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We consider the Bloch-Kato conjecture applied to the symmet-
ric square L-function of an elliptic curve over Q, at s = 2. In
particular, we use a construction of elements of order l in a
generalised Shafarevich-Tate group, which works when E has
a rational point of infinite order and a rational point of order
l. The existence of the latter places us in a situation where the
recent theorem of Diamond, Flach, and Guo does not apply,
but we find that the numerical evidence is quite convincing.

1. INTRODUCTION

Let E be an elliptic curve defined over Q and let L(E, s)
be the associated L-function. (It is now known that E

is modular, so that L(E, s) has an analytic continuation

to the whole complex plane.) The conjecture of Birch

and Swinnerton-Dyer predicts that the order of vanishing

of L(E, s) at s = 1 is the rank of the group E(Q) of
rational points, and also gives an interpretation of the

leading term in the Taylor expansion in terms of various

quantities, including the order of the Shafarevich-Tate

group.

The Bloch-Kato conjecture [Bloch and Kato 90] is the

generalisation to arbitrary motives of the leading term

part of the Birch and Swinnerton-Dyer conjecture. Let

L(Sym2(E), s) be the symmetric square L-function at-

tached to an elliptic curve E/Q. Flach [Flach 93] looked
at the Bloch-Kato conjecture for L(Sym2(E), s) at s = 2,

and translated it into a formula involving only rational

numbers, such as the degree of a modular parametri-

sation, and the order of a generalised Shafarevich-Tate

group. In [Flach 92] he applied Kolyvagin’s technique

for bounding Selmer groups, to Sym2(E) at s = 2. The-

orem 1 of [Flach 93] applies the result of [Flach 92] to

prove the l-part of the Bloch-Kato formula for all primes

l > 3 such that E has good reduction at l, l does not

divide the degree of the modular parametrisation, and

the representation Gal(Q/Q) → GL2(Fl) arising from
cs A K Peters, Ltd.
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the action of Gal(Q/Q) on the l-torsion points of E is

surjective. (Under these conditions, the l-part of the gen-

eralised Shafarevich-Tate group is trivial.)

Modified l-Selmer groups associated to Sym2(E) at

s = 2 are intimately connected with the deformation

theory of the above Galois representation. This con-

nection lies at the heart of Wiles’s approach to the

Shimura-Taniyama-Weil conjecture, that every elliptic

curve E/Q is modular. Although the work of Taylor and
Wiles [Wiles 95], [Taylor and Wiles 95] does not actually

prove the relevant cases of the Bloch-Kato conjecture (the

Selmer groups are defined differently), it is clearly closely

related.

Diamond, Flach and Guo [Diamond et al. 01a, Dia-

mond et al. 01b] have now proved a general result on

the Bloch-Kato conjecture (at s = 1) for the adjoint L-

function of a newform of weight k ≥ 2. In the case that
the newform has trivial character, this is equivalent to

the symmetric square L-function (at s = k). Apply-

ing their result to L(Sym2(E), 2) proves the l-part of the

Bloch-Kato conjecture for primes l ≥ 5 where E has good
reduction and the representation of Gal(Q/Q) on E[l] is
irreducible. (It also proves it for l = 3 if E has good re-

duction at 3 and the representation of Gal(Q/Q(
√−3))

on E[3] is absolutely irreducible.)

In [Dummigan 01a], I looked at L(Sym2(f), s), where

f is a Hecke eigenform of level one and weight k, concen-

trating on the weights k = 12, 16, 18, 20, 22, 26, for which

f has rational Fourier coefficients. For k = 18, 22, 26

(when k/2 is odd), the Bloch-Kato conjecture turns out

to be especially interesting at the point s = (k−1)+(k/2).
It is possible to construct elements of order l in the rele-

vant Selmer groups, where l is an “Eisenstein” prime, and

these primes do appear, at s = (k− 1)+ (k/2), when the
critical values of the L-function are calculated. [Dum-

migan 01b] deals with something similar for a Hilbert

modular form.

The point s = (k− 1)+ (k/2) coincides with the point
s = k dealt with in [Diamond et al. 01a] only when

k = 2. (Of course, if k = 2, there are no nonzero modu-

lar forms of level one, but the level one restriction is no

longer necessary when we have an elliptic curve to work

with.) The construction of [Dummigan 01a] can be made

to work in the case that E(Q) has both a point of order
l and a point of infinite order. A suitable point of infi-

nite order gives rise, via the “descent” map, to a nonzero

element of H1(Q, E[l]). Thanks to the existence of the
rational point of order l, E[l] is isomorphic to a Galois

submodule of Sym2(E[l]), and we get a nonzero element

c ∈ H1(Q, Sym2(E[l])). The main problem we face is to

show that c (or rather its image in another group) satis-

fies all the local conditions required for it to belong to the

appropriate Bloch-Kato Selmer group. To facilitate this,

we assume that E has good reduction at l, and impose

some technical conditions which are satisfied by most of

the examples we look at (see the precise statement of

Theorem 5.1).

Cremona and Mazur [2000] look, among all strong

Weil elliptic curves over Q of conductor N ≤ 5500, at

those with nontrivial Shafarevich-Tate group (according

to the Birch and Swinnerton-Dyer conjecture). Suppose

that the Shafarevich-Tate group has predicted elements

of prime order m. In most cases, they find another ellip-

tic curve, often of the same conductor, whose m-torsion

is Galois-isomorphic to that of the first one, and which

has rank two. The rational points on the second ellip-

tic curve produce classes in the common H1(Q, E[m]).
They show [Cremona and Mazur 02] that these lie in

the Shafarevich-Tate group of the first curve, so rational

points on one curve explain elements of the Shafarevich-

Tate group of the other curve. Clearly, the construction

of the present paper is analogous to this.

Ironically, the rational point of order l which allows

the construction to proceed causes the representation of

Gal(Q/Q) to be reducible, so the results of [Flach 92]
and [Diamond et al. 01a] do not apply to the l-part

of the Bloch-Kato conjecture for L(Sym2(E), 2). There-

fore, it is appropriate to consider numerical evidence.

We must take l > 3, since the 2- and 3-parts of the

fudge factors occurring in this instance of the Bloch-

Kato formula are not well understood. Since there can-

not be a rational l-torsion point for l > 7 [Mazur 78],

the only relevant l are l = 5 and l = 7. We con-

centrate on the case l = 5, which occurs with much

greater frequency in lists of elliptic curves ordered by

conductor. With the exception of the order of the (gen-

eralised) Shafarevich-Tate group, all the quantities ap-

pearing in the l-part of the Bloch-Kato formula appear

in, or may be calculated from, the elliptic curve data in

Cremona’s tables, for all conductors N ≤ 8000. These

tables may be found at http://www.maths.nott.ac.uk/

personal/jec/ftp/data/INDEX.html. We find that the

data fit well with both the conjecture and our construc-

tion.

2. THE SYMMETRIC SQUARE L-FUNCTION

Let E/Q be an elliptic curve of conductor N . Let l be

a prime number, let Tl = lim←−E[l
n] be the l-adic Tate

module of E, and Vl = Tl ⊗ Ql. Let Al = Vl/Tl =
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∪∞n=1E[ln]. The absolute Galois group Gal(Q/Q) acts
continuously on all of these modules, in a natural way.

As Galois modules, Vl l H1(E,Ql)(1).
Let V Il = Sym

2(Vl), T
I
l = Sym

2(Tl) and A
I
l = V

I
l /T

I
l =

∪∞n=1AI[ln], where AI[ln] := Sym2(E[ln]). Note that if

a⊗b ∈ E[ln+1]⊗E[ln+1], then l(a⊗b) = la⊗b = a⊗ lb is
identified with la⊗lb ∈ E[ln]⊗E[ln]. As Galois modules,
V Il l Sym2(H1(E,Ql))(2). Let AI = ⊕lAIl.
The L-function of the motive Sym2h1(E) is defined,

for _(s) > 2, by a Dirichlet series given by an Euler

product

L(Sym2E, s) =

r

Pr(r
−s)−1.

The product is over all primes r, and the polynomial

Pr(X) := det(1 − Frob−1r X | V IIrl ), where Ir is an in-

ertia subgroup at r, Frobr is an arithmetic Frobenius

element of Gal(Q/Q) and l is any prime different from
r. These Euler factors may be determined explicitly, see

[Coates and Schmidt 87] and [Watkins 02]. Suffice it to

say here that if r is a prime of good reduction of E, then

Pr(X) = (1− α2rX)(1− β2rX)(1− rX), αr and βr being
the eigenvalues of Frob−1r on Tl.

Following [Bloch and Kato 90] (Section 3), for p W= l

(including p =∞) let
H1
f (Qp, V Il ) = ker(H1(Dp, V

I
l )→ H1(Ip, V

I
l )).

The subscript f stands for “finite part.” Dp is a decom-

position subgroup at a prime above p, Ip is the inertia

subgroup, and the cohomology is for continuous cocycles

and coboundaries. For p = l let

H1
f (Ql, V Il ) = ker(H1(Dl, V

I
l )→ H1(Dl, V

I
l ⊗Bcris))

(see Section 1 of [Bloch and Kato 90] for definitions of

Fontaine’s ring Bcris). Let H
1
f (Q, V Il ) be the subspace

of elements of H1(Q, V Il ) whose local restrictions lie in
H1
f (Qp, V Il ) for all primes p. There is a natural exact

sequence

0 −−−−→ T Il −−−−→ V Il
π−−−−→ AIl −−−−→ 0.

Let H1
f (Qp, AIl) = π∗H1

f (Qp, V Il ). Define the l-Selmer

group H1
f (Q, AIl) to be the subgroup of elements of

H1(Q, AIl) whose local restrictions lie in H1
f (Qp, AIl) for

all primes p. Note that the condition at p = ∞ is su-

perfluous unless l = 2. In the future, p will always be a

finite prime. Define the Shafarevich-Tate group

X = ⊕l
H1
f (Q, AIl)

π∗H1
f (Q, V Il )

.

Note that, since s = 2 is a noncentral critical point for

L(Sym2E, s), it is conjectured that H1
f (Q, V Il ) is trivial,

so the l-Selmer group should be identified with the l-part

of the Shafarevich-Tate group.

3. THE BLOCH-KATO FORMULA: FUDGE FACTORS

Let f(z) =
∞
n=1 anq

n (q = e2πiz) be the normalised

(a1 = 1) newform of weight 2 and level N associated

with the elliptic curve E. (For p N , the number of

points of E(Fp) is 1 + p− ap.) Let φ : X0(N)→ E be a

modular parametrisation. Let c be the associated Manin

constant, i.e., φ∗ω = c · 2πif(z)dz, where ω is a Néron
differential on E, chosen so that c is positive.

The symmetric square L-function L(Sym2E, s) is

closely related to the Rankin convolution
∞
n=1 a

2
nn
−s,

and L(Sym2E, 2) may be evaluated using the Rankin-

Selberg method [Rankin 39], [Shimura 76]. Careful com-

parison of this with the conjectural formula of Bloch and

Kato [Bloch and Kato 90] leads to formula (10) of [Flach

93]:

degφ

Nc2
r∈S±

r

r ± 1 =
#X

#H0(Q, AI)#H0(Q, AI(−1))
r≤∞

cr.

(3—1)

Here, S± are certain sets of primes of bad additive

reduction. In the examples we look at later, E is always

semistable, so S± are empty. For precise definitions, see
[Flach 93]. Likewise, the cr are certain “fudge factors.”

The following corrected Lemma 1 of [Flach 93] provides

us with what we need to know about them. If j is the

j-invariant of the elliptic curve E and r is a finite prime,

let dr = −ordr(j).

Lemma 3.1. cr = 1 for all but finitely many r. Up to

powers of 2 and 3, and powers of r if r is a prime of bad

reduction, we have

cr =
1 if dr ≤ 0 or r =∞;
#E(Qr)[dr] if dr > 0.

The proof is essentially identical to the proof of

Lemma 1 in [Flach 93]. To apply the lemma, we need to

be able to calculate #E(Qr)[dr] in the case dr > 0. In the
proof of Lemma 1 of [Flach 93], the l-part of E(Qr)[dr]
is isomorphic to Zl(1)/dr ⊕ Zl/dr as an Ir-module, but
not necessarily as a Gal(Qr/Qr)-module, so the formula
given there is not always correct.

We need to use the following proposition, due to Tate.

A published proof may be found in [Silverman 94] (see

Lemma 5.1, Theorem 5.3, and Corollary 5.4).

Proposition 3.2. Let E be an elliptic curve defined over

Qr, with ordr(j) =: −dr < 0. There is a unique q ∈ Qr
such that j(E) = 1

q + 744 + 196884q + . . ..
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(i) If E has split multiplicative reduction, then there is

an isomorphism of groups, respecting the actions of

Gal(Qr/Qr):
E(Qr) l Q∗r/qZ.

(ii) If E has either nonsplit multiplicative reduction or

additive reduction, then there exists a quadratic ex-

tension L of Qr such that

E(Qr) l {u ∈ L∗/qZ : NL/Qr(u) ∈ qZ/q2Z}.
In the case of nonsplit multiplicative reduction, the

extension is unramified.

With little trouble one may deduce the following

lemma, which tells us the l-part of cr in certain cases.

Lemma 3.3. As above, suppose that E/Qr with dr > 0.

Let l W= r be an odd prime with la exactly dividing dr.
(i) If E has split multiplicative reduction,

then #E(Qr)[la] = la+min{b,c}, where

lb = gcd(la, r − 1) and c = max{e ≤ a :

(q/rdr ) is a le-power (mod r)}.
(ii) If E has nonsplit multiplicative reduction, then

#E(Qr)[la] = gcd(la, r + 1).

Note that j is the product of 1/q and a 1-unit in Qr.
Since 1-units in Qr are le-powers, “q/rdr” may be re-
placed by “jrdr” in the above lemma. It may not be

replaced by or “∆/rdr ,” where ∆ is the minimal discrim-

inant of E/Q, since this may differ from q ∞
n=1(1−qn)24

by multiplication by the 12th power of some r-adic num-

ber which is not an lth power. This is illustrated by the

example 506D1 in Section 6.3.

Cremona’s table of Hecke eigenvalues includes the

eigenvalues of the Atkin-Lehner involutionsWp for p | N .
If p is a prime of multiplicative reduction, that reduction

is split or nonsplit according as the eigenvalue of Wp is

−1 or +1 respectively.
In the examples we look at later, l is a prime of good

reduction, so certainly l W= r when dr > 0. Also, since l
N , the factor N in (3—1) has trivial l-part. By Corollary

4.2 of [Mazur 78], if N is square-free and E is a strong

Weil curve within its isogeny class (as in all the examples

of conductor ≤ 8000 that we examine later), then the

Manin constant c is at worst a power of 2, and has trivial

l-part for odd prime l. In fact, if N is also odd, it is now

known that c = 1 [Abbes and Ullmo 96].

4. GLOBAL TORSION

Next we look at the factors appearing in the denominator

of (3—1).

Lemma 4.1. If l is an odd prime and E[l] is an irreducible
representation of Gal(Q/Q) over Fl, then #H0(Q, AI)
and #H0(Q, AI(−1)) both have trivial l-part.

Proof: Via the Weil pairing, E[l] is dual to E[l](−1), as
a Galois module. Hence

E[l]⊗ E[l](−1) l HomFl(E[l], E[l])
as modules for Fl[Gal(Q/Q)]. Symmetric tensors corre-
spond to linear maps of zero trace. H0(Q, E[l]⊗E[l](−1))
corresponds to HomFl[Gal(Q/Q)](E[l], E[l]), which by

Schur’s Lemma consists of scalar multiples of the identity.

(Note that, since l is odd, E[l], as an odd, irreducible rep-

resentation of Gal(Q/Q), is absolutely irreducible.) The
only such map having zero trace is the zero map. Hence

the l-part of #H0(Q, AI(−1)) is trivial. Since E[l] is not
isomorphic to E[l](1) as a Galois module, #H0(Q, AI)
also has trivial l-part.

The following comes from Proposition 21 of [Serre 72],

and provides us with a practical way of applying the pre-

vious lemma.

Proposition 4.2. Suppose that N is square-free (i.e., E is

semistable). If l > 3 is a prime, then E[l] is irreducible

unless ap ≡ 1 + p (mod l) for all primes p lN .

If E is semistable and ap ≡ 1 + p (mod l) for all

primes p lN , then the composition factors of E[l] are

Fl and Fl(1) (by Proposition 21 of [Serre 72]). Using

E[l] ⊗ E[l](−1) l HomFl(E[l], E[l]), it is easy to prove
the following lemma.

Lemma 4.3. Let l be an odd prime, E/Q an elliptic curve.

(i) If E[l] l Fl ⊕ Fl(1), then l | #H0(Q, AI(−1)) and
l | #H0(Q, AI).

(ii) If E[l] has a submodule, but not a quotient isomor-

phic to Fl (i.e., if E has a rational point of order

l, but is not l-isogenous to an elliptic curve with a

rational point of order l), then l | #H0(Q, AIl), but
the l-part of #H0(Q, AI(−1)) is trivial.

(iii) If E[l] has a submodule, but not a quotient iso-

morphic to Fl(1) (i.e., if E has no rational point

of order l, but is l-isogenous to an elliptic curve
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with a rational point of order l), then the l-part of

#H0(Q, AI(−1)) is trivial. If l > 3, then so is the

l-part of #H0(Q, AI).

Lemma 4.4. Let l be an odd prime, E/Q an elliptic curve
with a prime r of split multiplicative reduction such that

l (r − 1) and l2 ordr(j). Then the divisibilities in the

above lemma are exact. (For the case of #H0(Q, AI) in
(i), we must also assume that l > 3.)

Proof: We just prove part (ii) to illustrate the idea.

There is an obvious Gal(Q/Q)-equivariant map from

E[l] to E[l](1) which maps the quotient of E[l] isomor-

phic to Fl(1) to the submodule of E[l](1) isomorphic to
Fl(1), and this spans H0(Q, AI[l]). We need to show it
is not divisible by l. Suppose for a contradiction that

θ : E[l2] → E[l2](1) is a Gal(Q/Q)-equivariant map di-
viding it by l. Choose a Z/l2Z-basis {v1, v2} for E[l2]
such that under the Tate parametrisation of E(Qr), v1
corresponds to a primitive l2-root of unity, and v2 cor-

responds to a chosen q1/l
2

, q being the Tate parameter

of E. Since l (r − 1), the Gal(Qr/Qr)-modules Fl and
Fl(1) are nonisomorphic, and lv1 must generate the quo-
tient of E[l] isomorphic to Fl(1), and maps under lθ to a
point of order l in E(Qr)(1). Hence θ(v1), untwisted, is a
point of order l2 in E(Qr), but the hypotheses preclude
the existence of such a point.

Remark 4.5. If E has a rational point of order l and r is
a prime of multiplicative reduction such that l (r + 1),

then necessarily it is split multiplicative reduction, by

something like (ii) of Lemma 3.3.

5. THE CONSTRUCTION OF ELEMENTS
IN A SELMER GROUP

Theorem 5.1. Let l > 3 be a prime, E/Q an elliptic

curve with a prime r of split multiplicative reduction such

that l (r − 1) and l2 ordr(j). Suppose that E has a

rational point Q of order l. Suppose also that E has good

reduction at l, and that for any prime p of bad reduction,

E[l∞](Qp) has order l. Then the l-torsion subgroup of
the Selmer group H1

f (Q, AIl) has dimension greater than
or equal to the rank of E(Q).

Proof: There is a natural injection ψ from E(Q)/lE(Q)
into H1(Q, E[l]). Since E(Q) contains the point Q
of order l, E[l] has a submodule isomorphic to Fl,
with quotient Fl(1). Hence AI[l] := Sym2(E[l]) has

a submodule isomorphic to E[l], with quotient Fl(2).
Since H0(Q,Fl(2)) is trivial, we get an injection θ from
H1(Q, E[l]) to H1(Q, AI[l]). Given the assumptions we
have made, as in the proof of Lemma 4.4, H0(Q, AIl) =
H0(Q, AI[l]). It follows that the image in H1(Q, AI[l])
of H0(Q, AIl)/lH0(Q, AIl) (i.e., the kernel of the natural
map from H1(Q, AI[l]) to H1(Q, AIl)) is one-dimensional.
Hence the image of E(Q)/lE(Q) in the l-torsion of

H1(Q, AIl) has dimension at least as big as the rank of
E(Q). For P ∈ E(Q), let c = ψ(P ), cI = θ(c) and let dI

be the image in H1(Q, AIl) of cI. Assume P is chosen in

such a way that dI W= 0. We need to show that, for every
finite prime p, resp(d

I) ∈ H1
f (Qp, AIl).

Since l > 3 is a prime of good reduction, one may

prove the local condition at p = l using Fontaine-Lafaille

modules, as in the proof of Proposition 9.2 of [Dummigan

01a].

Next consider a prime p W= l of good reduction. As is
well-known (Proposition 2.1 in Chapter 8 of [Silverman

86]), the class c ∈ H1(Q, E[l]) is unramified at p. Hence
the class dI ∈ H1(Q, AIl) is unramified at p. Since AIl is
unramified at p (a prime of good reduction), H1

f (Qp, AIl)
is equal to (not just contained in) the kernel of the map

from H1(Qp, AIl) to H1(Ip, A
I
l), where Ip is an inertia

subgroup at p (see line 3 of p. 125 of [Flach 90]). Hence

dI ∈ H1
f (Qp, AIl).

Finally, suppose that p W= l is a prime of bad re-

duction. It is easy to check (using Tate curves) that

H1
f (Qp, V Il ) = {0}, so we need to show that resp(dI) = 0.

Let E1(Qp) be the kernel of reduction (mod p). Then

E1(Qp)/lE1(Qp) is trivial, and E(Qp)/E1(Qp) is finite,
so the class of P in E(Qp)/lE(Qp) may be represented
by some l-power torsion point R ∈ E(Qp). (What we
have really done here is just to confirm that the image of

E(Qp) in H1(Qp, Al) is H1
f (Qp, Al) = {0}.) By assump-

tion, R must be a multiple of Q, so it suffices to consider

the case R = Q.

Let πn : E[l
n] ⊗ E[ln] → Sym2E[ln] = AI[ln] be the

projection map, πn(a ⊗ b) = 1
2 (a ⊗ b + b ⊗ a). Choose

S ∈ E[l2] such that lS = Q. Since Q ∈ E(Q), we also
have lSσ = Q for any σ ∈ Gal(Q/Q) (or Gal(Qp/Qp)).
Then resp(c

I) ∈ H1(Qp, AI[l]) is represented by the co-
cycle σ )→ π1((S

σ − S) ⊗ Q). Viewing it as an element
of H1(Qp, AI[l2]) via the natural inclusion, it is repre-
sented by the cocycle σ )→ π2((S

σ − S) ⊗ S) and also
by σ )→ π2((S

σ − S) ⊗ Sσ), since both lS = Q and

lSσ = Q. Expanding out the left-hand factor, adding

these expressions, and exploiting the symmetry of π2, we

see that 2resp(c
I) ∈ H1(Qp, AI[l2]) is represented by the

cocycle σ )→ π2(S
σ ⊗ Sσ − S ⊗ S), which is the image in
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H1(Qp, AI[l]) of [π1(Q ⊗ Q)] ∈ H0(Qp, AIl)/lH0(Qp, AIl).
This implies that resp(d

I) ∈ H1(Qp, AIl) is zero, as re-
quired.

6. EXAMPLES

6.1 Rank Zero with Rational Point of Order 5

We use Cremona’s tables to examine the first 14 semi-

stable strong Weil curves (ordered by conductor N) with

5 N , rank zero and a rational point of order l = 5. We

use his labelling for the curves. There would be too many

to go all the way to N = 7998. “deg” is the 5-part of the

degree of the modular parametrisation. Using Lemmas

3.1 and 3.3, we compute C, defined to be the 5-part of

the product cr of local fudge factors, and using Lem-

mas 4.3 and 4.4, we compute (or bound) D, defined to be

the 5-part of #H0(Q, AI)#H0(Q, AI(−1)). The minimal
discriminant is∆ and “#5-X?” is the order of the 5-part

of X predicted by the Bloch-Kato formula (3—1). Note

that since any bad reduction is multiplicative, dr, which

was defined to be −ordr(j), is also ordr(∆).
Name ∆ C D deg #5-X?

11A1 −115 52 ≥ 52 1 ≥ 1
38B1 −2519 5 5 1 1

57C1 −31019 5 5 1 1

58B1 −21029 5 5 1 1

66C1 2103511 52 5 5 1

118B1 −21059 5 5 1 1

158C1 22079 5 5 1 1

186B1 −253531 52 5 5 1

203A1 −7529 5 5 1 1

246B1 −2253541 53 5 52 1

286D1 −25112135 52 5 5 1

366B1 −253561 52 5 5 1

426A1 −253571 52 5 5 1

537E1 −310179 5 5 1 1

By (3—1), the exponents of 5 in C and #5-X? add

up to the same as those in D and deg. There is no par-

ticular reason to expect elements of order 5 in X, and

in each case the predicted order of the 5-part ofX is 1.

The presence of rational 5-torsion forces #E(Qr)[5] to be
divisible by 5. This produces powers of 5 dividing those

cr such that 5 | dr. These are beautifully balanced by
powers of 5 dividing deg(φ). See especially the example

246B1.

6.2 No Rational Point of Order 5, Modular
Parametrisation Degree Not Divisible by 5

This seems to apply to most curves, and is not

a very interesting case. A random selection of ten is

14A1, 26A1, 38A1, 57B1, 66A1, 69A1, 82A1, 102C1,

122A1, and 138B1. For each of these there is no bad

r such that 5 | dr, hence C = 1. Also, in each exam-

ple there is no congruence ap ≡ 1 + p (mod 5) for all

p 5N (this may be checked using Cremona’s table of

Hecke eigenvalues), so by Lemmas 4.2 and 4.1, we find

that D = 1. Hence, the 5-part of #X is predicted to be

trivial in all these examples.

6.3 5 Dividing Modular Parametrisation Degree

Here are the first nine for which 5 | deg(φ), followed by
the first five for which 52 | deg(φ). As before, we look
only at semistable, strong Weil curves with 5 N .

Name ∆ #E(Q)tors. C D deg #5-X?

46A1 −21023 2 1 1 5 5

66C1 2103511 10 52 5 5 1

67A1 −67 1 1 1 5 5

77B1 −76113 3 1 1 5 5

78A1 −2163513 2 1 1 5 5

89B1 −892 2 1 1 5 5

106D1 −2553 1 1 1 5 5

114B1 223519 2 1 1 5 5

114C1 2203319 4 5 1 5 1

246B1 −2253541 5 53 5 52 1

483A1 −357 · 233 1 5 1 52 5

503C1 −503 1 1 1 52 52

506D1 2511523 1 5 1 52 5

573B1 35191 1 5 1 52 5

In the example 506D1, which has split multiplicative

reduction at 11, we find that 115j = 3313311513/2523 is

not a 5th power (mod 11), so that #E(Q11)[5] is only 5,
not 52 (recall Lemmas 3.1 and 3.3). Also for 506D1, the

reduction at 2 is nonsplit, so #E(Q2)[5] is only 1, not 5.
In several of the other examples, there are primes r of

nonsplit multiplicative reduction such that 5 | dr.
In each of the above examples, since 5 | deg(φ), ac-

cording to (3—1) either C or #X has to be divisible by

5, and it seems that it is sometimes one, sometimes the

other (and sometimes both). In several cases, 5 divides

some dr without there being any rational point of order

5, though not always with the result that 5 divides C,

since the reduction at r may be nonsplit.

Note also that Proposition 2 of [Flach 93] states that

if l > 3 is a prime of good reduction such that the

natural map from Gal(Q/Q) to Aut(E[l]) is surjective,
and if l | dr, (for some bad r such that dr > 0) then

l | deg(φ). He argues that since l | dr, the representation
of Gal(Q/Q) on E[l] is unramified at r. By work of Ribet,
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the modular form f is then congruent (mod l) to some

other modular form, of level dividing N/r. Hence l is a

“congruence prime” and divides deg(φ). The condition

about the image of Gal(Q/Q) is satisfied for semistable
curves not satisfying ap ≡ 1+p (mod l) for all p lN , by

Proposition 21 of [Serre 72]. In particular, it is satisfied

in all the above examples except 66C1. Of course, the

main theorem of [Diamond et al. 01a] applies to all these

examples (except 66C1).

6.4 Positive Rank with Rational Point of Order 5

We examine all semistable strong Weil curves of conduc-

tor N ≤ 8000, with 5 N , rank at least one and a ra-

tional point of order 5. Amazingly, the very last curve

in Cremona’s main table is an example; in fact, it is the

example with the largest value of C in Table 1. At the

end of the table are several examples of larger conductor

(and rank two or three), supplied by M. Watkins. (An as-

terisk signifies rank two, two asterisks signify rank three,

otherwise the rank is one.) He found these using the

parametrisation of elliptic curves with 5-torsion. He has

checked in each case that the curve is not 5-isogenous to

another one with rational 5-torsion. Though all the ex-

amples of conductor N ≤ 8000 are definitely strong Weil
curves, it is not certain that these examples of higher

conductor are. See Section 3 of [Watkins 02] for a discus-

sion of this problem, and Section 1 for his approach to

calculating the modular degree. If some of these curves

are not strong Weil, the numbers in the last two columns

of the table should be multiplied by the 5-part of c2. For

the curves of rank three, that is the analytic rank, which

we assume is equal to the rank of E(Q).
In stark contrast to the examples in Section 6 (rank

zero with a rational point of order 5), here the predicted

order of X is always divisible by 5. This is in keeping

with Theorem 5.1, which always produces a candidate

for an element of order 5 inX, though in 5 out of the 26

rank-one examples the technical conditions of the theo-

rem are not satisfied. For 2651C1 there is no prime r of

multiplicative reduction such that 5 (r − 1). For each
of 302A1, 1717C1, 2786D1 and 2869B1, there is a prime

p (151, 101, 199 and 151 respectively) of bad reduction

such that E(Qp) has a point of order 25.
Looking at the examples of higher rank R = 2 or 3,

it appears that the conditions of Theorem 5.1 are not

merely a technical convenience. For most of these curves,

the theorem produces 5R elements of 5-torsion in the

Selmer group, and the predicted order of the 5-part of

X is at least 5R. But the curve 5302I1 and the curve of

conductor 20042 fail the condition #E(Q11)[5] = 5, and

Name ∆ C D deg #5-X?

123A1 −3541 5 5 5 5

302A1 −215151 5 5 5 5

834G1 −21035139 52 5 52 5

862E1 −220431 5 5 5 5

874E1 2519 · 235 52 5 52 5

1147B1 312375 5 5 5 5

1293E1 315431 5 5 5 5

1479F1 −35175292 52 5 52 5

1526E1 −2575109 52 5 52 5

1717C1 175101 5 5 5 5

2651C1 −115241 52 ≥ 5 52 ≥ 5
2786D1 −2575199 52 5 52 5

2869B1 195151 5 5 5 5

3026D1 −2517589 52 5 52 5

3206E1 210710229 52 5 52 5

3542R1 21075113235 53 5 53 5

4043A1 −135311 5 5 5 5

4774J1 −2157511231 52 5 53 52

4774K1 −2107511 · 31 52 5 53 52

4854C1 −215310809 52 5 52 5

4886F1 −2575349 52 5 52 5

5034E1 −21535839 52 5 53 52

5074D1 −21043559 52 5 52 5

∗5302I1 25115241 53 5 53 5

6782E1 2303391 5 5 52 52

7914F1 −253151319 52 5 52 5

7998K1 −22535313435 54 5 54 5

∗13881 −31075661 52 5 53 52

∗17963 −11 · 23571 5 5 53 53

∗20042 −215115911 53 5 53 5

∗22847 11231 · 675 5 5 53 53

∗42549 351351091 52 5 53 52

∗44878 −2101951181 52 5 53 52

∗53718 21535751279 53 5 54 52

∗86898 −210310752069 53 5 54 52

∗99803 −11 · 435211 5 5 53 53

∗ ∗ 3559178 −25753756871 53 5 55 53

∗ ∗ 12969723 −3513519 · 235761 53 5 56 54

TABLE 1. Positive rank with rational point of order 5.

the predicted order of the 5-part of X is only 5. It is

easy to see in these two cases that the proof of Theorem

5.1 does at least supply 5 elements of 5-torsion in the

Selmer group.

Watkins has also provided me with the following ex-

amples of curves of rank two with a rational point of

order 7.
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Conductor ∆ C D deg #7-X?

513110 −221571373947 73 7 74 72

816310 −2285711741 · 181 73 7 75 73

848370 −22831451428279 73 7 74 72
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