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The Surface Evolver is a computer program that minimizes
the energy of a surface subject to constraints. The surface is
represented as a simplicial complex. The energy can include
surface tension, gravity and other forms. Constraints can be
geometrical constraints on vertex positions or constraints on
integrated quantities such as body volumes. The minimization
is done by evolving the surface down the energy gradient.
This paper describes the mathematical model used and the
operations available to interactively modify the surface.

INTRODUCTION

One of the fundamental problems in the calculus
of variations is to find a surface minimizing some
energy subject to constraints. A soap film on a
wire frame minimizes its area subject to its bound-
ary staying on the frame. A cluster of soap bub-
bles minimizes the total soap film area subject to
enclosing fixed volumes in each bubble. A capil-
lary surface minimizes the gravitational energy of
a fluid in a vessel plus the surface energy of its
free surface and its contact energy with the vessel
walls. Other examples of surfaces are grain bound-
aries in metals, crystal facets, fluid interfaces and
cell membranes [Almgren 1982; Almgren and Tay-
lor 1976]. Naturally occurring surfaces need not be
simply connected, need not be orientable (as in a
Mobius-band soap film) and need not be manifolds
(as in bubble clusters).

The Surface Evolver is an interactive program
for the study of surfaces shaped by surface ten-
sion and other energies. The user specifies an ini-
tial surface, the constraints that the surface should
satisfy throughout the evolution, and an energy
function that depends on the surface. The Evolver
then modifies the surface, subject to the given con-
straints, so as to minimize the energy. The user can
intervene during the evolution, changing the sur-
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face’s properties or applying certain operations to
keep the evolution well-behaved.

The action of the Evolver is meant to model the
process of evolution by mean curvature, which was
studied in [Brakke 1977] for surface tension energy
in the context of varifolds and geometric measure
theory. The energy in the Evolver can be a com-
bination of surface tension, gravitational energy,
squared mean curvature or user-defined surface in-
tegrals. The Evolver can handle complicated topol-
ogy (as seen in real soap bubble clusters), volume
constraints, boundary constraints, boundary con-
tact angles, prescribed mean curvature, crystalline
integrands, gravity, and constraints expressed as
surface integrals.

The main focus of the Surface Evolver is on two-
dimensional surfaces in three-dimensional space,
the so-called soap-film model. The principal data
structures are set up with this in mind, but they
are designed in such a way that the dimension of
the ambient space and of the “surfaces” of inter-
est can be arbitrary. Thus, one-dimensional strings
and higher-dimensional surfaces can also be han-
dled. Moreover, the ambient space can be endowed
with an arbitrary Riemannian metric, and even be
a quotient space under a group action.

The Evolver has a graphical interface that allows
the user to follow the evolution of the surface on
the screen. The graphics can also be output to files
in several formats, including PostScript.

The Surface Evolver is freely available (see “Soft-
ware Availability” at the end of this article) and is
in use by a number of researchers. Some of the
applications of the Evolver so far include model-
ing the shape of fuel in rocket tanks in low grav-
ity [Tegart 1991], calculating areas for the opaque
cube problem [Brakke 1991b], computing capillary
surfaces in cubes [Mittelmann and Hornung] and in
exotic containers [Callahan et al. 1991], simulating
grain growth, studying grain boundaries pinned by
inclusions, searching for partitions of space more
efficient than Kelvin’s tetrakaidecahedra, modeling
the shape of molten solder on microcircuits [Racz
et al.], studying polymer chain packing and clas-
sifying minimal-surface singularities. Section 9 of
this paper gives a proof, based on the use of the
Evolver, that a conjectured area-minimizing cone
in R?* is not area-minimizing.

The strength of the Surface Evolver program is
in the breadth of problems it handles, rather than

in the optimal treatment of some specific problem.
It is under continuing development, and not every
feature is described in this paper. Users are invited
to suggest new features.

This paper gives an overview of the capabilities
of the Surface Evolver so that readers can evaluate
its usefulness in their research and so that users
have a published description to cite. It is not a
substitute for the manual [Brakke 1991a], although
it does mention certain operational details so that
readers can find the corresponding features in the
program or manual.
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1. GENERAL OVERVIEW

As discussed above, the primary concepts in the
Surface Evolver are the surface, the energy func-
tion and the constraints. In this section I briefly
discuss each of these elements, and also the op-
erations available to the user for controlling the
evolution.

1.1. Representing Surfaces

Surfaces have been represented mathematically as
graphs of functions, level sets of functions, images
of maps, measures, simplicial complexes, polyhe-
dral complexes, spline patches, and so forth. Each
way has its strengths and weaknesses. The Surface
Evolver uses a finite-element method, representing
a surface as a union of simplices. This permits
the representation of surfaces like soap films and
bubbles, which may have complicated topologies



and may not be orientable. It allows the specifi-
cation of a surface in terms of a finite amount of
combinatorial and geometric information, the lat-
ter consisting of the vertex coordinates. Many of
the figures accompanying this paper show the com-
ponent simplices.

The Evolver represents a soap-film model surface
as a simplicial complex consisting of vertices, edges
and facets. A vertex is a point, and its principal
attributes are its coordinates. Each edge has a
head and tail vertex, and each facet is defined by
a chain of three oriented edges. In addition, it is
possible to define bodies by giving for each body a
list of oriented facets that make up its boundary. It
is not necessary to have a simplicial decomposition
of the interior of a body, since the Evolver never
attempts to integrate over a body, only over its
boundary. The initial surface is defined in a data
file that lists the combinatorial information (see
Section 8).

The units of measurement are dimensionless. If
the user wishes to model a specific physical prob-
lem, all values should be in one consistent set of
units such as cgs or MKS.

Section 3 describes what is available in the Evol-
ver in terms of alternatives or elaborations to the
basic soap-film model: “surfaces” of arbitrary di-
mension, ambient spaces with an arbitrary Rie-
mannian metric, and so on.

1.2. Energies

Broadly speaking, the energies that the Evolver
minimizes are any quantities that may be expressed
as integrals over the surface. Foremost among them
is surface tension. Soap films and interfaces be-
tween different fluids have an energy proportional
to their area, which can also be regarded as a sur-
face tension, or force per unit length. That is,
across any line in the surface, there is a tension
whose value is the same as the surface energy den-
sity. In the Evolver, the user can specify a value of
the surface tension for each facet.

Another common energy is gravitational poten-
tial energy, which can be written as a surface in-
tegral by means of the divergence theorem. Cap-
illary surfaces may be modeled by including both
surface tension and gravitational energy in the to-
tal energy. For more details, see Section 4.
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1.3. Constraints

Several types of constraints are available in the
Evolver. Vertices may be fixed in place, reflect-
ing the fact that the edge of a soap film should be
attached to a wire. Vertices may be constrained to
lie on smooth manifolds, reflecting the case when
the edge of a soap film should lie on a wall, but
is free to move on the wall. Edges and facets may
likewise be constrained, which simply means that
any vertices generated on them will inherit those
constraints. Bodies may be constrained to have
fixed volumes, as in the case of the volume of the
column of liquid underneath a capillary surface.
Section 5 explains the exact mathematical form of
the various types of constraints.

1.4. Basic Operations

The fundamental operation of the Evolver is the
iteration step, which reduces energy while obey-
ing any constraints. A gradient descent method is
used. The force at each vertex is the gradient of the
total energy as a function of the position of that
vertex. Every vertex is moved simultaneously by
a global multiple of its force. This multiple, called
the scale factor, can either be fixed by the user or
be the factor that optimizes the decrease in energy.
Details of all the options available for the iteration
step are given in Section 6.

Several operations are available for manipulating
the triangulation. Refinement is the subdivision of
each facet into four similar facets, for the better
approximation of curved surfaces. Fquiangulation
readjusts the triangulation of a surface to make the
facets as nearly equilateral as possible. Vertexr av-
eraging moves each vertex to the average position
of its neighboring vertices. These and other oper-
ations, including some that change the topology of
the surface, are more fully described in Section 7.

2. THREE EXAMPLES OF THE EVOLVER IN ACTION
2.1. The Catenoid

The catenoid is the minimal surface whose bound-
ary consists of two parallel rings not too far apart.
It is an extremely simple surface, yet it illustrates
some of the subtleties of evolving triangulated sur-
faces. Stages in its evolution are shown in Fig-
ure 1. The surface in the initial data file consists of
six rectangles forming a cylinder between the two
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FIGURE 1. The evolution of a stable catenoid. Top left: The initial surface. The boundary wire circles are
not shown. The rectangular faces of the data file have been automatically triangulated. Top middle: After one
refinement. Note how the vertices on top and bottom edges follow the boundary wire circles. Top right: After
equiangulation. Note the edges that have switched direction. Bottom left: After iterating fifty times. This
is a saddle point in the area. Bottom right: Ultimate endpoint of iteration, with edges following the lines of

curvature, which are horizontal and vertical.

rings. In general, a data file contains only the min-
imum amount of information needed to correctly
define the topology of the surface. When initially
read in, the rectangles are automatically triangu-
lated into facets (top left). The vertices and edges
on the rings are fixed. The rings themselves are
not shown. With so few facets, the initial surface
cannot shrink, so the user refines the surface (top
middle). Here, only one refinement is done to keep
the facets large enough to be seen easily. Normally
there would be alternating stages of refinement and
iteration. Note that the vertices created by subdi-
viding the edges on the rings are themselves fixed
on the rings. Equiangulation gives the much nicer
triangulation shown top right, by switching the di-
agonals of some quadrilaterals to make the facets
more equiangular. Fifty iterations with optimizing
scale factor result in an area of 6.458483 (bottom
left). At this point, each iteration is reducing the
area by only .0000001, the triangles are all nearly
equilateral, everything looks nice, and the inno-
cent user might conclude that the surface is very
near its minimum. But we are really near a sad-
dle point of energy. Another 300 iterations get the
area down to 6.4336 (bottom right), near the true
local minimum. We know it is a minimum because

iteration produces no change, and the Evolver can
calculate the Hessian matrix to be positive definite.
One can see that the triangulation really wants to
be twisted around so that there are edges following
the lines of curvature.

If the two rings are too far apart, the neck of the
catenoid will shrink down to a point, as shown in
Figure 2. Upon iteration, the neck forms a ring of
very short edges (top middle). These edges can be
removed by identifying their endpoints, in a step
(taken by the user) known as tiny-edge weeding
(§7.5). This produces a single vertex at the neck
(top right). The Evolver can recognize the topol-
ogy around the neck vertex as improper for a soap
film and split the vertex into two (bottom left),
when instructed to do so by the user. This is called
vertex popping (§7.7). The two parts of the sur-
face then quickly collapse to disks (bottom right).

2.2. Capillary Surface Meeting a Wall

Figure 3 shows the evolution of an example where
we use constraints and varying surface tension to
model a surface meeting a wall at a given contact
angle—here 60 degrees. This is the situation for a
capillary surface, but this example does not include
volume constraints or gravity.
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FIGURE 2. The evolution of an unstable catenoid. The neck pinches down to a point, and the surface splits

into two pieces.

The initial configuration is shown on the left.
The fluid surface is the light gray horizontal sur-
face, which has one edge movably attached to the
dark gray vertical wall. The junction of the surface
and wall consists of edges belonging to both surface
and wall facets. We give the wall facets half the
surface tension of the surface facets, so the equi-
librium contact angle is 60 degrees (0.5 = cos 60°).
All vertices on the wall are constrained to stay in a
vertical plane. The three vertices at the top of the
wall are fixed in place, as are the vertices of the
surface on the edge opposite the wall. The two lat-
eral sides of the surface and wall are constrained to
lie in vertical planes (not shown) perpendicular to
the wall. These planes contain no facets and con-
tribute no energy, so the equilibrium contact angle
is 90 degrees.

After several iterations (center left), the con-
tact line has moved up the wall, seeking the equi-
librium contact angle. The shrinking of the wall
facets more than offsets the stretching of the sur-

face facets. The interior vertices of the wall do not
move, since there are no net forces on them. This
can give rise to problems if the contact line over-
runs interior wall vertices, as is about to happen.
At this point, the user must intervene to adjust the
triangulation, using vertex averaging, after which
(center right) the contact line can continue to move
up the wall. The final equilibrium state consists of
a plane surface (far right).

The wall facets serve two purposes: to gener-
ate the correct contact angle and to help visual-
ize the surface. But they also are the source of
problems as the surface moves up the wall, requir-
ing repeated vertex averaging. They occupy more
computer memory and calculation time than nec-
essary. It is possible to omit them. In §4.5 I show
how to use edge integrals to compute the equiva-
lent energy of the facets. The visualization func-
tion could be served by having fixed facets on the
wall that do not participate in the calculations and
do not refine.
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FIGURE 3. Capillary surface making contact with a wall. Left: The initial surface. The facets on the vertical
wall (darker shading) have surface tension 0.5, while the ones on the horizontal free surface have surface tension
1.0. Thus the equilibrium contact angle is 60 degrees. The free surface is bounded by a fixed wire in front and
plane constraints on either side. Center left: After some evolution, the free edge has crept up the wall. The
dashed lines indicate the original position. Note that several wall facets are getting very narrow, which will
soon cause problems in the evolution. Center right: After vertex averaging, the free edge has more room to
migrate without overrunning vertices. Right: The final equilibrium surface.

2.3. Grain Growth

When liquid metal solidifies, crystallization gener-
ally starts at many nuclei, with random orienta-
tions. The crystal lattices are mismatched where
the grains meet, and the atoms along the grain
boundaries are in a higher energy state than inte-
rior atoms. To a good approximation, the energy
is independent of the orientation of the boundary.
In the process of annealing, the metal is warmed
enough for boundary atoms to switch from one lat-
tice to the next through thermal motions, and the
boundaries migrate at a rate proportional to their
curvature, assuming that impurities or other ob-
stacles do not interfere.

Figure 4 shows this process for a two-dimen-
sional metal in a unit flat torus that initially crys-
tallizes from 100 random nuclei, resulting in an ini-
tial grain configuration of 100 Voronoi cells (top
left). The ultimate product of evolution consists

of four unequal hexagonal grains. A video of the
evolution is available in [Brakke 1992b].

Modeling the dynamics of the evolution requires
using a fixed scale factor (the time step) much
smaller than the optimizing scale factor. Here,
a time step of 5 x 107% was used. The Evolver
has several features used to automate the evolu-
tion, including automatic topology changes in the
string model. With a feature called autopopping,
any edge whose length is projected to become less
than a critical length is deleted and any resulting
improper vertices are popped. The critical length
is automatically set to the critical length for insta-
bility described in §6.4, which works out to 0.003
here. Only edges whose lengths are decreasing are
tested, so the very short edges generated by vertex
popping will not be eliminated. With autochop-
ping, edges that become longer than a chosen cut-
off length of 0.015 are automatically subdivided.

FIGURE 4. The evolution by mean curvature of 100 Voronoi cells in a two-dimensional flat torus. The time
step is 5 x 1076, From left to right: The initial configuration; configuration after 200 steps, still with 100 cells;
after 1600 steps, with 60 cells left; and after 5000 steps, with 28 cells left.



3. SURFACE MODELS

This section describes several variations on the ba-
sic soap-film model discussed in §1.1.

3.1. One-Dimensional “Surfaces”: The String Model

The “surface tension” can be declared to reside in
edges instead of facets. The surface then becomes
a network of elastic strings, hence the term string
model is applied to this mode of operation. The
strings may reside in a space of any dimension,
but if the domain is two-dimensional, the strings
may bound regions. In this case, a region is defined
with a facet structure and a body structure. The
facet may have any number of sides. The body
has just one facet on its boundary. The effect is to
stretch the string network into a cylindrical surface
of height 1, whence the mechanisms for surfaces
can be applied with minimal changes. The grain
growth example in § 2.3 uses the string model.

3.2. Quadratic Model

In an attempt to approximate curved surfaces bet-
ter than by flat facets, there is a mode in which
each facet is a quadratic spline patch. A midpoint
is added to each edge, giving a total of six control
points. Each coordinate is then quadratically inter-
polated from these six points to form the surface.
An edge becomes a curve that depends only on the
control points on the edge, thus guaranteeing that
neighboring facets meet without a gap. The disad-
vantages of the quadratic mode are that it is slower,
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surface area is calculated approximately by numer-
ical integration, facets are displayed as if flat, and
some Evolver features are not implemented.

3.3. Higher-Dimensional Surfaces

Higher-dimensional surfaces cannot be represented
by the basic vertex—edge—facet scheme. There is
a mode of operation in which the facets making
up the surface are represented directly as simplices
(vertex lists). This permits a surface of arbitrary
dimension in a space of arbitrary dimension. How-
ever, many features are not yet implemented for
this mode.

3.4. Quotient Spaces

The ambient space can be a quotient space of R"”
under some symmetry group. The vertex coor-
dinates are taken to be in a fundamental region,
and each edge is marked with a group element
to tell how its head vertex should be transformed
(wrapped) relative to its tail. The user invents an
integer representation for the group elements to be
used in marking edges. The flat torus quotient
space is built-in, and can be specified in the data
file in terms of the fundamental parallelepiped and
the wraps of the edges. Other quotient spaces re-
quire the user to write C-language functions that
handle group transformations and compositions.
The display of a surface in a quotient space poses
some interesting problems, since the display space
is Euclidean. The Evolver offers three options, two
of which are illustrated in Figure 5, which shows

FIGURE5. Two of Kelvin’s tetrakaidecahedra in a flat torus. The fundamental region is a unit cube. Left: The
surface plotted as the boundaries of connected bodies. Right: The surface clipped to the fundamental region,

a unit cube.



148 Experimental Mathematics, Vol. 1 (1992), No. 2

a surface in a flat three-dimensional torus whose
fundamental parallelepiped is a unit cube. The
three options are:

Raw facets. Fach facet is displayed as it is located
in the fundamental domain. Location is based
on the first vertex in the facet, with other ver-
tices being unwrapped as needed.

Connected bodies. All facets on the boundary of
each body are gathered in a list. One point
is chosen as a base point, and unwrapping of
vertices spreads out from neighbor to neighbor
facet until the entire body surface is done. This
nicely displays each logical body as a unit. An
example is shown in Figure 5 (left).

Clipping. For a torus domain, each facet is clipped
to the fundamental parallelepiped. Pieces lying
outside are wrapped around so they lie inside.
This option clearly shows the fundamental do-
main and how it wraps around. An example is
shown in Figure 5 (right).

The surface shown in Figure 5 bounds two tetra-
kaidecahedra. Lord Kelvin [Thompson 1987] con-
jectured that the optimal way to partition space
into equal-volume cells with least area is a packing
of very slightly curved tetrakaidecahedra. Several
people (including the author) have used the Evol-
ver in attempts to beat Kelvin’s partition, but no-
body has succeeded yet.

3.5. Background Metric

The ambient space can be endowed with a Rie-
mannian metric. Only one coordinate patch is al-
lowed, but quotient spaces are possible. Basically,
the Evolver operates as usual in Euclidean coordi-
nates, except that the metric is used for the calcu-
lation of edge lengths and facet areas. Edges are
not taken to be geodesics, nor are facets geodesic
surfaces; rather, they keep their Euclidean shape.
Surfaces are displayed as if their coordinates were
in Euclidean space.

An example using a metric is given in Section 9.
Other possible ways to use a metric are: modeling
a cylindrically symmetric surface by means of the
string model, and implementing a spatially varying
scalar surface energy, as in a surface whose own
weight is not negligible.

The metric need not be positive definite. One
can do minimal surfaces in a Minkowski metric,
but it takes a little care.

3.6. Internal Representation

Each geometric element (vertex, edge, facet, body)
is implemented as one data structure. An element
is stored as an oriented entity, but may be referred
to with this orientation or the inverse one. There
is a data type element_td that contains a pointer
to an element structure and a relative orientation
(normal or inverted). This type is used for all refer-
ences to elements. The connectivity of the surface
is specified by having links in each element struc-
ture to the next higher- or lower-dimensional ele-
ments it intersects. One design principle followed
is that each element should contain links to a fixed
number of other elements. Thus the body struc-
ture does not record bounding facets itself; rather,
the facet structure has two slots to record which
body (if any) is on each of its sides.

The surface connectivity is completed by intro-
ducing facet-edge structures, which are a simpli-
fication of the scheme described in [Dobkins and
Laszlo 1987]. A facet-edge structure contains links
to a facet and an edge on the facet’s perimeter
(with proper boundary orientation), plus links to
the previous and next facet-edges around the facet
and to the previous and next facet-edges around
the edge. This permits a quick run-through of all
facets containing a given edge, and also the rep-
resentation of facets with an arbitrary number of
sides, which is necessary in certain situations.

4. ENERGIES

This section describes the various forms of energy
that may be combined into the Evolver’s total en-
ergy function.

4.1. Surface Tension

Soap films and interfaces between different fluids
have an energy proportional to their area. In the
Evolver, each facet has a surface tension of 1 un-
less otherwise specified. Different facets may have
different surface tensions. It is possible to endow
both facets and chosen edges with tension in or-
der to model surfaces where singular curves have
energy, as in [Morgan|.

Contact angles between free surfaces and walls,
as in capillary problems, can be specified by intro-
ducing facets that are confined to the wall and have
a different surface tension, as in the wall example
in §2.2. Negative tensions are allowed, so that all



contact angles are possible. However, this method
has the drawback that a moving free boundary on
the wall can overrun wall facets, as shown in Fig-
ure 3. Another method of prescribing contact an-
gles, described in §4.5, uses edge-energy integrals.

There is no general mechanism yet to include
the integral over the surface of a general scalar in-
tegrand that may depend on position and tangent
plane orientation. However, the use of a Rieman-
nian metric on the ambient space can often achieve
the same effect.

4.2. Crystalline Integrands

The Evolver can model energies of crystalline sur-
faces. A crystalline surface energy density depends
on the direction of the normal vector to the sur-
face. Such a quantity is known as a crystalline
integrand [Taylor 1983; 1988]. The energy density
in this case is given by the largest dot product of
the surface normal with a set of vectors known as
the Wulff vectors. Surface area can be regarded
as a crystalline integrand with respect to a set of
Wulff vectors coinciding with the unit sphere. In
the Evolver, a finite set of Wulff vectors may be
specified, and the corresponding crystalline energy
computed.

A surface can have either crystalline energy or
surface tension, not both.

4.3. Surface Integrals

A facet may contribute an energy resulting from in-
tegrating a vector field over the facet as a surface
integral. Multiple vector fields may be defined in
the data file as functions of the coordinates, and
any facet may use any number of them. Besides
surface energies, surface integrals can be used to
handle volume energies, such as gravitational en-
ergy, thanks to the divergence theorem. Integrals
are calculated numerically using Gaussian quadra-
ture.

4.4. Gravity

A body B having density p contributes its gravi-
tational energy to the total. The acceleration of
gravity G is under user control. The gravitational
energy is defined as

B=Gp[[[ zav.
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but is calculated by the divergence theorem as

22 o
E:Gp// 2 .S,
oB 2

The integral is taken over each facet that bounds
a body. If a facet bounds two bodies of different
densities, the appropriate difference in density is
used. Vertical facets or facets lying in the plane
z = 0 make no contribution and may be omitted
if they are not needed otherwise. Facets lying in
constraints may be omitted if their contributions
to the gravitational energy are contained in edge
energy integrals.

Gravity is a special case of a surface integrand,
but it is implemented internally for several reasons:
it can be evaluated exactly without numerical in-
tegration; it is common enough to be worth saving
the user the trouble of setting it up; and, in general,
evaluation of user-defined integrand expressions is
slower than that of compiled-in energies.

The built-in gravity does not apply to Rieman-
nian metrics or quotient spaces; users must define
their own gravitational energy integrands in such
cases.

Gravity applies to bodies, not surfaces. Surfaces
are weightless. If one does want heavy surfaces,
one can use the metric mechanism to simulate a
scalar surface integrand.

4.5. Edge Integrals

An edge may contribute an energy resulting from
integrating a vector field over the edge as a line
integral. An edge integral can be associated with a
constraint: it then applies to every edge subject to
that constraint. The objective of this is to let the
free edges of a surface have energy. This is useful
in controlling the contact angle of a surface on a
wall. As mentioned in §4.1, the contact angle can
be specified by giving an energy density to the wall
on one side of the surface edge. Alternatively, an
edge integral can be defined that gives an energy
equivalent to the wall energy, thanks to Stokes’
Theorem. This eliminates the need to coat the wall
with facets. Likewise, edge integrals can be used to
replace other facet energies, such as gravitational
energy, for facets on constraints.

An edge integral is evaluated once for each edge
associated with it—regardless of how many facets
it is on—using the orientation inherited from the
data file.
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4.6. Prescribed Mean Curvature and Pressure

For an equilibrium surface with a constant sur-
face tension, the mean curvature is proportional to
the pressure difference across the surface. There-
fore, prescribing the mean curvature is equivalent
to prescribing the pressure difference. The Evolver
permits the user to prescribe pressures in bodies.
Pressure can be defined as the rate of change of en-
ergy with respect to volume, so the pressure feature
is implemented by having each body with a pre-
scribed pressure P contribute energy £ = —PV,
where V' is the actual volume of the body. The
energy is actually calculated by a surface integral

E:—P// 2k-dS.
0B

The desired surface need not really be the entire
boundary of a body; it may have fixed edges. The
energy contributed by the omitted boundary is con-
stant and so does not affect the shape of the sur-
face.

This method will only work if the desired surface
is stable at the prescribed pressure. If curvature
decreases as volume increases, the surface will ei-
ther blow up or implode. For example, if a round
soap bubble of surface tension 71" and initial ra-
dius Ry is prescribed to have pressure P > 27T/ R,
the pressure force will cause the bubble to expand.
This reduces the curvature, so the pressure can
never be balanced by the curvature, and the bubble
expands indefinitely.

4.7. Squared Mean Curvature

There are circumstances under which one wants
the energy to include the integral over the sur-
face of the squared mean curvature. Surfaces that
minimize this integral are called Willmore surfaces.
This presents a problem, in that, for our piecewise
linear surfaces, the mean curvature (in the form
of first-variation measure) is singular and concen-
trated on the edges. Its square integral is therefore
always infinite. However, it is possible to come up
with a usable approximation. An average mean
curvature around each vertex can be calculated,
and the integral of the square of this average can
be counted as energy.

The definition of mean curvature used here is
a variational one, and corresponds to the aver-
age of the sectional curvatures rather than their

sum. The integral of squared mean curvature in
the soap-film model is calculated as follows: Each
vertex v has a star of facets around it of total area
A,. The force on the vertex is

- A
F 94,

v = .
ov

Mean curvature is proportional to force per unit

area. Since each facet has three vertices, the area

associated with v is %Av. Hence the average mean

curvature at v is taken as

- 3F
hv = ___11’
24,

and this vertex’s contribution to the total integral
: 3 F?
172 v
Ev = §h,7jAv = 4A,U
E, can be written as an exact function of the vertex
coordinates, so the gradient of F, can be fed into
the total force calculation.

The alternative to locating curvature at vertices
is to locate it on the edges, where it really is, and to
average it over the neighboring facets. But this has
the problem that a least-area triangulated surface
would have nonzero squared curvature, whereas in
the vertex formulation it has zero squared curva-
ture.

Squared mean curvature is also implemented for
the string model, but not for quadratic models. In
the string model, let L, be the sum of the lengths
of the edges adjacent to v, so the force on a vertex

. oL
Fo=_22
ov

Each edge has two endpoints, so the length associ-
ated with v is %LU, the curvature is

2F,

L,’
and the vertex’s contribution to the total integral
is

hy, =

2F?
E,=iR’L, = =,
v Lv

2

4.8. Gaps

Consider a soap film spanning a circular wire. The
Evolver must approximate this surface with a col-
lection of facets, as shown in Figure 6. The straight
edges of these facets cannot conform to the curved



FIGURE6.

Surface in a ring, showing the gap prob-
lem. Left: The initial surface. The vertices are free
to move along the boundary wire. Right: After
one iteration, the gaps have grown and the surface
area has shrunk.

wire, so the computed area of the surface leaves out
the gaps between the outer edges and the wire. If
the vertices are free to move along the wire, but
not off of it, the Evolver will naturally try to min-
imize area by moving the outer vertices around so
that the gaps increase, which is what is happening
in Figure 6. This is not good. Sometimes the ver-
tices can be fixed on the wire, but at other times
this is not possible, for example, when the sur-
face is spanning the inside of a cylinder and the
edge of the surface is free to move on the cylinder.
Therefore, there is provision for a “gap energy” to
discourage growing gaps. A constraint of the type
defined in § 5.1 may be declared convez in the data
file. For an edge on such a constraint, an energy is
calculated as
E =3kl = Qll,

where S is the edge vector and Q is the projection
of the edge tangent to the constraint at the tail
vertex of the edge. The global constant & is called
the gap constant. A gap constant of 1 gives the
best approximation to the actual area of the gap.
A larger value of k£ minimizes gaps and gets vertices
nicely spread out along the wire.

Another way to handle gaps is to define an edge
integral (see §4.5) that is zero on the constraint
and positive on the convex side of the constraint.
Edge integrals are evaluated on interior points of
the edge, so the bigger the gap, the bigger the in-
tegral. This encourages the edges to be of equal
length.

Of course, the introduction of any additional en-
ergy component changes the problem slightly. But
the gap energy decreases quadratically with the
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fineness of the triangulation, and so should not
change the solution significantly. By changing the
constant associated with this energy, one can see
whether the problem is being significantly altered.

In actual practice, gap energy is seldom used
with a wire boundary, since it is much simpler just
to declare the vertices on the wire fixed. The real
use for gap energy comes with surface edges on
walls, where the vertices cannot be fixed.

5. CONSTRAINTS

Energy minimization takes place subject to con-
straints of two types: constraints on the motion
of vertices and counstraints on the value of surface
integrals. Vertices can be individually constrained
by declaring them fixed, by confining them to level
sets of functions (this is Evolver’s narrow meaning
of the term constraint), or by defining their posi-
tion in terms of parameters (Evolver boundaries).
Surface integrals in general are called quantities,
and the particular case of body volumes is imple-
mented internally.

5.1. Level-Set Constraints

A vertex may be confined to the zero level set of
one or more functions. Such a function is called
a constraint in Evolver terminology. In this pa-
per, it should be clear from the context when the
term constraint is used in this narrow sense and
when in the broader mathematical sense. The de-
fault is the narrow sense. Constraint functions are
defined by the user in the initial data file, and num-
bered for reference. Vertices may be declared to be
on one or more constraints simultaneously, but it
is the user’s responsibility to ensure that the con-
straint function gradients at a vertex are linearly
independent. There are also one-sided constraints;
this means that a vertex is restricted to the region
where the constraint function has nonnegative (or
nonpositive) values.

When a vertex is moved for whatever reason,
Newton’s method is used to project it back to its
constraints. There is a global constraint tolerance
parameter that the user can set in order to control
the accuracy of constraint satisfaction. The coor-
dinates of a vertex in the initial data file do not
have to satisfy its constraints exactly; the vertex
will be automatically projected. A vertex on con-
straints may also be declared fixed, which means



152 Experimental Mathematics, Vol. 1 (1992), No. 2

that it will not move after its initial projection. If a
constraint is modified during runtime by changing
an adjustable parameter, all vertices are projected
again so as to satisfy the new constraint.

Edges and facets may be declared to be on con-
straints. This means that all vertices generated by
subdividing them will be on the same constraints.

A single constraint is the best way to attach a
free edge of a surface to a wall. Two constraints
confine a vertex to a curve; but if a one-dimensional
wire is desired instead of a two-dimensional wall,
it may be better to use the parametrized boundary
feature described below.

5.2. Boundaries

Evolver boundaries are one- or two-dimensional pa-
rametrized manifolds; they are an alternate way to
constrain the position of vertices. A vertex on a
boundary cannot also have constraints. Vertices,
edges and facets may be deemed to lie in a bound-
ary. For a vertex, this means that the fundamental
parameters of the vertex are the parameters of the
boundary, and its coordinates are calculated from
these. When a vertex on a boundary moves, the
motion is projected back to parameter space and
applied to the parameters. Edges and facets on
a boundary bequeath the boundary to descendant
vertices.

A delicate question is how to deal with wrap-
arounds on a boundary such as a circle or cylinder.
Subdividing a boundary edge requires a midpoint,
but taking the average parameters of the endpoints
can give nonsense for an edge where the parameter
value is discontinuous. Therefore the average co-
ordinates are calculated, and the resulting point is
projected on the boundary parameters as contin-
ued from one endpoint. The rings in the catenoid
example in § 2.1 are represented as one-parameter
circles and show a case where the endpoint extrap-
olation is necessary in the refining operation.

A general guideline is to use constraints for two-
dimensional walls, and boundaries for one-dimen-
sional wires. If one uses a boundary wire, the ver-
tices and edges on the boundary can probably be
declared to be fixed. Then the boundary becomes
just a guide for refining the boundary edges.

5.3. Quantities

A quantity in the Evolver is a value that can be ex-
pressed as the sum of integrals of vector fields over

surfaces and edges. Quantities can be evaluated
for informational purposes, or they can be used as
constraints (in the mathematical sense). Body vol-
ume is an example of a built-in quantity. Surface
area is not a quantity in this sense, since it cannot
be written as a vector integral.

User-defined quantities are supported—for ex-
ample, one might use as quantities the center of
mass, the moment of inertia, the magnetic flux,
and so on. The key in many of these cases is the di-
vergence theorem, which permits volume integrals
to be written as surface integrals. One can also
use a quantity in place of a body volume that is
awkward to handle with the built-in volume mech-
anisms, as when a background metric is used.

Each quantity is specified in the data file by the
surface integrand and the facets it is to be inte-
grated over, plus the edge integrand and the edges
it is to be integrated over. A quantity acts as a
mathematical constraint when it is declared fixed
and given a specified value. Its actual value may
be displayed and its target value changed inter-
actively. Quantities have the same mathematical
form as the surface and edge energy integrals dis-
cussed in Section 4, but they are used for con-
straints or information rather than as part of the
objective function.

5.4. Volumes

The term wvolume is used here for the highest-di-
mensional measure of a region in n-space: area in
R?, volume in R3, etc. A body may have a volume
specified in the data file, which then becomes a
volume constraint. The volume of a body B can

be written as
V= / / / L4V,
B

which by the divergence theorem can be written a
surface integral:

V:// 2k - dS.
oB

This integral is evaluated over all the boundary
facets of a body.

The part of the boundary of a body lying on a
constraint need not be given in terms of facets. If it
is not, the user can use Stokes’ Theorem to convert
the part of the surface integral on the constraint
to a line integral over the edges where the body



surface meets the constraint. The line integrands
are given as part of the constraint definition in the
data file. These edge volume integrals can also be
used to overcome the volume calculation problems
caused by the gaps between curved constraints and
flat facets.

Volumes are a special case of quantities, and
are implemented internally for Euclidean space and
flat torus domains only. In general quotient spaces
or in Riemannian metrics, it is up to the user to de-
fine volume constraints by using the general quan-
tity constraint mechanism.

5.5. Volumes in a Torus Domain

The volume of a body can be automatically calcu-
lated in a torus domain, but the wrapping of the
edges across the faces of the fundamental region
makes the calculation tricky. Ideally, we would like
to adjust the vertices by multiples of the fundamen-
tal region basis vectors to get a body whose volume
we can find with regular Euclidean methods. Un-
fortunately, all we know are the edge wraps, that
is, the differences in the adjustments to endpoints
of edges. But this turns out to be enough if we are
careful with the initial volumes in the data file.
Let the facets of a body be indexed by m, and let
Umi, for © = 0, 1,2, be the vertices of facet m. Let
A be the (unknown) vertex adjustment for vertex
Upni, and T, the (known) wrap vector (difference in
endpoint adjustments) for edge i of facet m. Then

V= % Z(ﬁmo + gm()) - (17m1 + gml) X (’UmZ + ng)

facets m

= %(S1+52+53+S4), (5.1)
where

Sl = E Um0 * Um1 X U2,
facets m
/ —
Sy = E Umo * Um1 X Ama,
facets m
/ — —
S3 = § Umo - Aml X Am27

facets m

Sy = Z Emo : A;nl X me2-

facets m

In S, and S3, the notation Z' means that each
facet is included three times in cyclic permutation,
once with each vertex as base point.
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The first of these sums is straightforward. The
second sum can be regrouped with one term for
each edge j, pairing the two facets j and j’ for
each edge together:

52 = E Vjo - Vj1 X Ajg + Vj1 - Vjo X Aj/g

edges j
= > o x (A — Ajn)
edges j
T
= Y o T x 5 Tz + Tin = Tjz = Tjn).-
edges j

We can regroup this into a sum that can be done
facet by facet, each facet appearing three times:

1 o N - -
Sy = 2 Z Tmo * U1 X (D1 — Tin2)-
facets m
In S5 we group terms with a common vertex to-
gether, with the inner facet sum over facets with
vertex k as base vertex:

S3 = Z (@ : Zz‘fﬂ X En)

vertices k facets ¢

_ (Uk.z(jﬂ_,i’k)x (jiz—,afk))

vertices k facets ¢

= Z <6k : ZTio X —Ti2>
vertices k facets ¢
/ - -
= Z 17717,0 . ng X Tm07
facets m

which again can be done facet by facet. The step
introducing Aj is valid, since the A;; are just a
relabeling of the A;», and so ), A;1 =), Ajps.

The sum S, is a constant, and so only needs to
be figured once. Also, it is an integer multiple of
the fundamental region volume V,, so its contribu-
tion to the body volume is a multiple of %Vc, by
equation (5.1). Therefore, if we assume that the
volume prescribed in the data file is within 1—12Vc of
the actual volume, we can calculate the other sums
and figure out what the fourth sum should be.

The body volume gradient at vertex v can be
easily found from the above sums, since the base
vertex is dotted with other terms. The gradient is
a sum over all facets with base vertex v:
(Z—‘,: = é Z (gml X Umg

facets m on v

+ %Uml X (fml - fm2) + z__;mZ X me) .
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6. ITERATION

The heart of the Evolver is the iteration step that
reduces energy while obeying any constraints. The
surface is changed by moving the vertices. No
changes in topology or triangulation are made. The
idea is to calculate the force at each vertex and to
move the vertex in that direction, thus using a gra-
dient descent method of minimization.

6.1. Force Calculation

The first iterative step is the calculation of the
forces on the vertices. The total energy of the sur-
face is viewed as a function of the coordinates of
the vertices. The negative gradient of the energy
as a function of the position of a single vertex gives
the force on that vertex. Collectively, all the forces
on all the vertices make up the negative of the total
gradient of energy. No new approximations are in-
troduced by the force calculation; the energy may
not be exact due to numerical integrations, but the
gradient is the exact gradient of the approximate
energy.

Vertices on constraints have their forces projec-
ted to the tangent spaces of the constraints. Ver-
tices on boundaries have their forces mapped back
to forces on the boundary parameters. Fixed ver-
tices have their forces set to zero.

6.2. Volume and Quantity Constraints

The second iterative step is to enforce constraints
on body volumes and other integrated quantities.
It has two parts. The first part consists of cor-
recting for any errors in the current values of the
quantities. The second part consists of project-
ing the vertex forces to be orthogonal to the quan-
tity gradients. Both parts use the gradients of the
quantities as functions of the vertices. Let va be
the gradient of quantity k as a function of the po-
sition of vertex v. These gradients are projected
on constraint level sets or boundaries or are set to
zero in the same manner as forces.

The value correction consists of applying a single
step of Newton’s method. Let the current excess
value of quantity k be d;, (which may be negative,
of course). We assume that the correcting motion
ﬁv at vertex v is of the form

Rv = Z Ckak
k

and satisfies

zﬁv . va = —§,, for each k.

This leads to the following linear system for the ¢;:

Z C Z va . val = —0, for each quantity k'

k v

This system is solved for the ¢, and hence for the
motions Rv. The motion is not carried out imme-
diately, but as part of the overall motion described
below. The quantity values are not perfectly cor-
rected by this step, but over several iterations they
should converge to the target values.

The second part is the projection of the forces.
Let ﬁv be the total force at vertex v. We want a
projected force ﬁ; of the form

FZ = F;, — Zakak
k
such that
Z FZ W, =0 for each quantity k,

which leads to the following linear system for ay:
ZakZva ' va’ = Zﬁv : va’
k v v

for each quantity k’. The coefficients a; are the
Lagrange multipliers for the quantity constraints,
and can be interpreted as pressures for body vol-
ume constraints. Whenever the user asks for body
volumes to be displayed, these pressure values are
also shown.

6.3. Motion

Each vertex is moved by the quantity correction
motion plus a scale factor times the force at the
vertex. The scale factor is a global constant, the
same for all vertices. Its physical interpretation is
the time step over which the velocity acts. The
user may set the scale factor explicitly or let the
Evolver seek the optimal value. In the latter mode,
the Evolver will successively double or halve the
scale factor until a minimum in energy is bracketed.
Then quadratic interpolation is used to estimate
the optimum scale factor, and that value is used in
the final motion.

Each time a motion is done, all vertices on con-
straints are projected back to their constraints by



repeated application of Newton’s method, until the
constraint function value is smaller than a con-
straint tolerance factor, which the user may set.
If vertices subject to one-sided constraints are on
the wrong side of the constraint, they are projected
to the counstraint. If such a vertex wants to move
to the proper side of the constraint, it is freed from
the constraint.

From experience, it seems that, for two-dimen-
sional surfaces driven by surface tension, the op-
timum scale factor is around 0.2, independent of
the fineness of the triangulation, as long as the
surface is evolving without problems. The univer-
sality of the scale factor is expected in this case,
since the scale factor is unitless in length for two-
dimensional area only. When the scale factor dives
toward zero, this usually signifies some impend-
ing problem, like an edge length or a facet area
becoming zero. Unfortunately, the value 0.2 ap-
plies best to minimizing area; other models, such
as the string model and squared mean curvature,
have “normal” scale factors that vary with trian-
gulation size and other factors, so it is hard to tell
when the surface is evolving properly and when
it is getting into trouble. In these circumstances,
other methods have to be used, such as monitoring
the surface visually and checking edge length and
facet area histograms.

6.4. Motion by Mean Curvature

The mean curvature vector field & of a surface S is
defined to be the gradient of the area of S, in the
sense that if S is deformed with an instantaneous
velocity u, the rate of change in its area is

%z//ﬁ-ﬁd/l.
dt S

By definition, @ = —h under motion by mean cur-

vature, so that
dA
— = —// h* dA. (6.1)
dt s

By default, the gradients of quantities like energy
and volume are calculated simply as the gradient of
the quantity as a function of vertex position. This
gives the force on a vertex, for example. But to
simulate motion by mean curvature, it is necessary
to have force per area instead. In the triangulation
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formulation, let A, be the area of the star of facets
around vertex v and let

dA ) B
T Zu(v) -—F,.

Take the area associated with a vertex to be one-
third of the total areas of the facets surrounding
the vertex, dA = %Ay. Since each facet has three
vertices, this allocates all area. Hence, as the ap-
proximation to i_i, we take

3E,

h, = —=".
v Av

If the Evolver is operated in “area normalization”
mode, the vertex motions are calculated using this
formula. In this mode, the user should set the scale
factor, which is the timestep for the evolution, to
a constant small enough for the iteration to be a
good approximation to the continuous evolution.
Using an optimizing scale factor makes the time
step too large.

The string model is more amenable to close scru-
tiny of how the Evolver does motion by mean cur-
vature. In §2.3 an example was given of grain
boundaries evolving in two dimensions. In approx-
imating motion by mean curvature, there are two
discretizations that must be made, in space and
in time. The space discretization here consists of
representing the grain boundaries as a set of line
segments, and the time discretization consists of
the iteration steps. There is an intermediate stage
of discretization, namely, the continuous time evo-
lution of the discrete segments. The equation of
motion for this problem has been chosen to approx-
imate the fully continuous problem in the following
respect. T'wo-dimensional grain evolution has the
property that the rate of change of area of a grain
depends only on the number of its sides. If h is the
mean curvature of the boundary of a grain G, so
that each point on the boundary moves with ve-
locity —E, the rate of change of area of the grain

is
%:/ —hds:—/ d—ads:—/ do.
dt oG oG ds oG
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The total turning angle around the boundary of
a grain is 2w, but each triple vertex contributes a
turning angle of 7/3, so that

da _ (N —6)=

dt 3
for an N-sided grain. The space-discrete, time-
continuous problem preserves this property. The
motion of each vertex is such that the change in
area of the grain due to the motion of that vertex
is proportional to the turning angle at that vertex
(or to the excess turning angle at triple vertices).

A property that is not exactly preserved is that

the rate at which work is performed as area is swept
is proportional to the rate of length loss,

M: U-ﬁds:/ thSZ—%.
dt PYe oG dt

The last equality is the string version of equation
(6.1). To preserve this property would require solv-
ing a system of linear equations linking together
the motions of all the vertices.

The space-discretized evolution is guaranteed to
be dissipative, but the time-discretized evolution
can suffer from instabilities. Consider a boundary
made up of segments of length L zigzagging about
a straight midline with small amplitude y. The ve-
locity of a vertex will be 4y/L?, and if the time step
is At, the amplitude will grow if 4yAt/L* > 2y.
Hence the maximum timestep allowable is At =
L?/2, or, conversely, the minimum edge length is
L = +/2At. Exact damping of the zigzag occurs
when At = L?/4.

6.5. Conjugate Gradient

For minimizing a quadratic function, the technique
known as the conjugate gradient method [Press et
al. 1988, §10.6] is far more efficient than gradient
descent. With exact arithmetic, it minimizes an
n-dimensional quadratic function in at most n it-
erations. This method does not follow the gradient
downhill, but makes an adjustment using the past
history of the minimization.

The Evolver uses the Fletcher—Reeves variant of
the conjugate gradient method. At iteration step
i, let S; be the surface, F; its energy, F‘Z(v) the
force at vertex v as described above, and i_ii(v) the
“history vector” of v. Then

Ez(v) = ﬁz(”) + ’Yﬁz’—l(”);

where . .
_ X FwFe)
>, Fica(v) - Fia(v)

For the actual motion, a one-dimensional mini-
mization is performed in the direction of i_ii, us-
ing the bracketing method described in §6.3. It is
important that all volumes and constraints be en-
forced during the one-dimensional minimization, or
else the method can go crazy.

The energy function of a surface is not exactly
quadratic, but the method can still be applied, and
sometimes it yields very good results. But some-
times it’s worse than regular iteration. The saddle
point of energy in the catenoid example of §2.1
seems to confuse the conjugate gradient method.
With conjugate gradient, in effect, the saddle point
is passed at iteration 17 and the area decreases
again until iteration 30, when it reaches 6.4486.
But at this point further iteration produces no
change, and the conjugate gradient mode has to
be turned off and on to erase the history vector.
Once restarted, another 20 iterations will get the
area down to 6.4334. This shows that conjugate
gradient mode can work much better than ordi-
nary mode, but it can also have problems.

6.6. Hessian Minimization

Minimization by gradient descent or even by con-
jugate gradient can take many iterations. A more
direct way to try to minimize is to calculate the
Hessian matrix of second derivatives of energy and
solve for the motion that gives zero gradient. This
method is currently implemented only for the case
where surface tension is the only energy and where
the only constraints are fixed vertices. It assumes
that the surface is close enough to a local minimum
for the Hessian to be positive definite, which is not
always true. When the method works, it can find
the minimum energy to 15 decimal places in three
or four iterations. But if the Hessian is not pos-
itive definite, the method blows up. It is easy to
find examples with a saddle point of energy, such
as the catenoid example. There are checks in place
to ensure that the calculated motion does indeed
reduce energy.

6.7. Diffusion

In real soap bubble clusters, air can diffuse across
the soap films, driven by pressure differences. Since



smaller bubbles have higher curvature and hence
higher pressure, they tend to shrink. Omne can
watch a foam evolve over the course of minutes,
changing its topology as bubbles disappear. The
Evolver can simulate diffusion. If the diffusion
mode is on, target volume is transferred across
each facet at the start of each iteration cycle, in
an amount equal to the area of the facet times
the difference in body pressures times the global
diffusion constant. The iteration step then cor-
rects the actual volumes to the target volumes and
does its normal energy minimization step. Topol-
ogy changes are not done automatically yet; it is up
to the user to carry them out, using the operations
described in Section 7.

7. SURFACE OPERATIONS

This section describes the main operations avail-
able to the user for modifying a surface, aside from
the iteration step described in the previous section.

7.1. Refining

To refine a triangulation is to subdivide each facet
to create a finer triangulation. The Evolver does
this by creating new vertices at the midpoints of
edges, which it then uses to subdivide each facet
into four new facets, each similar to the original.

The first stage of refining is to subdivide all edges
by inserting a midpoint. Hence all facets temporar-
ily have six sides. For an edge on constraints, the
midpoint gets the same set of constraints and is
projected to them. For an edge on a boundary,
the parameters of the midpoint are calculated by
projecting the vector from the edge tail to the mid-
point back into the parameter space and by adding
that to the tail parameters. This avoids averag-
ing parameters of endpoints, which gives bad re-
sults when done with boundaries that wrap around
themselves, such as circles. In the second stage,
each facet is subdivided into four facets by con-
necting the new midpoints.

Certain attributes of new elements are inherited
from the old elements from which they were cre-
ated. The new facets inherit the surface tension of
their parent facets. Fixity, constraints and bound-
aries are always inherited by offspring of all dimen-
sions. In a quotient space, some, but not all, new
edges inherited symmetry group wrapping, so that
the surface is correctly embedded.
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Refining can change surface area, energy and vol-
umes if there are curved constraints or boundaries.
For example, refining the surface of Figure 6 in-
creases its area, because it decreases the gap area.

In seeking the minimum energy, it is best to
evolve with a coarse triangulation as far as pos-
sible. Each iteration can propagate a position ad-
justment only one edge at a time, so the finer the
triangulation, the longer adjustments take to travel
across the surface.

7.2. Equiangulation

Triangulations work best when the facets are as
close to equilateral (that is, equiangular) as pos-
sible for a given set of vertices. Given a set of
vertices, how does one make a triangulation for
those vertices that has triangles as nearly as pos-
sible equilateral? In the plane, the answer is the
Delaunay triangulation, in which the circumcircle
of each triangle contains no other vertex [Sibson
1978]. It is almost always unique. It can be con-
structed by local operations beginning with any tri-
angulation. Consider any edge as the diagonal of
the quadrilateral formed by its adjacent triangles.
If the angles of the two vertices off of the diago-
nal add to more than m, the circumcircle criterion
is violated, and the diagonal should be switched
to form a replacement pair of triangles (Figure 7).
When no more switches can be done, we have a
Delaunay triangulation.

FIGURE 7.
violate the equiangulation criterion, since we have
01+ 02 > 7. Equiangulation flips the quadrilateral
diagonal, making the triangles more nearly equian-
gular.

The two adjacent triangles on the left

Now suppose that we have a triangulation of a
curved surface in space. For any edge with two
adjacent facets, we switch the edge to the other
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diagonal of the skew quadrilateral if the sum of
the angles at the off-vertices is more than 7. As in
Figure 7, let a be the length of the common edge, b
and c the lengths of the other sides of one triangle,
and d and e the lengths of the other sides of the
other triangle. Let #; and 6, be the off-angles. By
the law of cosines,

a’? =b* 4+ 2 — 2bccosb; = d? + €% — 2de cos bs.

The condition 6, + 6, > 7 is equivalent to cosf; +
cos By < 0. So we switch if

B2+c?2—a? d*+e2—a?

be de <0

The equiangulation procedure over the whole sur-
face may have to be repeated several times to get
complete equiangulation, but almost never more
than three or four times. The process is guaran-
teed to terminate, since a switch reduces the radii
of the circumcircles, and a finite set of vertices has
a finite number of triangulations.

Equiangulation can have an almost magical ef-
fect in improving a triangulation, and I highly rec-
ommend its regular use. It may temporarily in-
crease area and change volumes, but the magni-
tudes of these effects are within the approxima-
tion error of using flat facets for a curved surface.
Equiangulation was used between the second and
third scenes in Figure 1.

7.3. Vertex Averaging

An evolving surface can get into trouble if some of
the vertices of the triangulation get too scrunched
together, as in the second scene in Figure 3. To
get vertices to spread out, one can use vertex av-
eraging. For each vertex, this operation computes
a new position as the area-weighted average of the
centroids of the facets adjoining the vertex. Fixed
vertices are not moved, and vertices on boundaries,
constraints or singular curves are averaged only
with neighboring vertices of the same type. Also,
to keep the new surface as close as possible to the
old one, volumes on both sides of the surface are
preserved. If vertex v is on facets f; with centroids
Z;, the new position is calculated as

L Yareaf; - &

U =
e >, area f;

The volume on one side of all the facets around the
vertex calculated as a cone from the vertex is

V: Z U'Nf,

facets f

where N 7 1s the facet normal representing its area.
The total normal N is

=Y A,
facets f

To preserve volume, we subtract a multiple A of
the total normal from the average position:

Tove — AN)-N =7- N
( g 9

SO

A:aavg-ﬁ—a-ﬁ‘
NN

Then the new vertex position is
Tnew = (Tavg — AN).

Constrained vertices are then projected to their
constraints.

Vertex averaging may slightly increase area, but
this is usually offset by its benefits. It is useful
in getting the vertices spread out evenly. Evolu-
tion can be awkward when facets are of very dif-
ferent sizes, since the same scale factor applies to
the whole surface.

7.4. Notching Edges

A surface can be locally highly curved, resulting in
facets forming pronounced ridges along edges. One
way to selectively refine the surface is to refine only
around those edges whose adjacent facets are too
far from parallel, putting a notch in the edge to
make it more saddle-shaped. There is a command
that lets the user do this with a cutoff angle of his
choosing. The refinement is actually done by sub-
dividing each adjacent facet by putting a new ver-
tex in the center. Equiangulation then completes
the process. Formerly, the Evolver did notching
by just subdividing the offending edges, but that
tended to create lots of long skinny triangles and
not always help matters. The new method seems
to work better.

7.5. Edge and Facet Operations

One way to improve a triangulation is to simply
eliminate all edges that have become too short.



This operation is known as tiny-edge weeding. Ev-
ery edge shorter than a user-set cutoff length that
can legitimately be removed is deleted by identify-
ing its endpoints.

Sometimes there are very skinny triangles that
should be eliminated, but which don’t have a short
edge to be found by tiny-edge weeding. One can
then use area weeding, an operation that removes
triangles whose area is smaller than some cutoff,
by finding the shortest edge of the triangle and
eliminating it by the same process as regular tiny-
edge removal.

There is a command that will bisect all edges
longer than a user-chosen length. All facets ad-
joining the edges are also subdivided into pairs of
facets. If the new edges are still longer than the
cutoff length, they are not further subdivided. It
is suggested that this step be followed by equian-
gulation.

Histograms of edge lengths and facet areas can
be displayed in conjunction with any of these com-
mands.

7.6. Annealing, or Jiggling

Sometimes it may be desirable to perturb the sur-
face to get it off a metastable position. Both ran-
dom and user-definable perturbations are possible.
Because of its similarity to the thermal perturba-
tions responsible for annealing in metals, the char-
acteristic magnitude of the perturbation is called
temperature.

Under a random permutation, or jiggle, each co-
ordinate of each nonfixed vertex is moved by dz =
TLg, where g is a random value from the standard
Gaussian distribution (calculated from the sum of
five random values from the uniform distribution
on [0,1]), T is the current temperature, and L is a
characteristic length that starts as the diameter of
the surface and is cut in half at each refinement.

A long jiggle is a sinusoidal displacement of each
vertex v by /Tsin(z_)'- W+ ). The amplitude A, the
wave vector W and the phase ¥ may be specified
by the user or be chosen at random.

7.7. Popping Edges or Vertices

The Evolver does not change the topology of a sur-
face on its own, but there are many times when a
naturally evolving surface will need to change its
topology. A neck might pinch out in a catenoid
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whose boundary rings are too far apart, or two
growing metal grains might meet. Fortunately, the
types of singularities possible in soap-film surfaces
in three-dimensional space were classified in [Tay-
lor 1976] for uniform surface tension. Three sur-
faces may meet along a curve, or four triple curves
may meet at a point. The Evolver has procedures
known as edge popping and vertexr popping to de-
tect improper singularities and to reduce them to
proper types. These routines are designed only for
surfaces with uniform surface tension. Many more
types of singularities are possible if the different
component surfaces meeting at a singularity have
different surface tensions.

Edge popping looks for edges that are not fixed,
are not on boundaries or constraints, and lie on
more than three facets. When found, such an edge
is split longitudinally, with a new facet in between.
The two old facets with the smallest dihedral angle
between them are attached to the new edge. This is
repeated until only three facets are on the original
edge. Each split is propagated along the multiple
junction line as far as possible. If it is impossible
to propagate the split beyond either endpoint, the
edge is subdivided to provide a vertex that can be
split.

Vertex popping assumes that each edge belongs
to at most three facets, so it should be preceded by
edge popping. The facet and edge structure around
each vertex is analyzed to find which vertices have
the wrong topology. This is done by looking at the
link of the vertex: the intersection of the facets and
edges containing the vertex with the surface of a
small sphere around the vertex. The numbers of
sides of the cells in the link are counted. A sim-
ple plane vertex has two cells of one side each. A
triple-edge vertex has three cells of two sides each.
A tetrahedral point has four cells with three sides
each. Any other configuration is popped. The pop-
ping is done by replacing the vertex with a hollow
formed by truncating each cell-cone except the cell
with the largest solid angle. If the link is discon-
nected, the solid angles of all the cells will add up
to over 4m. Then the vertex is duplicated and the
different components are assigned to different ver-
tices. This lets necks shrink to zero thickness and
pull apart.

In the string model, vertices with more than
three edges are popped by finding the pair of edges
making the least angle, then pulling them out a
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short distance with a new vertex and joining the
new and old vertex with a short edge. This is
repeated until the original vertex has only three
edges.

Improper vertices may exist in the original data
file, or they may be introduced by short-edge elim-
ination. For example, the pinching neck in a cate-
noid must have all the short edges around its waist
eliminated to pinch the waist down to one vertex,
which can then be popped. The other operations
described in this section (refining, vertex averag-
ing, equiangulation, notching) do not change the
global topology and so do not introduce improper
vertices. Improper vertices are not automatically
detected unless the autopop feature is on.

7.8. Zooming

Sometimes the detail of a surface may require a
closer look. The graphics display can magnify a
surface, but that doesn’t change the triangulation
to follow the detail. There can be cases, as when
a boundary wire passes through a soap film, where
the detail around a point is on a scale 100,000 times
smaller than the whole surface [Brakke 1992a]. For
this reason the Evolver allows the user to zoom in
on a vertex, throwing away the rest of the surface
to save memory and time and to keep all triangle
sizes reasonably close together.

The user specifies the vertex that the program
should zoom in on and a cutoff distance. All ver-
tices beyond the cutoff distance from the given ver-
tex are deleted. Then all edges and facets contain-
ing any deleted vertices are deleted. Any remaining
edge from which a facet was deleted is made fixed
in order to anchor the cut edges of the surface.

8. USER INTERFACE DETAILS

This section describes the Evolver’s user interface,
including the initial data file, the command mech-
anism and the graphics interface.

8.1. The Initial Data File

The initial configuration of a surface is read from
a text file referred to as the data file. The data
file has five sections: general definitions, vertices,
edges, faces and bodies. The catenoid data file
cat.fe is presented in the sidebar on the next
page, to give the flavor. This file is slightly atyp-
ical in that none of the vertices are given directly

by their coordinates. The .fe filename extension
is a relic of early versions of the Evolver in which
facet-edges had to be explicitly listed in the data
file; I continue to use it out of habit to identify
data files.

The data-file syntax provides several features for
flexibility and ease of use. Simple macros can be
defined to do text substitution. Compound ex-
pressions can be used wherever a real number or a
formula is expected. Normal arithmetic and stan-
dard functions are available. For functions that are
evaluated during runtime, such as constraints and
quantities, expressions are stored as syntax trees
that are interpreted when the expression needs to
be evaluated. If interpretation is too slow, user-
defined functions may be written in C and com-
piled into the Evolver. Named variables, called
adjustable parameters, may be declared and used
in runtime expressions, and changed interactively
at runtime. They are useful for moving constraints
and boundaries around, modifying the metric or
contact angles, and so forth.

The definitions section contains data not per-
taining to particular geometric elements, such as

e declarations and initial values for adjustable pa-
rameters;

e the dimension of the surface and the dimension
of the ambient space containing the surface;

e the specification of a quotient space, or, for a
flat torus domain, the vectors defining the fun-
damental parallelepiped;

e Riemannian metric tensor components;

e for a crystalline surface energy, the name of the
Waulff vector file;

e constraint function formulas, together with en-
ergy and volume integrands for edges on con-
straints;

e boundary definitions via formulas of coordinates
in term of parameters;

e quantity integrands, with target values for con-
strained quantities;

e initial values for the gravitational constant, the
diffusion constant, the weighting factor for the
squared mean curvature in the energy, the Gaus-
sian integration order, and linear or quadratic
mode.

None of these items are required. If an item is
missing, the feature is not used, or is used with a
natural default value.



// cat.fe: Evolver datafile for catenoid.

// ring radius and height
// adjustable at runtime
PARAMETER radius 1
PARAMETER height 0.55

// upper ring, parametrized by pl
boundary 1 parameters 1

x1: radius * cos(pl)

x2: radius * sin(pl)

x3: height

//  lower ring
boundary 2 parameters 1
x1: radius * cos(pl)
x2: radius * sin(pl)
x3: -height

vertices /* second column = value of pl */

1 Oxpi/3 boundary 1  fixed
2 1xpi/3 Dboundary 1  fixed
3 2%pi/3 boundary 1  fixed
4 3xpi/3 boundary 1 fixed
5 4xpi/3 boundary 1  fixed
6 5%pi/3 boundary 1  fixed
7 Oxpi/3 boundary 2 fixed
8 1¥pi/3 boundary 2 fixed
9 2%pi/3 boundary 2 fixed
10 3*pi/3 boundary 2 fixed
11  4*pi/3 boundary 2 fixed
12  5%pi/3 boundary 2 fixed

edges /* given by endpoint vertices */

1 1 2 Dboundary 1 fixed
2 2 3 boundary 1  fixed
3 3 4 boundary 1 fixed
4 4 5 Dboundary 1 fixed
5 5 6 boundary 1  fixed
6 6 1 boundary 1 fixed
7 7 8 boundary 2 fixed
8 8 9 Dboundary 2 fixed
9 9 10 boundary 2  fixed
10 10 11 boundary 2 fixed
11 11 12 boundary 2  fixed
12 12 7 boundary 2 fixed
13 1 7
14 2 8
15 3 9
16 4 10
17 5 11
18 6 12

faces /* given by oriented edge list */

1 114 -7 -13
2 2 15 -8 -14
3 316 -9 -15
4 4 17 -10 -16
5 5 18 -11 -17
6 6 13 -12 -18
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The vertices section lists the vertices, one per
line. Each vertex is numbered for later reference,
and is defined by its coordinates (or boundary pa-
rameters), which constraints or boundaries it is on,
and whether it is fixed.

The edges section lists the edges, one per line,
also numbered for reference. Fach edge is defined
by its tail and head vertex numbers, the constraints
or boundaries it is on, which quantities it con-
tributes to, and whether it is fixed. If a quotient
space is being used, the group element for wrapping
the head vertex to the proper place with respect to
the tail vertex is also given.

The faces section lists polygons forming the ini-
tial surface. Each polygon is given by its edge num-
bers, in order around its circumference. Edges tra-
versed in opposite direction from that given in the
edges section are given as negative numbers. The
polygons need not be planar, and they need not be
triangles (which is why the section is called “faces”
instead of “facets”). The Evolver will immediately
triangulate nontriangular faces by putting a new
vertex at the average position of the original ver-
tices and by putting in edges from the new vertex
to each original vertex. Each face may be on con-
straints, on boundaries, or be fixed. It may be
given a specific surface tension; the default is 1.0.
It may be deemed to contribute to certain quantity
integrals, and to have certain surface integrands
contribute to the total energy.

In the bodies section, each body is defined by
listing its bounding faces by number, the number
being negative if the orientation of the face in the
face list has an inward normal. There may be any
number of faces in any order. Faces do not have
to completely enclose a body; they are used to
compute volume and other integrals, and if certain
faces are not needed for that, they may be omitted.
A body may be declared to have a fixed volume of
a certain value. The actual initial volume need not
be that exact value; the volume will be adjusted
during the iteration process. A body may also be
given a density, which will cause the total energy
to include the gravitational potential energy of the
body with that density.

8.2. Command Interface

The user command interface is built on a sim-
ple terminal-type model for maximum portability.
The main prompt is “Enter command:”. There
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are two types of commands. The first consists
of one letter occasionally followed by a number;
the second is an embryonic query language. Cur-
rently, queries are supported that list, display, re-
fine or delete elements by various criteria. Com-
mands may be read from a file with the command
“read filename”. The output of any command can
be piped to a system command. Commands that
change the surface or the model will cause energies
and volumes to be recalculated. Commands can be
logged to a file for later repetition with the read
command.

8.3. Graphics

It is possible to run the Surface Evolver without
any graphics. But being able see the surface is
always nice, and often essential to understanding.
Unfortunately, every computer system has its own
way of displaying graphics, and there is no uni-
versal standard. The Evolver isolates the system-
dependent graphics to drawing line segments and
triangles in two dimensions. This cuts down the
effort in porting to new systems. The Evolver’s
main graphics routine calculates the triangles to
be displayed and calls the device-dependent sub-
routine to do the display. The device could be a
screen display or a graphics output file writer.

Two classes of graphics devices are provided for:
those that can do their own viewing transforma-
tions and hidden surface removal, and those that
can’t. The former are simply provided with a list
of triangles with vertex coordinates in three dimen-
sions. For the latter, the Evolver keeps an inter-
nal viewing transformation matrix, sorts the trans-
formed triangles from back to front, and feeds them
to the display routine (painter’s algorithm). The
sorting algorithm will not subdivide intersecting
triangles. If two triangles overlap, it will just find
one point in the overlap and compare depths there.
This can lead to some strange-looking displays for
strange surfaces, but it works well for the types of
surfaces for which the Evolver is designed.

My favorite graphics system is the geomview pro-
gram on Iris workstations. Geomview is an inter-
active viewer that lets the user rotate, translate,
zoom, and otherwise move the surface by dragging
a mouse cursor over the window. A high-end Iris
workstation can light, shade and smoothly rotate
a surface consisting of several thousand triangles.
The Evolver is interfaced with geomview so that

the display is automatically updated whenever the
surface changes. Geomview was written at The
Geometry Center and is freely available (see “Soft-
ware Availability” at the end of this article).

Other types of screen displays do not have such
fancy view control as geomview. Instead, there is a
terminal-type command interface that lets the user
control the viewing angle and size of the display.
This viewing transformation is also used for the
graphics output files.

There are several graphics output file formats,
most notably PostScript. The surfaces illustrating
this article were done with the PostScript format.
There are also formats that list transformed or un-
transformed triangles as text, suitable for input to
other programs.

8.4. Other Commands

It is possible to reset the values of many param-
eters during runtime, including the gravitational
constant, body volumes, constrained quantity tar-
gets, the diffusion constant and the user-defined
variables used in formulas for constraints, bound-
aries, quantities and metrics.

The current surface can be dumped to a text
file in the same format as the data file. This is
the only way to save a file; there is no binary save
format. The text format has the advantages that it
is portable, editable and not too much larger than
a binary file would be.

After minimizing energy at several levels of re-
finement, it is possible to extrapolate the energy
to an infinitely fine refinement. The extrapolation
uses the final energies of three successive refine-
ments and assumes a power law approach to the
ultimate minimumn.

9. APPLICATION: THE HOPF CONE CONJECTURE

In this section I present an example of a conjecture
that was settled (negatively) through the use of the
Evolver.

In constrast to the situation in R3, the classifica-
tion of area-minimizing hypersurface cones in R*
is unknown. Frank Morgan once conjectured that
a certain cone in R? is absolutely area minimizing
[Morgan 1986, p. 1278]. Use of the Evolver showed
that this is not the case: a comparison surface was
found that has less area for the same boundary.
This example illustrates the use of a Riemannian



metric to permit a surface in three dimensions to
represent one in four dimensions, by projecting out
a symmetry.

Morgan’s cone is based on the Hopf fibration of
the 3-sphere S®. Let S® be parametrized by a €
[0,7/2], B € [0,2n] and v € [0,27], by means of
the formulas

Ty =cosacosf, Ty = cosasinf,

r3 =sinacosy, x4 =sinasin-y,

where (x1, x2, z3, x4) are the Euclidean coordinates
of a point in $* ¢ R*. The boundary of Morgan’s
Hopf cone consists of the three surfaces

B—v=0 (mod 27),
f—~=2r (mod 2r),
f—~v=3m (mod 2m).

These three surfaces have zero mean curvature and
meet at 120-degree angles along the two orthogonal
circles z3 + 22 = 1 and 2% + 23 = 1.

Theorem.Morgan’s Hopf cone is not absolutely area
minimizing.
Proof of . The idea of the proof is to take the quo-
tient space of R* modulo the Hopf fibers S, the
result being R3 with a metric such that the area of
a surface in R? is the same as the 3-area of the lift
of the surface back into R*. The metric turns out
to have a natural interpretation as a cone space,
leading to a simple counterexample that can be
verified by the Evolver.

The metric on R* in Hopf spherical coordinates

(TJ «, 57 7) iS
ds? = dr? + r’da® + r? cos® a df? + r? sin® adry?.

The coordinates of the quotient space R? will be
(r,a,0), where § = 3 — ~. The orthogonally pro-
jected metric is

.2
ds? = dr? + r’da?® + r?sin® a cos® a df?.

The lift of a point in R?® is a circle of circumfer-
ence 2. Hence we can make the 3-area of the
lift of a surface have 27 times the 2-area in R3 by
multiplying the linear metric ds by /7, giving an
effective metric of

.2
ds? = rdr? + r3da® + r® sin® a cos? a db?.
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This can be made to look more like the ordinary
spherical coordinate metric by using coordinates
p = 3r3/* and ¢ = 2. Then

ds® = 8dp? + p?dp* + p? sin® p db?.

This is the Euclidean spherical coordinate metric,
except for the factor % > 1, which makes R? into
a cone space.

Morgan’s Hopf cone projects to three planes that
meet at 120 degrees, a configuration known to be
absolutely area minimizing in the standard metric
of R®. Its area inside the unit sphere (in the Hopf
metric) is 2w. However, the cone factor makes it
more expensive for a surface to go radially inward
than to go sideways. In a two-dimensional cone, it
is easily seen (by unrolling the cone) that geodesics
avoid the origin. A similar phenomenon happens
here. To improve on Hopf’s cone, one starts by
deforming the three planes by pushing the point
at the origin out toward one of the boundaries.
When fed into the Surface Evolver, this configura-
tion evolves to the surface of Figure 8, which has

FIGURE 8. This surface is a counterexample to
Morgan’s Hopf cone conjecture. The three outer
edges are equally spaced half-great-circles on the
unit sphere. Note how the surface avoids the center
of the sphere.

an area of 6.14, less than that of Morgan’s Hopf
cone. The numerical errors in this area are due
to the numerical integration used to calculate the
area of the facets and the gap between the curved
boundary and the facets. Both of these can easily
be estimated to be less than the improvement. [

The Hopf cone that projects to the tetrahedral
cone is also not minimizing. The Evolver gives 7.44
for the area of the comparison surface in Figure 9,
while the area of the cone is 4cos™'(—1/v/3) =
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7.6425. The ounly other minimizing cone in stan-
dard R?, the flat plane, also deforms to avoid the
origin. Thus none of the area-minimizing cones in
standard R? lifts via the Hopf fibration to a mini-
mizing cone in R*.

FIGURE9. Comparison surface for the tetrahedral
Hopf cone. The three outer edges lie on the unit
sphere. Again, the surface avoids the center of the
sphere.

10. FUTURE DIRECTIONS

The Surface Evolver is under continual develop-
ment. [ welcome suggestions from users for new
features. If they are reasonable, they will be added
as time permits.

Some mathematical questions and programming
projects for the future are the following:

e How close in various senses is an Evolver mini-
mal surface to the true smooth minimal surface
for a given problem?

e The Evolver gives an upper bound for the area
of a minimal surface. The technique of cal-
tbrations, which generalizes the min-cut-max-
flow duality from network theory, can give lower
bounds. A near-minimal surface should be able
to generate a near-maximal calibration. Hence
a goal is to have the Evolver generate such cal-
ibrations.

e How close is an Evolver evolution by mean cur-
vature to an ideal smooth evolution? Given an
initial smooth surface, is it possible to construct
an Evolver approximation that stays close to
the ideal evolution? A more permissive notion
of approximation would say that for each Evol-
ver evolution there is an ideal smooth evolution
that stays near it.

e The current method of approximation to motion
by mean curvature needs further investigation.
The gradient of energy is a covector, and mo-
tion is a vector. The conversion from covector to
vector requires a metric or inner product. The
inner product used by the Evolver is the Eu-
clidean inner product at vertices, weighted by
the vertex star area. Other inner products are
possible and may have desirable properties.

e Instabilities of the type described in §6.4 often
limit the size of the time step in an evolution.
These instabilities need to be understood and
methods have to be developed to speed evolu-
tion.

e Automatic triangulation management needs to
be extended. Currently, users have to monitor
the surface triangulation closely and intervene
manually when it gets fouled up. I hope to be
able to have any initial surface evolve for any
length of time without user intervention, as is
now the case for string evolution as described in
§2.3.

e An interactive graphical interface could let users
select with a mouse the geometric elements (ver-
tices, edges, etc.) they wish to work with, and
it could be an interactive tool for the design of
initial surfaces and data files.
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SOFTWARE AVAILABILITY

The Surface Evolver program is available free of charge.
It is written in C, in such a way as to be portable be-
tween systems. So far it has been ported to Sun, Iris,
NeXT, Xenix and MS-DOS systems. The major effort
in porting to a new system consists of writing a screen
graphics interface. However, this is fairly simple, since
the system-dependent routines need only display trian-
gles. The program can also be run without any screen
graphics, which makes it possible to run remotely.

A package containing source code, manual and sam-
ple data files is available by anonymous ftp in the file
pub/evolver.tar.Z on the machine geom.umn.edu. A
separate file, pub/evolver.next.tar.Z, contains a ver-
sion for the NeXT computer, including Interface Builder
files. The Evolver is also available on floppy disk from
the author. The manual in TEX dvi format is included
in the ftp archive. A hardcopy version of the manual
can be requested separately from the author, or directly
from The Geometry Center, 1300 South Second Street,
Minneapolis, MN 54554.

Geomview is likewise available from geom.umn.edu,
in directory pub/geomview.
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