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As a complement to a recent paper by Jade Vinson we study
the distribution of the sequence ( n

j=1 j
−s)n≥1 modulo 1 with

the aim of explaining its different behaviour when s = 1
2 and

when 1
2 < s < 1. We tackle this question from a different point

of view using the theory of uniformly distributed sequences.

1. INTRODUCTION

In a recent paper, Jade Vinson [Vinson 01] studied the

distribution modulo 1 of the sequence (
�n
j=1 j

−s)n≥1
(where s ∈ (0, 1)) with the aim of explaining the strik-

ing difference between the distributions when s = 1
2 and

s W= 1
2 . We try to shed more light on some of the phenom-

ena described in [Vinson 01] using the theory of uniform

distribution.

1.1 Notation

If x ∈ R, then {x} = x − [x] denotes the fractional part
of x. We use ωsn =

�n
j=1 j

−s and ωs = (ωsn)n≥1 as
convenient shorthand notation. If (xn)n≥1 is a sequence
in the unit interval [0, 1), then

DN (x1, . . . , xN ) =

sup
0≤a<b≤1

eeeee
ee{n : 1 ≤ n ≤ N, xn ∈ [a, b)}ee

N
− (b− a)

eeeee
is called the discrepancy of this sequence. If ξ = (ξn)n≥1
is a sequence of real numbers, we write DN (ξ) instead of

DN
D{ξ1}, . . . , {ξN}i. We recall that a sequence ξ of reals

is uniformly distributed modulo 1 if and only if DN (ξ)→
0 as N →∞.
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2. UNIFORMLY DISTRIBUTED SEQUENCES

Theorem 2.1. Let s ∈ (0, 1). Then ωs is uniformly dis-

tributed modulo 1 andeeeDN (ωs)−DND( 1
1−sn

1−s)n≥1
ieee ≤ 2N−s/(s+1)

for all positive integers N .

Proof: Using the Euler summation formula, we find that

n3
j=1

j−s = 1
1−sn

1−s + ζ(s) + s

8 ∞
n

{t}t−s−1 dt (2—1)

for all positive integers n (see e.g., Theorem 3.2 in [Apos-

tol 76]. This implies that

1
1−sn

1−s + ζ(s) < ωsn <
1
1−sn

1−s + ζ(s) + n−s. (2—2)

The sequence ( 1
1−sn

1−s)n≥1 is known to be uniformly
distributed modulo 1 (see e.g., Example 2.7 in Chap-

ter 1 of [Kuipers and Niederreiter 74]). It follows from

Lemma 1.1 in Chapter 1 of [Kuipers and Niederreiter 74]

that
D

1
1−sn

1−s + ζ(s)
i
n≥1 is uniformly distributed mod-

ulo 1, and from Theorem 1.2 in Chapter 1 of [Kuipers and

Niederreiter 74] and Equation (2—2) that ωs is uniformly

distributed modulo 1. The assertion about discrepancies

is implied by the fact that

DN
D
( 1
1−sn

1−s + ζ(s))n≥1
i
= DN

D
( 1
1−sn

1−s)n≥1
i

for all positive integers N and the following lemma by

taking ε = N−s/(s+1) there.

2.1 Notation

From now on, we will use τ sn =
1
1−sn

1−s + ζ(s), ξsn =
1
1−sn

1−s, τ s = (τ sn)n≥1 and ξ
s = (ξsn)n≥1.

Lemma 2.2. Let s, ωs and τ s be as above. TheneeDN (ωs)−DN (τ s)| ≤ ε + ε−1/sN−1

for all ε > 0.

Proof: Note that if n > ε−1/s, then n−s < ε and therefore

τ sn < ωsn < τ sn + ε by (2-2). Let [a, b) ⊆ [0, 1). If {τ sn} ∈
[a, b), then either n ≤ ε−1/s or {ωsn} ∈ J where

J =


[a, b+ ε) if b+ ε ≤ 1,
[0, b+ ε− 1) ∪ [a, 1) if 1 < b+ ε < a+ 1,

[0, 1) if a+ 1 ≤ b + ε.

In all three cases, we haveee\n : 1 ≤ n ≤ N, {τ sn} ∈ [a, b)�ee
≤ ee\n : 1 ≤ n ≤ N, {ωsn} ∈ J�ee + ε−1/s.

(2—3)

We claim thatee\n : 1 ≤ n ≤ N, {ωsn} ∈ J�ee ≤ N(b−a+ε)+NDN (ωs).
(2—4)

If b+ ε ≤ 1, this reduces toee\n : 1 ≤ n ≤ N, {ωsn} ∈ [a, b+ ε)
�ee

≤ N(b− a+ ε) +NDN (ω
s)

which is obviously true. If 1 < b+ ε < a+ 1, this follows

fromee\n : 1 ≤ n ≤ N, {ωsn} ∈ J�ee
= N − ee\n : 1 ≤ n ≤ N, {ωsn} ∈ [b+ ε− 1, a)�ee
≤ N − DN(a− b− ε+ 1)−NDN (ωs)i.

Finally, if a+1 ≤ b+ε, then b−a+ε ≥ 1 and the assertion
is trivially fulfilled. Putting Equations (2—3) and (2—4),

together we see thatee\n : 1 ≤ n ≤ N, {τ sn} ∈ [a, b)�ee−N(b− a)
≤ Nε+NDN (ωs) + ε−1/s. (2—5)

If {ωsn} ∈ [a+ ε, b), then either n ≤ ε−1/s or {τ sn} ∈ [a, b)
which implies thatee\n : 1 ≤ n ≤ N, {ωsn} ∈ [a+ ε, b)

�ee
≤ ee\n : 1 ≤ n ≤ N, {τsn} ∈ [a, b)�ee+ ε−1/s.

(2—6)

Furthermore, we haveee\n : 1 ≤ n ≤ N, {ωsn} ∈ [a+ ε, b)
�ee

≥ N(b− a− ε)−NDN (ωs). (2—7)

Both Equations (2—6) and (2—7) remain true if a+ ε ≥ b.
Together they imply thatee\n : 1 ≤ n ≤ N, {τ sn} ∈ [a, b)�ee−N(b− a)

≥ −Nε−NDN (ωs)− ε−1/s. (2—8)

From Equations (2—5) and (2—8), we can now deduce thateeeee
ee\n : 1 ≤ n ≤ N, {τ sn} ∈ [a, b)�ee

N
− (b− a)

eeeee
≤ DN (ωs) + ε+N−1ε−1/s

and therefore DN (τ
s) ≤ DN (ωs) + ε+N−1ε−1/s. By an

analogous argument, we can prove DN (ω
s) ≤ DN (τ s) +

ε+N−1ε−1/s which completes the proof.
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The above theorem tells us that the fractional parts

of the sequence ωs will be spread out evenly over the

unit interval in the long run. Furthermore, the deviation

from a perfect uniform distribution is comparable to that

of the sequence ξs. The three papers [Schoißengeier 81],

[Baxa and Schoißengeier 98], and [Baxa 98] contain a

detailed study of the long-term behaviour of sequences

(αnσ)n≥1 modulo 1 (where α > 0 and 0 < σ ≤ 1
2 ) and

their results can be put to good use.

Corollary 2.3.

(i) If 0 < s ≤ (√5−1)/2, then DN (ωs) = O(N−s/(s+1))
as N →∞.

(ii) If (
√
5−1)/2 < s < 1, then lim

N→∞
N1−sDN (ωs) = 1

8 .

Proof: (i) First let 1/2 ≤ s ≤ (√5− 1)/2. As DN (τ s) =
DN (ξ

s) and DN (ξ
s) = O(Ns−1) (see [Schoißengeier 81],

it follows that

|DN (ωs)| ≤ |DN(ωs)−DN (τs)|+ |DN (ξs)|
U N−s/(s+1) +Ns−1 U N−s/(s+1)

as −s/(s+ 1) ≥ s− 1 if 1/2 ≤ s ≤ (√5− 1)/2.
If 0 < s < 1/2, then DN (ξ

s) = O(N−s) (see Exercise
3.1 in Chapter 2 of [Kuipers and Niederreiter 74] and the

assertion can be proved analogously.

(ii) As s2 + s− 1 > 0 for s > (√5− 1)/2, we get

N1−s|DN (ωs)−DN (τ s)| ≤ 2N1−s−s/(s+1)

= 2N−(s
2+s−1)/(s+1) → 0

as N → ∞ and as lim
N→∞

N1−sDN (ξs) = 1
8 (because of

Corollary 3 in [Schoißengeier 81] the assertion follows.

3. CONCLUDING REMARKS

Corollary 2.3 tells us that the sequence ωs is particularly

well-behaved when s is close to 1. As we are mainly con-

cerned with long-term behaviour, some of the phenomena

described in Vinson’s paper elude us.

Nevertheless, we are able to offer an explanation for

the large central spike in the histogram for ζ(12 ) (Figure

1 in [Vinson 01]). During the investigation of sequences

of shape (αnσ)n≥1, it turned out that their behaviour is
far more complicated when σ = 1

2 and α
2 ∈ Q than when

either 0 < σ < 1
2 or σ =

1
2 and α2 /∈ Q. As a special

instance, the behaviour of (2
√
n)n≥1 is far more intricate

than that of ( 1
1−sn

1−s)n≥1 for 1/2 < s < 1. Although

the sequence (2
√
n)n≥1 is uniformly distributed modulo

1, its fractional parts attain the value 0 infinitely often

as {2√n} = 0 whenever n is a square. (This behaviour

is typical for sequences (α
√
n)n≥1 with α2 rational. A

detailed description of this phenomenon can be found in

Lemma 1 of [Baxa and Schoißengeier 98].)

Because of Equation (2-2), we see that among the N

points {ω1/21 }, . . . , {ω1/2N }, there are K :=
J√
N
o
points

{ω1/21 }, {ω1/24 }, {ω1/29 }, . . . , {ω1/2K2 } which form the begin-
ning of a subsequence which will eventually converge to\
ζ(12 )
�
= ζ( 12 ) + 2 from above. This should lead to the

spike and explains its location.

Surprisingly, the sequence (αnσ)n≥1 with 1
2 < σ < 1

seems to have received far less attention than the case 0 <

σ ≤ 1
2 . J. Schoißengeier [Schoißengeier 81] proved that

the estimate DN
D
(αnσ)n≥1

i
= O(Nσ−1) we used above

is not sharp, but this seems to be the last published result

on this sequence. It would be an interesting problem to

study this case in detail, which should also lead to a

better understanding of the behaviour of the sequence

ωs modulo 1 with 0 < s < 1
2 .

ACKNOWLEDGMENTS

This paper was written while the author was an Erwin

Schrödinger Fellow supported by the Austrian Science Fund

(FWF grant J2052). I thank the Department of Mathematics

of the University of Colorado at Boulder for its hospitality

and especially Prof. Wolfgang M. Schmidt for his support.

Furthermore, I thank Prof. J. Schoißengeier for pointing out

an inaccuracy in the paper’s first version.

REFERENCES

[Apostol 76] T. M. Apostol. Introduction to Analytic Number

Theory. New York-Heidelberg-Berlin: Springer-Verlag,

1976.

[Baxa 98] C. Baxa. “On the Discrepancy of the Sequence

(α
√
n) II.” Arch. Math. 70 (1998), 366—370.

[Baxa and Schoißengeier 98] C. Baxa and J. Schoißengeier.

“On the Discrepancy of the Sequence (α
√
n).” J. London

Math. Soc. 57 (1998), 529—544.

[Kuipers and Niederreiter 74] L. Kuipers and H. Niederre-

iter. Uniform Distribution of Sequences. New York-

London-Sydney-Toronto: Wiley, 1974.

[Schoißengeier 81] J. Schoißengeier. “On the Discrepancy of

Sequences (αnσ).” Acta Math. Acad. Sci. Hungar. 38

(1981), 29—43.

[Vinson 01] J. Vinson. “Partial Sums of ζ( 1
2
) Modulo 1.” Ex-

periment. Math. 10 (2001), 337—344.



468 Experimental Mathematics, Vol. 11 (2002), No. 4

Christoph Baxa, Department of Mathematics, University of Vienna, Strudlhofgasse 4, A-1090 Wien, Austria

(baxa@ap.univie.ac.at)

Received December 10, 2001; accepted in revised form August 2, 2002.


