak{p}}/S_{\mathfrak{p}^{n+1}}$. We call C a ray class modulo \mathfrak{p}^{n+1} in K. Let \mathfrak{c} be an ideal of C and denote C by $\mathrm{cl}_{n+1}(\mathfrak{c})$. Then there exist elements ω_1 , ω_2 in K with $\text{Im}(\omega_1/\omega_2) > 0$ such that $\mathfrak{p}^{n+1}\mathfrak{c}^{-1}=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2$. Since $(p)=\mathfrak{p}\bar{\mathfrak{p}}$, there exist integers $r, s \in \mathbb{Z}$ with $\frac{r}{n^{n+1}}\omega_1 + \frac{s}{n^{n+1}}\omega_2 = 1$. We set

$$g_{\mathfrak{p}^{n+1}}(C) = g\left(\frac{r}{p^{n+1}}, \frac{s}{p^{n+1}}\right) \left(\frac{\omega_1}{\omega_2}\right)^{12p^{n+1}},$$

which depends only on C by [Kubert and Lang 81, page 33, Proposition 1.3]. Then $g_{\mathfrak{p}^{n+1}}(C)$ is in K'_n

 $K(\mathfrak{p}^{n+1})$ by [Kubert and Lang 81, page 234, Theorem 1.1] and $(g_{\mathfrak{p}^{n+1}}(C)) = \mathfrak{p}_n^{\prime 6p^{n+1}}$ by [Kubert and Lang 81, page 246, Theorem 3.2], where \mathfrak{p}'_n is the prime ideal of K'_n lying over \mathfrak{p} . Let S be a ray class modulo \mathfrak{p}^{n+1} in K. Then we have

$$g_{\mathfrak{p}^{n+1}}(C)^{\left(\frac{K'_n/K}{S}\right)} = g_{\mathfrak{p}^{n+1}}(SC)$$

by [Kubert and Lang 81, page 234, Theorem 1.1], where $\left(\frac{K'_n/K}{S}\right)$ is the Artin symbol of S. In particular, if we set $\sigma = \left(\frac{K'_n/K}{1+p}\right)$, then

$$g_{\mathfrak{p}^{n+1}}(C)^{\sigma} = g\Big(\frac{r(1+p)}{p^{n+1}}, \frac{s(1+p)}{p^{n+1}}\Big)\Big(\frac{\omega_1}{\omega_2}\Big)^{12p^{n+1}}.$$

We use the following lemmas for our computation.

Lemma 3.1. Let $cl_0(\mathfrak{a}_1)$, $cl_0(\mathfrak{a}_2)$, \cdots , $cl_0(\mathfrak{a}_r)$ be generators of A_0 , $p^{e_i} > 1$ the order of $\operatorname{cl}_0(\mathfrak{a}_i)$ and K the absolute class group of K. We suppose that there exists an element α_i in \mathfrak{O}_K with $\mathfrak{a}_i^{p^{e_i}} = (\alpha_i)$, such that $\alpha_i \equiv 1$ $\pmod{\mathfrak{p}^{e_i+1}}$. Then $\widetilde{K} \cap K_n = K$ and there exist ideals $\mathfrak{a}'_1, \mathfrak{a}'_2, \cdots, \mathfrak{a}'_r$ of K with $\mathrm{cl}_0(\mathfrak{a}_i) = \mathrm{cl}_0(\mathfrak{a}'_i)$, such that the orders of $\operatorname{cl}_{n+1}(\mathfrak{a}'_n)$ are p^{e_i} , respectively.

Proof: Since $\alpha_i \equiv 1 \pmod{\mathfrak{p}^{e_i+1}}$ and since $(1+p)S_{\mathfrak{p}^{n+1}}$ is a generator of $S_{\mathfrak{p}}/S_{\mathfrak{p}^{n+1}}$, there exists an integer $s \in \mathbb{Z}$ with $(1+p)^{p^{se_i}}\alpha_i \equiv 1 \pmod{\mathfrak{p}^{n+1}}$. We put $\mathfrak{a}_i' = \mathfrak{a}_i(1+1)$ $(p)^s$. Then $\operatorname{cl}_0(\mathfrak{a}_i) = \operatorname{cl}_0(\mathfrak{a}_i')$ and the order of $\operatorname{cl}_{n+1}(\mathfrak{a}_i')$ is p^{e_i} . If the order m of $cl_1(\mathfrak{a})$ is prime to p for some ideal \mathfrak{a} , then there exists an integer α of K such that the order of $\operatorname{cl}_{n+1}(\mathfrak{a}(\alpha))$ is m. This shows that $\widetilde{K} \cap K_n = K$.

Lemma 3.2. Let C_0 be the ray class of modulo \mathfrak{p}^{n+1} with $C_0 = \operatorname{cl}_{n+1}(\mathfrak{O}_K)$, $\sigma = \left(\frac{K'_n/K}{1+p}\right)$ the Artin symbol and set

$$\alpha = N_{K_n'/K_n} \Big(g_{\mathfrak{p}^{n+1}} (C_0)^{1-\sigma} \Big).$$

Then there exists a unique element β of K_n with $\beta^{3p^{n+1}} =$ α such that $K_n = K(\beta)$. Furthermore, β is a unit of K_n .

Proof: Let ω_1 and ω_2 be a basis of \mathfrak{p}^{n+1} over \mathbb{Z} with $\operatorname{Im}(\omega_1/\omega_2) > 0$. Then there exist integers $r, s \in \mathbb{Z}$, such that $\frac{r}{n^{n+1}}\omega_1 + \frac{s}{n^{n+1}}\omega_2 = 1$. Hence we have

$$g_{\mathfrak{p}^{n+1}}(C_0) = g\Big(\frac{r}{p^{n+1}}, \frac{s}{p^{n+1}}\Big)\Big(\frac{\omega_1}{\omega_2}\Big)^{12p^{n+1}}$$

and

$$g_{\mathfrak{p}^{n+1}}(\operatorname{cl}_{n+1}((1+p))C_0) = g\left(\frac{r(1+p)}{p^{n+1}}, \frac{s(1+p)}{p^{n+1}}\right) \left(\frac{\omega_1}{\omega_2}\right)^{12p^{n+1}}.$$

$$f(\tau) = \left(g\left(\frac{r}{p^{n+1}}, \frac{s}{p^{n+1}}\right)(\tau) \middle/ g\left(\frac{r(1+p)}{p^{n+1}}, \frac{s(1+p)}{p^{n+1}}\right)(\tau)\right)^4$$

of Siegel functions is a modular function of level p^{2n+2} whose q-expansion at ∞ has coefficients in $\mathbb{Z}[\zeta_{p^{2n}}]$, $f(\omega_1/\omega_2)$ is in $K(p^{2n+2})$ by [Stark 1980, Theorem 3]. We assume $a=f(\omega_1/\omega_2)^{3p^m}\in K(\mathfrak{p}^{n+1})$ and X^p-a is irreducible over $K(\mathfrak{p}^{n+1})$. Since $K(\mathfrak{p}^{n+1})(f(\omega_1/\omega_2))$ is an abelian extension of K, we have $K(\mathfrak{p}^{n+1}) \subsetneq K(\mathfrak{p}^{n+1})(\zeta_p) \subset K(\mathfrak{p}^{n+1})(f(\omega_1/\omega_2)^{3p^{m-1}})$ since $\zeta_p \not\in K(\mathfrak{p}^{n+1})$. This is a contradiction. Hence, we have $f(\omega_1/\omega_2)^3\zeta\in K(\mathfrak{p}^{n+1})$ for some p^{n+1} -th root of unity ζ . Moreover, we have $f(\omega_1/\omega_2)\zeta'\in K(\mathfrak{p}^{n+1})$ for some $3p^{n+1}$ -th root of unity ζ' since $\zeta_3\not\in K(\mathfrak{p}^{n+1})$.

We now make some comments about the numerical calculation of Siegel functions. Let \mathfrak{c} be an ideal of a ray class C. We choose a basis $\{\omega_1, \omega_2\}$ of $\mathfrak{p}^{n+1}\mathfrak{c}^{-1}$ so that ω_1/ω_2 belongs to the fundamental domain for $\mathrm{SL}_2(\mathbb{Z})$ for rapid convergence of $g(a_1, a_2)(\omega_1/\omega_2)$. It is also important to adjust a_i so that $0 \le a_i < 1$ by

$$g(a_1 + n_1, a_2 + n_2)(\tau) = (-1)^{n_1 n_2 + n_1 + n_2} e^{\pi i (n_2 a_1 - n_1 a_2)} g(a_1, a_2)(\tau) \quad (n_i \in \mathbb{Z}).$$

4. COMPUTATION OF K_2

For p=3 and several Ks, we constructed K_1 and K_2 explicitly by computer and examined whether $H_{0,n}=A_0$ and whether $B_n=D_n$. Since all the computational difficulties lie in K_2 , we explain how we pursued the computations concerning K_2 . A typical example will reveal the essential features of the computation. We take $K=\mathbb{Q}(\sqrt{-5219})$, $\mathfrak{p}=\mathbb{Z}3+\mathbb{Z}\frac{1+\sqrt{-5219}}{2}$ and explain several techniques which were needed for our computation.

4.1 Construction of K_2

First we note that $h_K=24$ and $\mathfrak p$ is totally ramified in $K_\infty.$ Set

$$\widetilde{f}_{j}(\mathfrak{c}) = \left(g\left(\frac{r}{27}, \frac{s}{27}\right)\left(\frac{\omega_{1}}{\omega_{2}}\right) \middle/ g\left(\frac{4^{j}r}{27}, \frac{4^{j}s}{27}\right)\left(\frac{\omega_{1}}{\omega_{2}}\right)\right)^{4}$$

with an ideal \mathfrak{c} of K and $1 \leq j \leq 8$, where $\mathfrak{p}^3\mathfrak{c}^{-1} = \mathbb{Z}\,\omega_1 + \mathbb{Z}\,\omega_2$ and $r\omega_1 + s\omega_2 = 27$. Note that $\widetilde{f}_j(\mathfrak{c})$ depends only on \mathfrak{c} . Let $C_0 = \mathrm{cl}_3(\mathfrak{O}_K)$ and $\mathfrak{c}_1, \mathfrak{c}_2, \cdots, \mathfrak{c}_{24}$ be representatives of I_K/P_K such that $\mathfrak{c}_i^{24} = (\gamma_i)$ with $\gamma_i^2 \equiv 1 \pmod{\mathfrak{p}^4}$. Then we see that

$$N_{K_2'/K_2}(g_{\mathfrak{p}^3}(C_0)^{1-\sigma^j}) = \prod_{i=1}^{24} \widetilde{f_j}(\mathfrak{c}_i)^{81},$$

where $\sigma = \left(\frac{K_2'/K}{4}\right)$. Set

$$\beta_j = \zeta_{81} \prod_{i=1}^{24} \widetilde{f}_j(\mathfrak{c}_i)$$

with a 81th root of unity ζ_{81} . Lemma 3.2 implies that β_j is contained in K_2 if we choose a suitable ζ_{81} for each j. We determine ζ_{81} so that the coefficients of

$$\prod_{i=0}^{8} (X - \beta_j^{\sigma^i})(X - \beta_j^{\sigma^i J}),$$

which is the minimal polynomial of β_j over \mathbb{Q} , are close to rational integers, where J is the complex conjugation and the action of σ for ζ_{81} is given by $\zeta_{81}^{\sigma} = \zeta_{81}^{16}$. As a result of these computations, we get $\zeta_{81} = 1$ for each j.

Next we verify computationally that one of the 4th roots of each β_j is contained in K_2 (4.5). We put $\varepsilon = \sqrt[4]{\beta_4}$. Then ε is a unit of K_2 and the minimal polynomial f(X) of ε over \mathbb{Q} has the least discriminant among $\sqrt[4]{\beta_j}$. Even though the coefficients of f(X) are large, we show f(X) completely for readers who are interested in this type of computation:

 $f(X) = X^{18} - 2737X^{17} + 169351307431X^{16}$

- $-797848048872200987503002X^{13}$
- $+ 14260371350698925012657372513X^{12}$
- $+6727443351204545237345329632872X^{11}$
- $+915274675664831410074802593822617X^{10}$
- $+\,1633312619603207976653110097584811X^{9}$
- $+\ 1123545275437128223875406900453517X^{8}$
- $-433121476304848342832840903771975X^{7}$
- $+\ 23565623970778493517049315349313X^6$
- $+\ 1799278132239867573207777918138X^5$
- $+31191572789333418743352081696X^4$
- $-9611439809099451726571366X^3$
- $+\ 1427400245427766872971X^2+74348908961X+1.$

4.2 Integral Basis of K_2

Now we compute an integral basis of K_2 over \mathbb{Z} . We first try using KASH or PARI, however these packages cannot compute an integral basis due to the huge discriminant of f(X). So we construct \mathfrak{O}_{K_2} in the following way.

We start with $\mathbb{Z}[\varepsilon]$. By Lemma 2.5, we see that

$$(\mathfrak{O}_{K_2}:\mathbb{Z}[arepsilon])=\sqrt{rac{|d(f)|}{|d(K_2)|}}pprox 2.1\cdot 10^{394}.$$

Namely $\mathbb{Z}[\varepsilon]$ is a very small submodule of \mathfrak{O}_{K_2} . We can enlarge $\mathbb{Z}[\varepsilon]$ dramatically by adding a conjugate of ε . Set $M_1 = \mathbb{Z}[\varepsilon] + \mathbb{Z}\varepsilon^{\sigma}$. Then $(\mathfrak{O}_{K_2}: M_1) = 3^6$. Next we set

$$M_2 = \mathbb{Z}[\varepsilon] + \sum_{i,j} \mathbb{Z} \sqrt[4]{\beta_j}^{\sigma^i}.$$

Then we have $(\mathfrak{O}_{K_2}:M_2)=3$. Now we examine whether

$$\epsilon^{a_0+a_1\sigma+a_2\sigma^2+\cdots+a_7\sigma^7}$$

is a cube in K_2 for integers $0 \le a_i \le 2$ using a method which will be explained in Section 4.5. We find that

$$\varepsilon_1 = \sqrt[9]{\varepsilon^{2+7\sigma+6\sigma^2+8\sigma^3+4\sigma^4+3\sigma^5+5\sigma^6+\sigma^7}}$$

is contained in K_2 . Finally we set $M_3 = M_2 + \mathbb{Z} \varepsilon_1$, yielding $\mathfrak{O}_{K_2} = M_3$.

Unit Group of K_2 4.3

The next task is a construction of the unit group E_{K_2} of K_2 . For all practical purposes, we only need a subgroup E' of E_{K_2} with finite index prime to 3.

We start with $E = \langle \varepsilon, \varepsilon^{\sigma}, \cdots, \varepsilon^{\sigma^7} \rangle$. In many cases, E becomes a subgroup of E_{K_2} with a finite index. If the index is infinite, we add $\sqrt[4]{\beta_i}$ to E and obtain a subgroup of finite index. It is easy to enlarge E to E' with an index prime to 3, because E_{K_2} has a small free rank 8.

In the case $K = \mathbb{Q}(\sqrt{-5219})$, we see that E' = $\langle \varepsilon, \varepsilon^{\sigma}, \cdots, \varepsilon^{\sigma^{6}}, \varepsilon_{1} \rangle$ is a subgroup whose index is prime to 3.

4.4 D_2 and $H_{0,2}$

As we have seen in the proof of Corollary 2.3, $H_{0,n} = A_0$ implies $B_n = D_n$. Hence, the calculation of $H_{0,n}$ is not needed to verify that $\lambda_p = 0$. But we are interested in the least n which satisfies the equalities $H_{0,n} = A_0$ or $B_n = D_n$.

We present a method which is applicable to the case $|A_0|=3$. It is easy to modify this for other cases. If $|D_0| = 3$, then $\lambda_3 = 0$ from Proposition 2.2. So we assume $|D_0| = 1$.

Let $\mathfrak{p}^{h'} = (\alpha)$ with $h' = h_K/3$ and let $A_0 = \langle \operatorname{cl}(\mathfrak{q}) \rangle$ with $\mathfrak{q}^3 = (\beta)$. Furthermore, let $E' = \langle \varepsilon_1, \varepsilon_2, \cdots, \varepsilon_8 \rangle$ be a subgroup of E_{K_2} with index prime to 3. Then we can determine $|D_2|$ and $|H_{0,2}|$ using the following lemmas.

Lemma 4.1. *If*

$$\left(\alpha \prod_{i=1}^{8} \varepsilon_i^{e_i}\right)^{1/9} \tag{4-1}$$

is contained in K_2 for some $0 \le e_i \le 8$, then $|D_2| = 1$. Otherwise, $|D_2| = 3$.

Lemma 4.2. *If*

$$\left(\beta \prod_{i=1}^{8} \varepsilon_i^{e_i}\right)^{1/3} \tag{4-2}$$

is contained in K_2 for some $0 \le e_i \le 2$, then $|H_{0,2}| = 3$. *Otherwise*, $|H_{0,2}| = 1$.

Remark 4.3. The number of trials for Lemma 4.2 is at most 3⁸. We note that the number of trials for Lemma 4.1 is not 9^8 . We can reduce it to $2 \cdot 3^8$ by expressing $e_i = e_{i,0} + 3e_{i,1} \ (0 \le e_{i,j} \le 2).$

For an integer α of K_2 , we can get $\sqrt[3]{\alpha}$ explicitly if it is contained in K_2 by a method explained in the next paragraph. But this method requires a factorization of polynomials whose calculation needs a few seconds. Therefore, we will need several hours for the calculation given in Lemma 4.2. We use the next lemma to avoid wasteful trials.

Lemma 4.4. Let $\{\ell_1, \ell_2, \ldots, \ell_r\}$ be a finite set of prime numbers which split completely in K_2 and take rational integers a_i and a_{ij} , such that $\beta \equiv a_i \pmod{l_i}$ and $\varepsilon_i \equiv$ $a_{ij} \pmod{l_j}$, where l_j is a prime factor of ℓ_j in K_2 . If

$$a_j \prod_{i=1}^8 a_{ij}^{e_i} + \ell_j \mathbb{Z}$$

is not a cube in $(\mathbb{Z}/\ell_j\mathbb{Z})^{\times}$ for some j, then (4–2) is not contained in K_2 .

We use a similar criterion for (4-1) and also for E'.

4.5 Cubic Root

We explain how to calculate $\sqrt[3]{\alpha}$ for an integer α of K_2 . We need a submodule of \mathfrak{O}_{K_2} with small index (e.g., M_1, M_2 in (4.2)). Though a submodule of small index is enough for our purpose, we explain using \mathfrak{O}_{K_2} for sim-

Let $\{v_1, v_2, \dots, v_{18}\}$ be an integral basis of K_2 . If $\sqrt[3]{\alpha} \in K_2$, then we can get the coefficients of $\sqrt[3]{\alpha}$ by solving approximately simultaneous equations:

$$\sum_{i=1}^{18} x_i v_i^{\rho} = \sqrt[3]{\alpha^{\rho}} \quad (\rho \in \text{Emb}(K_2, \mathbb{C})). \tag{4-3}$$

If (4-3) does not have integral solutions, then $\sqrt[3]{\alpha} \notin$ K_2 . This is a well-known method; it works well in the

m	h_K	$ H_{0,1} $	$ D_1 $	$ H_{0,2} $	$ D_2 $	λ_3
-2081	60	1	3	3	3	0
-2138	42	1	1	1	3	0
-2183	42	1	1	1	1	0 ? 0
-2186	42	1	3	3	3	
-3206	60	1	1	1	3	0
-3614	60	1	3	3	3	0
-4574	96	1	1	1	3	0 ? 0
-4637	78	1	1	1	1	?
-4835	30	1	3	3	3	0
-5219	24	1	1	1	3	0
-5579	30	3	3	3	3	0
-5813	78	1	3	3	3	0
-5897	48	1	1	1	3	0
-6077	48	1	1	1	3	0
-6269	114	1	3	3	3	0 ?
-6761	132	1	1	1	1	?
-6983	57	1	3	3	3	0
-7862	78	1	3	3	3	0
-7907	21	1	1	1	1	0 ? 0
-8459	42	1	3	3	3	0
-9113	96	3	3	3	3	0

TABLE 1. $A_0 \cong \mathbb{Z}/3\mathbb{Z}$.

totally real case. However, in our case, since K_2 is totally imaginary, we have to consider a difference by cubic root of unity for each $\sqrt[3]{\alpha^{\rho}}$. Namely, we need 3^{18} trials, which is computationally intensive even for a modern computer.

We use the following method. First, we construct the minimal polynomial f(X) of α over \mathbb{Q} . The degree of f(X) is often 18. Next we factorize $f(X^3)$. If it is irreducible over \mathbb{Q} , then $\sqrt[3]{\alpha} \notin K_2$. If $f(X^3)$ has a factor g(X) of degree 18, then $\sqrt[3]{\alpha} \in K_2$. Furthermore, we choose approximate values of $\sqrt[3]{\alpha^\rho}$ so that $g(\sqrt[3]{\alpha^\rho}) = 0$ and get coefficients of $\sqrt[3]{\alpha}$ by solving (4–3).

5. EXPERIMENTATION FOR p=3

We show the result of the calculations which we have done in the case p=3. Let $K=\mathbb{Q}(\sqrt{m})$ with negative square free integer m. There exist 2282 m in the range -10000 < m < 0 such that (4-3) splits into $\mathfrak{p}\bar{\mathfrak{p}}$ in K_2 . The distribution of m is as follows:

	number of m	λ_3
$ A_0 = 1$	1483	0
$h_k = 3$	4	0
$h_k > 3 , A_0 = 3$	522	?
$ A_0 = 9$	214	?
$ A_0 = 27$	51	?
$ A_0 = 81$	8	?

If $|A_0|=1$ or $h_K=3$, then $\lambda_3=0$. So we concentrate our attention on 522 m where $h_K>3$ and $|A_0|=3$. Let $A_0=\langle\operatorname{cl}(\mathfrak{q})\rangle$ with $\mathfrak{q}^3=(\beta)$. Then \mathfrak{p} is totally ramified in K_∞ if and only if $\beta^2\equiv 1\pmod{\mathfrak{p}^2}$. When \mathfrak{p} is unramified in K_1/K , the genus formula implies $|A_n|=1$ for all $n\geq 1$ and consequently $\lambda_3=0$. Furthermore, when \mathfrak{p} is totally ramified in K_∞ , then $|A_0|=|D_0|$ implies $\lambda_3=0$. The situation is summarized in the following table.

p	number of m	λ_3
unramified in K_1	398	0
totally ramified in K_{∞} , $ D_0 = 3$	103	0
totally ramified in K_{∞} , $ D_0 = 1$	21	?

The number of targets for our experiments is 21. We show the results of the calculations for K_1 and K_2 in Ta-

m	h_K	$ D_0 $	$ H_{0,1} $	$ D_1 $	$ H_{0,2} $	$ D_2 $	λ_3
-7265	72	3	1	9	3	9	0
-17786	234	3	3	3	3	3	?
-19238	90	3	1	9	3	9	0
-19466	234	3	1	9	3	9	0
-19862	126	3	1	9	3	9	0
-23231	234	3	1	9	3	9	0
-23666	180	3	1	9	3	9	0
-29402	144	3	3	3	3	9	0
-34319	279	3	1	9	3	9	0
-39335	198	1	3	3	3	9	0
-41927	171	3	1	9	3	9	0
-43415	144	3	1	9	3	9	0
-45893	126	3	1	9	3	9	0
-48266	198	1	1	3	1	9	0
-48470	144	3	1	9	3	9	0
-50846	360	3	1	9	3	9	0
-54602	180	3	3	9	3	9	0
-55067	90	3	1	9	3	9	0
-65105	288	3	1	9	3	9	0
-70223	315	1	3	3	9	9	0
-76307	72	3	1	9	3	9	0
-76469	396	3	3	3	9	9	0
-78341	306	3	1	9	3	9	0
-82442	342	1	1	3	1	9	0
-83147	72	3	1	9	3	9	0
-85019	144	3	1	9	3	9	0
-88709	360	3	1	9	3	9	0
-91895	288	1	1	3	1	9	0
-92654	396	1	1	3	1	9	0
-94631	414	3	1	9	3	9	0
-97946	414	1	1	3	1	9	0
-98009	252	1	1	3	1	9	0
-99041	504	3	3	3	3	9	0

TABLE 2. $A_0 \cong \mathbb{Z}/9\mathbb{Z}$.

ble 1, which seem to support a positive answer to Problem 1.1.

Our next trial is an experiment for K with $|A_0| = 9$. Since the treatment for K with noncyclic A_0 is delicate, we restricted our targets to cyclic cases. There exist 197 m such that $A_0 \cong \mathbb{Z}/9\mathbb{Z}$ and \mathfrak{p} is totally ramified in K_{∞} in the range -100000 < m < 0. We see $\lambda_3 = 0$ for 164 m verifying that $|D_0| = 9$. Data for the 33 m with $|D_0| \leq 3$ is summarized in Table 2. This also suggests a positive answer to Problem 1.1.

Remark 5.1. Problem 1.1 is related to GGC (Generalized Greenberg Conjecture). Indeed, Minardi proved that if \mathfrak{p} is totally ramified in K_{∞}/K and $\lambda_{\mathfrak{p}}=0$, then GGC holds for K ([Minardi 86], [Ozaki 01]). So our examples are also examples for which GGC holds.

All the calculations in this paper were done by TC, which is available from ftp://tnt.math.metrou.ac.jp/pub/math-packs/tc/. The Alpha 21264 667 MHz needed 2 minutes for m = -5219, which is the easiest and 114 minutes for m = -99041, which is the hardest.

It is a natural question to ask the growth of the order of A_n in the cases of Table 1 and 2. PARI succeeded in computing A_1 for small m. We report that $|A_1| = 9$ for all K in Table 1. It is difficult to compute A_2 or $|A_2|$ using PARI. Note that the proof of Lemma 2.2 implies $|A_n|=9 \ (n\geq 1)$ for K in Table 1 with $|D_1|=3$.

REFERENCES

[Gillard 85] R. Gillard. "Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes." J. reine angew. Math. 358 (1985), 76-91.

- [Greenberg 76] R. Greenberg. "On the Iwasawa Invariants of Totally Teal Number Fields." Amer. J. Math. 98 (1976), 263 - 284.
- [Iwasawa 56] K. Iwasawa. "A Note on Class Numbers of Algebraic Number Fields." Abh. Math. Sem. Hamburg 20 (1956), 257-258.
- [Kubert and Lang 81] D. S. Kubert and S. Lang. Modular Units, Grundlehren der mathematischen Wissenschaften Vol. 244. Berlin-Heidelberg: Springer Verlag, 1981.
- [Minardi 86] J. Minardi. Iwasawa Modules for \mathbb{Z}_p^d -Extensions of Algebraic Number Fields. Thesis, University of Washington, 1986.
- [Ozaki 01] M. Ozaki. "Iwasawa Invariants of \mathbb{Z}_p -Extensions over an Imaginary Quadratic Fields." In Class Field Theory—Its Centenary and Prospect, Advanced Studies in Pure Mathematics, Vol. 30, pp. 387–399, Singapore: World Scientific, 2001.
- [Schertz 97] R. Schertz. "Construction of Ray Class Fields by Elliptic Units." Theorie des Nombres Bordeaux (1997), 383 - 394.
- [Schneps 1987] L. Schneps. "On the μ -invariant of p-adic L-functions Attached to Elliptic Curves with Complex Multiplication." J. Number Theory 25 (1987), 20-33.
- [Stevenhagen 2001] P. Stevenhagen. Hilbert's 12th Problem, Complex Multiplication and Shimura Reciprocity, In Class Field Theory—Its Centenary and Prospect, Advanced Studies in Pure Mathematics, vol. 30, pp. 161– 176, Singapore: World Scientific, 2001. 387-399.
- [Stark 1980] H. M. Stark. "L-functions at s = 1." Adv. Math. 35 (1980), 197–235.
- [Yokoi 1967] H. Yokoi. "On the Class Number of a Relatively Cyclic Field." Nagoya Math. J. 29 (1967), 31–44.
- Takashi Fukuda, Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan (fukuda@math.cit.nihon-u.ac.jp)
- Keiichi Komatsu, Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169, Japan (kkomatsu@mse.waseda.ac.jp)

Received February 7, 2002; accepted in revised form November 13, 2002.