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The Surface Evolver is a computer program that minimizes

the energy of a surface subject to constraints. The surface is

represented as a simplicial complex. The energy can include

surface tension, gravity and other forms. Constraints can be

geometrical constraints on vertex positions or constraints on

integrated quantities such as body volumes. The minimization

is done by evolving the surface down the energy gradient.

This paper describes the mathematical model used and the

operations available to interactively modify the surface.

INTRODUCTIONOne of the fundamental problems in the calculusof variations is to �nd a surface minimizing someenergy subject to constraints. A soap �lm on awire frame minimizes its area subject to its bound-ary staying on the frame. A cluster of soap bub-bles minimizes the total soap �lm area subject toenclosing �xed volumes in each bubble. A capil-lary surface minimizes the gravitational energy ofa 
uid in a vessel plus the surface energy of itsfree surface and its contact energy with the vesselwalls. Other examples of surfaces are grain bound-aries in metals, crystal facets, 
uid interfaces andcell membranes [Almgren 1982; Almgren and Tay-lor 1976]. Naturally occurring surfaces need not besimply connected, need not be orientable (as in aM�obius-band soap �lm) and need not be manifolds(as in bubble clusters).The Surface Evolver is an interactive programfor the study of surfaces shaped by surface ten-sion and other energies. The user speci�es an ini-tial surface, the constraints that the surface shouldsatisfy throughout the evolution, and an energyfunction that depends on the surface. The Evolverthen modi�es the surface, subject to the given con-straints, so as to minimize the energy. The user canintervene during the evolution, changing the sur-c
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face's properties or applying certain operations tokeep the evolution well-behaved.The action of the Evolver is meant to model theprocess of evolution by mean curvature, which wasstudied in [Brakke 1977] for surface tension energyin the context of varifolds and geometric measuretheory. The energy in the Evolver can be a com-bination of surface tension, gravitational energy,squared mean curvature or user-de�ned surface in-tegrals. The Evolver can handle complicated topol-ogy (as seen in real soap bubble clusters), volumeconstraints, boundary constraints, boundary con-tact angles, prescribed mean curvature, crystallineintegrands, gravity, and constraints expressed assurface integrals.The main focus of the Surface Evolver is on two-dimensional surfaces in three-dimensional space,the so-called soap-�lm model. The principal datastructures are set up with this in mind, but theyare designed in such a way that the dimension ofthe ambient space and of the \surfaces" of inter-est can be arbitrary. Thus, one-dimensional stringsand higher-dimensional surfaces can also be han-dled. Moreover, the ambient space can be endowedwith an arbitrary Riemannian metric, and even bea quotient space under a group action.The Evolver has a graphical interface that allowsthe user to follow the evolution of the surface onthe screen. The graphics can also be output to �lesin several formats, including PostScript.The Surface Evolver is freely available (see \Soft-ware Availability" at the end of this article) and isin use by a number of researchers. Some of theapplications of the Evolver so far include model-ing the shape of fuel in rocket tanks in low grav-ity [Tegart 1991], calculating areas for the opaquecube problem [Brakke 1991b], computing capillarysurfaces in cubes [Mittelmann and Hornung] and inexotic containers [Callahan et al. 1991], simulatinggrain growth, studying grain boundaries pinned byinclusions, searching for partitions of space moree�cient than Kelvin's tetrakaidecahedra, modelingthe shape of molten solder on microcircuits [Raczet al.], studying polymer chain packing and clas-sifying minimal-surface singularities. Section 9 ofthis paper gives a proof, based on the use of theEvolver, that a conjectured area-minimizing conein R4 is not area-minimizing.The strength of the Surface Evolver program isin the breadth of problems it handles, rather than

in the optimal treatment of some speci�c problem.It is under continuing development, and not everyfeature is described in this paper. Users are invitedto suggest new features.This paper gives an overview of the capabilitiesof the Surface Evolver so that readers can evaluateits usefulness in their research and so that usershave a published description to cite. It is not asubstitute for the manual [Brakke 1991a], althoughit does mention certain operational details so thatreaders can �nd the corresponding features in theprogram or manual.
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1. GENERAL OVERVIEWAs discussed above, the primary concepts in theSurface Evolver are the surface, the energy func-tion and the constraints. In this section I brie
ydiscuss each of these elements, and also the op-erations available to the user for controlling theevolution.
1.1. Representing SurfacesSurfaces have been represented mathematically asgraphs of functions, level sets of functions, imagesof maps, measures, simplicial complexes, polyhe-dral complexes, spline patches, and so forth. Eachway has its strengths and weaknesses. The SurfaceEvolver uses a �nite-element method, representinga surface as a union of simplices. This permitsthe representation of surfaces like soap �lms andbubbles, which may have complicated topologies
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and may not be orientable. It allows the speci�-cation of a surface in terms of a �nite amount ofcombinatorial and geometric information, the lat-ter consisting of the vertex coordinates. Many ofthe �gures accompanying this paper show the com-ponent simplices.The Evolver represents a soap-�lm model surfaceas a simplicial complex consisting of vertices, edgesand facets. A vertex is a point, and its principalattributes are its coordinates. Each edge has ahead and tail vertex, and each facet is de�ned bya chain of three oriented edges. In addition, it ispossible to de�ne bodies by giving for each body alist of oriented facets that make up its boundary. Itis not necessary to have a simplicial decompositionof the interior of a body, since the Evolver neverattempts to integrate over a body, only over itsboundary. The initial surface is de�ned in a data�le that lists the combinatorial information (seeSection 8).The units of measurement are dimensionless. Ifthe user wishes to model a speci�c physical prob-lem, all values should be in one consistent set ofunits such as cgs or MKS.Section 3 describes what is available in the Evol-ver in terms of alternatives or elaborations to thebasic soap-�lm model: \surfaces" of arbitrary di-mension, ambient spaces with an arbitrary Rie-mannian metric, and so on.
1.2. EnergiesBroadly speaking, the energies that the Evolverminimizes are any quantities that may be expressedas integrals over the surface. Foremost among themis surface tension. Soap �lms and interfaces be-tween di�erent 
uids have an energy proportionalto their area, which can also be regarded as a sur-face tension, or force per unit length. That is,across any line in the surface, there is a tensionwhose value is the same as the surface energy den-sity. In the Evolver, the user can specify a value ofthe surface tension for each facet.Another common energy is gravitational poten-tial energy, which can be written as a surface in-tegral by means of the divergence theorem. Cap-illary surfaces may be modeled by including bothsurface tension and gravitational energy in the to-tal energy. For more details, see Section 4.

1.3. ConstraintsSeveral types of constraints are available in theEvolver. Vertices may be �xed in place, re
ect-ing the fact that the edge of a soap �lm should beattached to a wire. Vertices may be constrained tolie on smooth manifolds, re
ecting the case whenthe edge of a soap �lm should lie on a wall, butis free to move on the wall. Edges and facets maylikewise be constrained, which simply means thatany vertices generated on them will inherit thoseconstraints. Bodies may be constrained to have�xed volumes, as in the case of the volume of thecolumn of liquid underneath a capillary surface.Section 5 explains the exact mathematical form ofthe various types of constraints.
1.4. Basic OperationsThe fundamental operation of the Evolver is theiteration step, which reduces energy while obey-ing any constraints. A gradient descent method isused. The force at each vertex is the gradient of thetotal energy as a function of the position of thatvertex. Every vertex is moved simultaneously bya global multiple of its force. This multiple, calledthe scale factor, can either be �xed by the user orbe the factor that optimizes the decrease in energy.Details of all the options available for the iterationstep are given in Section 6.Several operations are available for manipulatingthe triangulation. Re�nement is the subdivision ofeach facet into four similar facets, for the betterapproximation of curved surfaces. Equiangulationreadjusts the triangulation of a surface to make thefacets as nearly equilateral as possible. Vertex av-eraging moves each vertex to the average positionof its neighboring vertices. These and other oper-ations, including some that change the topology ofthe surface, are more fully described in Section 7.
2. THREE EXAMPLES OF THE EVOLVER IN ACTION

2.1. The CatenoidThe catenoid is the minimal surface whose bound-ary consists of two parallel rings not too far apart.It is an extremely simple surface, yet it illustratessome of the subtleties of evolving triangulated sur-faces. Stages in its evolution are shown in Fig-ure 1. The surface in the initial data �le consists ofsix rectangles forming a cylinder between the two
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FIGURE 1. The evolution of a stable catenoid. Top left: The initial surface. The boundary wire circles arenot shown. The rectangular faces of the data �le have been automatically triangulated. Top middle: After onere�nement. Note how the vertices on top and bottom edges follow the boundary wire circles. Top right: Afterequiangulation. Note the edges that have switched direction. Bottom left: After iterating �fty times. Thisis a saddle point in the area. Bottom right: Ultimate endpoint of iteration, with edges following the lines ofcurvature, which are horizontal and vertical.rings. In general, a data �le contains only the min-imum amount of information needed to correctlyde�ne the topology of the surface. When initiallyread in, the rectangles are automatically triangu-lated into facets (top left). The vertices and edgeson the rings are �xed. The rings themselves arenot shown. With so few facets, the initial surfacecannot shrink, so the user re�nes the surface (topmiddle). Here, only one re�nement is done to keepthe facets large enough to be seen easily. Normallythere would be alternating stages of re�nement anditeration. Note that the vertices created by subdi-viding the edges on the rings are themselves �xedon the rings. Equiangulation gives the much nicertriangulation shown top right, by switching the di-agonals of some quadrilaterals to make the facetsmore equiangular. Fifty iterations with optimizingscale factor result in an area of 6.458483 (bottomleft). At this point, each iteration is reducing thearea by only .0000001, the triangles are all nearlyequilateral, everything looks nice, and the inno-cent user might conclude that the surface is verynear its minimum. But we are really near a sad-dle point of energy. Another 300 iterations get thearea down to 6.4336 (bottom right), near the truelocal minimum. We know it is a minimum because

iteration produces no change, and the Evolver cancalculate the Hessian matrix to be positive de�nite.One can see that the triangulation really wants tobe twisted around so that there are edges followingthe lines of curvature.If the two rings are too far apart, the neck of thecatenoid will shrink down to a point, as shown inFigure 2. Upon iteration, the neck forms a ring ofvery short edges (top middle). These edges can beremoved by identifying their endpoints, in a step(taken by the user) known as tiny-edge weeding(x 7.5). This produces a single vertex at the neck(top right). The Evolver can recognize the topol-ogy around the neck vertex as improper for a soap�lm and split the vertex into two (bottom left),when instructed to do so by the user. This is calledvertex popping (x 7.7). The two parts of the sur-face then quickly collapse to disks (bottom right).
2.2. Capillary Surface Meeting a WallFigure 3 shows the evolution of an example wherewe use constraints and varying surface tension tomodel a surface meeting a wall at a given contactangle|here 60 degrees. This is the situation for acapillary surface, but this example does not includevolume constraints or gravity.
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FIGURE 2. The evolution of an unstable catenoid. The neck pinches down to a point, and the surface splitsinto two pieces.The initial con�guration is shown on the left.The 
uid surface is the light gray horizontal sur-face, which has one edge movably attached to thedark gray vertical wall. The junction of the surfaceand wall consists of edges belonging to both surfaceand wall facets. We give the wall facets half thesurface tension of the surface facets, so the equi-librium contact angle is 60 degrees (0:5 = cos 60�).All vertices on the wall are constrained to stay in avertical plane. The three vertices at the top of thewall are �xed in place, as are the vertices of thesurface on the edge opposite the wall. The two lat-eral sides of the surface and wall are constrained tolie in vertical planes (not shown) perpendicular tothe wall. These planes contain no facets and con-tribute no energy, so the equilibrium contact angleis 90 degrees.After several iterations (center left), the con-tact line has moved up the wall, seeking the equi-librium contact angle. The shrinking of the wallfacets more than o�sets the stretching of the sur-

face facets. The interior vertices of the wall do notmove, since there are no net forces on them. Thiscan give rise to problems if the contact line over-runs interior wall vertices, as is about to happen.At this point, the user must intervene to adjust thetriangulation, using vertex averaging, after which(center right) the contact line can continue to moveup the wall. The �nal equilibrium state consists ofa plane surface (far right).The wall facets serve two purposes: to gener-ate the correct contact angle and to help visual-ize the surface. But they also are the source ofproblems as the surface moves up the wall, requir-ing repeated vertex averaging. They occupy morecomputer memory and calculation time than nec-essary. It is possible to omit them. In x 4.5 I showhow to use edge integrals to compute the equiva-lent energy of the facets. The visualization func-tion could be served by having �xed facets on thewall that do not participate in the calculations anddo not re�ne.
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FIGURE 3. Capillary surface making contact with a wall. Left: The initial surface. The facets on the verticalwall (darker shading) have surface tension 0.5, while the ones on the horizontal free surface have surface tension1.0. Thus the equilibrium contact angle is 60 degrees. The free surface is bounded by a �xed wire in front andplane constraints on either side. Center left: After some evolution, the free edge has crept up the wall. Thedashed lines indicate the original position. Note that several wall facets are getting very narrow, which willsoon cause problems in the evolution. Center right: After vertex averaging, the free edge has more room tomigrate without overrunning vertices. Right: The �nal equilibrium surface.
2.3. Grain GrowthWhen liquid metal solidi�es, crystallization gener-ally starts at many nuclei, with random orienta-tions. The crystal lattices are mismatched wherethe grains meet, and the atoms along the grainboundaries are in a higher energy state than inte-rior atoms. To a good approximation, the energyis independent of the orientation of the boundary.In the process of annealing, the metal is warmedenough for boundary atoms to switch from one lat-tice to the next through thermal motions, and theboundaries migrate at a rate proportional to theircurvature, assuming that impurities or other ob-stacles do not interfere.Figure 4 shows this process for a two-dimen-sional metal in a unit 
at torus that initially crys-tallizes from 100 random nuclei, resulting in an ini-tial grain con�guration of 100 Voronoi cells (topleft). The ultimate product of evolution consists

of four unequal hexagonal grains. A video of theevolution is available in [Brakke 1992b].Modeling the dynamics of the evolution requiresusing a �xed scale factor (the time step) muchsmaller than the optimizing scale factor. Here,a time step of 5 � 10�6 was used. The Evolverhas several features used to automate the evolu-tion, including automatic topology changes in thestring model. With a feature called autopopping,any edge whose length is projected to become lessthan a critical length is deleted and any resultingimproper vertices are popped. The critical lengthis automatically set to the critical length for insta-bility described in x 6.4, which works out to 0.003here. Only edges whose lengths are decreasing aretested, so the very short edges generated by vertexpopping will not be eliminated. With autochop-ping, edges that become longer than a chosen cut-o� length of 0.015 are automatically subdivided.

FIGURE 4. The evolution by mean curvature of 100 Voronoi cells in a two-dimensional 
at torus. The timestep is 5� 10�6. From left to right: The initial con�guration; con�guration after 200 steps, still with 100 cells;after 1600 steps, with 60 cells left; and after 5000 steps, with 28 cells left.



Brakke: The Surface Evolver 147

3. SURFACE MODELSThis section describes several variations on the ba-sic soap-�lm model discussed in x 1.1.
3.1. One-Dimensional “Surfaces”: The String ModelThe \surface tension" can be declared to reside inedges instead of facets. The surface then becomesa network of elastic strings, hence the term stringmodel is applied to this mode of operation. Thestrings may reside in a space of any dimension,but if the domain is two-dimensional, the stringsmay bound regions. In this case, a region is de�nedwith a facet structure and a body structure. Thefacet may have any number of sides. The bodyhas just one facet on its boundary. The e�ect is tostretch the string network into a cylindrical surfaceof height 1, whence the mechanisms for surfacescan be applied with minimal changes. The graingrowth example in x 2.3 uses the string model.
3.2. Quadratic ModelIn an attempt to approximate curved surfaces bet-ter than by 
at facets, there is a mode in whicheach facet is a quadratic spline patch. A midpointis added to each edge, giving a total of six controlpoints. Each coordinate is then quadratically inter-polated from these six points to form the surface.An edge becomes a curve that depends only on thecontrol points on the edge, thus guaranteeing thatneighboring facets meet without a gap. The disad-vantages of the quadratic mode are that it is slower,

surface area is calculated approximately by numer-ical integration, facets are displayed as if 
at, andsome Evolver features are not implemented.
3.3. Higher-Dimensional SurfacesHigher-dimensional surfaces cannot be representedby the basic vertex{edge{facet scheme. There isa mode of operation in which the facets makingup the surface are represented directly as simplices(vertex lists). This permits a surface of arbitrarydimension in a space of arbitrary dimension. How-ever, many features are not yet implemented forthis mode.
3.4. Quotient SpacesThe ambient space can be a quotient space of Rnunder some symmetry group. The vertex coor-dinates are taken to be in a fundamental region,and each edge is marked with a group elementto tell how its head vertex should be transformed(wrapped) relative to its tail. The user invents aninteger representation for the group elements to beused in marking edges. The 
at torus quotientspace is built-in, and can be speci�ed in the data�le in terms of the fundamental parallelepiped andthe wraps of the edges. Other quotient spaces re-quire the user to write C-language functions thathandle group transformations and compositions.The display of a surface in a quotient space posessome interesting problems, since the display spaceis Euclidean. The Evolver o�ers three options, twoof which are illustrated in Figure 5, which shows

FIGURE 5. Two of Kelvin's tetrakaidecahedra in a 
at torus. The fundamental region is a unit cube. Left: Thesurface plotted as the boundaries of connected bodies. Right: The surface clipped to the fundamental region,a unit cube.
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a surface in a 
at three-dimensional torus whosefundamental parallelepiped is a unit cube. Thethree options are:Raw facets. Each facet is displayed as it is locatedin the fundamental domain. Location is basedon the �rst vertex in the facet, with other ver-tices being unwrapped as needed.Connected bodies. All facets on the boundary ofeach body are gathered in a list. One pointis chosen as a base point, and unwrapping ofvertices spreads out from neighbor to neighborfacet until the entire body surface is done. Thisnicely displays each logical body as a unit. Anexample is shown in Figure 5 (left).Clipping. For a torus domain, each facet is clippedto the fundamental parallelepiped. Pieces lyingoutside are wrapped around so they lie inside.This option clearly shows the fundamental do-main and how it wraps around. An example isshown in Figure 5 (right).The surface shown in Figure 5 bounds two tetra-kaidecahedra. Lord Kelvin [Thompson 1987] con-jectured that the optimal way to partition spaceinto equal-volume cells with least area is a packingof very slightly curved tetrakaidecahedra. Severalpeople (including the author) have used the Evol-ver in attempts to beat Kelvin's partition, but no-body has succeeded yet.
3.5. Background MetricThe ambient space can be endowed with a Rie-mannian metric. Only one coordinate patch is al-lowed, but quotient spaces are possible. Basically,the Evolver operates as usual in Euclidean coordi-nates, except that the metric is used for the calcu-lation of edge lengths and facet areas. Edges arenot taken to be geodesics, nor are facets geodesicsurfaces; rather, they keep their Euclidean shape.Surfaces are displayed as if their coordinates werein Euclidean space.An example using a metric is given in Section 9.Other possible ways to use a metric are: modelinga cylindrically symmetric surface by means of thestring model, and implementing a spatially varyingscalar surface energy, as in a surface whose ownweight is not negligible.The metric need not be positive de�nite. Onecan do minimal surfaces in a Minkowski metric,but it takes a little care.

3.6. Internal RepresentationEach geometric element (vertex, edge, facet, body)is implemented as one data structure. An elementis stored as an oriented entity, but may be referredto with this orientation or the inverse one. Thereis a data type element id that contains a pointerto an element structure and a relative orientation(normal or inverted). This type is used for all refer-ences to elements. The connectivity of the surfaceis speci�ed by having links in each element struc-ture to the next higher- or lower-dimensional ele-ments it intersects. One design principle followedis that each element should contain links to a �xednumber of other elements. Thus the body struc-ture does not record bounding facets itself; rather,the facet structure has two slots to record whichbody (if any) is on each of its sides.The surface connectivity is completed by intro-ducing facet-edge structures, which are a simpli-�cation of the scheme described in [Dobkins andLaszlo 1987]. A facet-edge structure contains linksto a facet and an edge on the facet's perimeter(with proper boundary orientation), plus links tothe previous and next facet-edges around the facetand to the previous and next facet-edges aroundthe edge. This permits a quick run-through of allfacets containing a given edge, and also the rep-resentation of facets with an arbitrary number ofsides, which is necessary in certain situations.
4. ENERGIESThis section describes the various forms of energythat may be combined into the Evolver's total en-ergy function.
4.1. Surface TensionSoap �lms and interfaces between di�erent 
uidshave an energy proportional to their area. In theEvolver, each facet has a surface tension of 1 un-less otherwise speci�ed. Di�erent facets may havedi�erent surface tensions. It is possible to endowboth facets and chosen edges with tension in or-der to model surfaces where singular curves haveenergy, as in [Morgan].Contact angles between free surfaces and walls,as in capillary problems, can be speci�ed by intro-ducing facets that are con�ned to the wall and havea di�erent surface tension, as in the wall examplein x 2.2. Negative tensions are allowed, so that all
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contact angles are possible. However, this methodhas the drawback that a moving free boundary onthe wall can overrun wall facets, as shown in Fig-ure 3. Another method of prescribing contact an-gles, described in x 4.5, uses edge-energy integrals.There is no general mechanism yet to includethe integral over the surface of a general scalar in-tegrand that may depend on position and tangentplane orientation. However, the use of a Rieman-nian metric on the ambient space can often achievethe same e�ect.
4.2. Crystalline IntegrandsThe Evolver can model energies of crystalline sur-faces. A crystalline surface energy density dependson the direction of the normal vector to the sur-face. Such a quantity is known as a crystallineintegrand [Taylor 1983; 1988]. The energy densityin this case is given by the largest dot product ofthe surface normal with a set of vectors known asthe Wul� vectors. Surface area can be regardedas a crystalline integrand with respect to a set ofWul� vectors coinciding with the unit sphere. Inthe Evolver, a �nite set of Wul� vectors may bespeci�ed, and the corresponding crystalline energycomputed.A surface can have either crystalline energy orsurface tension, not both.
4.3. Surface IntegralsA facet may contribute an energy resulting from in-tegrating a vector �eld over the facet as a surfaceintegral. Multiple vector �elds may be de�ned inthe data �le as functions of the coordinates, andany facet may use any number of them. Besidessurface energies, surface integrals can be used tohandle volume energies, such as gravitational en-ergy, thanks to the divergence theorem. Integralsare calculated numerically using Gaussian quadra-ture.
4.4. GravityA body B having density � contributes its gravi-tational energy to the total. The acceleration ofgravity G is under user control. The gravitationalenergy is de�ned as

E = G�Z Z ZB z dV;

but is calculated by the divergence theorem asE = G�Z Z@B z22 ~k � d~S:The integral is taken over each facet that boundsa body. If a facet bounds two bodies of di�erentdensities, the appropriate di�erence in density isused. Vertical facets or facets lying in the planez = 0 make no contribution and may be omittedif they are not needed otherwise. Facets lying inconstraints may be omitted if their contributionsto the gravitational energy are contained in edgeenergy integrals.Gravity is a special case of a surface integrand,but it is implemented internally for several reasons:it can be evaluated exactly without numerical in-tegration; it is common enough to be worth savingthe user the trouble of setting it up; and, in general,evaluation of user-de�ned integrand expressions isslower than that of compiled-in energies.The built-in gravity does not apply to Rieman-nian metrics or quotient spaces; users must de�netheir own gravitational energy integrands in suchcases.Gravity applies to bodies, not surfaces. Surfacesare weightless. If one does want heavy surfaces,one can use the metric mechanism to simulate ascalar surface integrand.
4.5. Edge IntegralsAn edge may contribute an energy resulting fromintegrating a vector �eld over the edge as a lineintegral. An edge integral can be associated with aconstraint: it then applies to every edge subject tothat constraint. The objective of this is to let thefree edges of a surface have energy. This is usefulin controlling the contact angle of a surface on awall. As mentioned in x 4.1, the contact angle canbe speci�ed by giving an energy density to the wallon one side of the surface edge. Alternatively, anedge integral can be de�ned that gives an energyequivalent to the wall energy, thanks to Stokes'Theorem. This eliminates the need to coat the wallwith facets. Likewise, edge integrals can be used toreplace other facet energies, such as gravitationalenergy, for facets on constraints.An edge integral is evaluated once for each edgeassociated with it|regardless of how many facetsit is on|using the orientation inherited from thedata �le.
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4.6. Prescribed Mean Curvature and PressureFor an equilibrium surface with a constant sur-face tension, the mean curvature is proportional tothe pressure di�erence across the surface. There-fore, prescribing the mean curvature is equivalentto prescribing the pressure di�erence. The Evolverpermits the user to prescribe pressures in bodies.Pressure can be de�ned as the rate of change of en-ergy with respect to volume, so the pressure featureis implemented by having each body with a pre-scribed pressure P contribute energy E = �PV ,where V is the actual volume of the body. Theenergy is actually calculated by a surface integralE = �P Z Z@B z ~k � d~S:The desired surface need not really be the entireboundary of a body; it may have �xed edges. Theenergy contributed by the omitted boundary is con-stant and so does not a�ect the shape of the sur-face.This method will only work if the desired surfaceis stable at the prescribed pressure. If curvaturedecreases as volume increases, the surface will ei-ther blow up or implode. For example, if a roundsoap bubble of surface tension T and initial ra-dius R0 is prescribed to have pressure P > 2T=R0,the pressure force will cause the bubble to expand.This reduces the curvature, so the pressure cannever be balanced by the curvature, and the bubbleexpands inde�nitely.
4.7. Squared Mean CurvatureThere are circumstances under which one wantsthe energy to include the integral over the sur-face of the squared mean curvature. Surfaces thatminimize this integral are calledWillmore surfaces.This presents a problem, in that, for our piecewiselinear surfaces, the mean curvature (in the formof �rst-variation measure) is singular and concen-trated on the edges. Its square integral is thereforealways in�nite. However, it is possible to come upwith a usable approximation. An average meancurvature around each vertex can be calculated,and the integral of the square of this average canbe counted as energy.The de�nition of mean curvature used here isa variational one, and corresponds to the aver-age of the sectional curvatures rather than their

sum. The integral of squared mean curvature inthe soap-�lm model is calculated as follows: Eachvertex v has a star of facets around it of total areaAv. The force on the vertex is~Fv = �@Av@v :Mean curvature is proportional to force per unitarea. Since each facet has three vertices, the areaassociated with v is 13Av. Hence the average meancurvature at v is taken as~hv = �32 ~FvAv ;and this vertex's contribution to the total integralis Ev = 13h2vAv = 34 F 2vAv :Ev can be written as an exact function of the vertexcoordinates, so the gradient of Ev can be fed intothe total force calculation.The alternative to locating curvature at verticesis to locate it on the edges, where it really is, and toaverage it over the neighboring facets. But this hasthe problem that a least-area triangulated surfacewould have nonzero squared curvature, whereas inthe vertex formulation it has zero squared curva-ture.Squared mean curvature is also implemented forthe string model, but not for quadratic models. Inthe string model, let Lv be the sum of the lengthsof the edges adjacent to v, so the force on a vertexis ~Fv = �@Lv@v :Each edge has two endpoints, so the length associ-ated with v is 12Lv, the curvature is~hv = �2~FvLv ;and the vertex's contribution to the total integralis Ev = 12h2vLv = 2F 2vLv :
4.8. GapsConsider a soap �lm spanning a circular wire. TheEvolver must approximate this surface with a col-lection of facets, as shown in Figure 6. The straightedges of these facets cannot conform to the curved
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FIGURE 6. Surface in a ring, showing the gap prob-lem. Left: The initial surface. The vertices are freeto move along the boundary wire. Right: Afterone iteration, the gaps have grown and the surfacearea has shrunk.wire, so the computed area of the surface leaves outthe gaps between the outer edges and the wire. Ifthe vertices are free to move along the wire, butnot o� of it, the Evolver will naturally try to min-imize area by moving the outer vertices around sothat the gaps increase, which is what is happeningin Figure 6. This is not good. Sometimes the ver-tices can be �xed on the wire, but at other timesthis is not possible, for example, when the sur-face is spanning the inside of a cylinder and theedge of the surface is free to move on the cylinder.Therefore, there is provision for a \gap energy" todiscourage growing gaps. A constraint of the typede�ned in x 5.1 may be declared convex in the data�le. For an edge on such a constraint, an energy iscalculated as E = 16k k~S � ~Qk;where ~S is the edge vector and ~Q is the projectionof the edge tangent to the constraint at the tailvertex of the edge. The global constant k is calledthe gap constant. A gap constant of 1 gives thebest approximation to the actual area of the gap.A larger value of k minimizes gaps and gets verticesnicely spread out along the wire.Another way to handle gaps is to de�ne an edgeintegral (see x 4.5) that is zero on the constraintand positive on the convex side of the constraint.Edge integrals are evaluated on interior points ofthe edge, so the bigger the gap, the bigger the in-tegral. This encourages the edges to be of equallength.Of course, the introduction of any additional en-ergy component changes the problem slightly. Butthe gap energy decreases quadratically with the

�neness of the triangulation, and so should notchange the solution signi�cantly. By changing theconstant associated with this energy, one can seewhether the problem is being signi�cantly altered.In actual practice, gap energy is seldom usedwith a wire boundary, since it is much simpler justto declare the vertices on the wire �xed. The realuse for gap energy comes with surface edges onwalls, where the vertices cannot be �xed.
5. CONSTRAINTSEnergy minimization takes place subject to con-straints of two types: constraints on the motionof vertices and constraints on the value of surfaceintegrals. Vertices can be individually constrainedby declaring them �xed, by con�ning them to levelsets of functions (this is Evolver's narrow meaningof the term constraint), or by de�ning their posi-tion in terms of parameters (Evolver boundaries).Surface integrals in general are called quantities,and the particular case of body volumes is imple-mented internally.
5.1. Level-Set ConstraintsA vertex may be con�ned to the zero level set ofone or more functions. Such a function is calleda constraint in Evolver terminology. In this pa-per, it should be clear from the context when theterm constraint is used in this narrow sense andwhen in the broader mathematical sense. The de-fault is the narrow sense. Constraint functions arede�ned by the user in the initial data �le, and num-bered for reference. Vertices may be declared to beon one or more constraints simultaneously, but itis the user's responsibility to ensure that the con-straint function gradients at a vertex are linearlyindependent. There are also one-sided constraints;this means that a vertex is restricted to the regionwhere the constraint function has nonnegative (ornonpositive) values.When a vertex is moved for whatever reason,Newton's method is used to project it back to itsconstraints. There is a global constraint toleranceparameter that the user can set in order to controlthe accuracy of constraint satisfaction. The coor-dinates of a vertex in the initial data �le do nothave to satisfy its constraints exactly; the vertexwill be automatically projected. A vertex on con-straints may also be declared �xed, which means
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that it will not move after its initial projection. If aconstraint is modi�ed during runtime by changingan adjustable parameter, all vertices are projectedagain so as to satisfy the new constraint.Edges and facets may be declared to be on con-straints. This means that all vertices generated bysubdividing them will be on the same constraints.A single constraint is the best way to attach afree edge of a surface to a wall. Two constraintscon�ne a vertex to a curve; but if a one-dimensionalwire is desired instead of a two-dimensional wall,it may be better to use the parametrized boundaryfeature described below.
5.2. BoundariesEvolver boundaries are one- or two-dimensional pa-rametrized manifolds; they are an alternate way toconstrain the position of vertices. A vertex on aboundary cannot also have constraints. Vertices,edges and facets may be deemed to lie in a bound-ary. For a vertex, this means that the fundamentalparameters of the vertex are the parameters of theboundary, and its coordinates are calculated fromthese. When a vertex on a boundary moves, themotion is projected back to parameter space andapplied to the parameters. Edges and facets ona boundary bequeath the boundary to descendantvertices.A delicate question is how to deal with wrap-arounds on a boundary such as a circle or cylinder.Subdividing a boundary edge requires a midpoint,but taking the average parameters of the endpointscan give nonsense for an edge where the parametervalue is discontinuous. Therefore the average co-ordinates are calculated, and the resulting point isprojected on the boundary parameters as contin-ued from one endpoint. The rings in the catenoidexample in x 2.1 are represented as one-parametercircles and show a case where the endpoint extrap-olation is necessary in the re�ning operation.A general guideline is to use constraints for two-dimensional walls, and boundaries for one-dimen-sional wires. If one uses a boundary wire, the ver-tices and edges on the boundary can probably bedeclared to be �xed. Then the boundary becomesjust a guide for re�ning the boundary edges.
5.3. QuantitiesA quantity in the Evolver is a value that can be ex-pressed as the sum of integrals of vector �elds over

surfaces and edges. Quantities can be evaluatedfor informational purposes, or they can be used asconstraints (in the mathematical sense). Body vol-ume is an example of a built-in quantity. Surfacearea is not a quantity in this sense, since it cannotbe written as a vector integral.User-de�ned quantities are supported|for ex-ample, one might use as quantities the center ofmass, the moment of inertia, the magnetic 
ux,and so on. The key in many of these cases is the di-vergence theorem, which permits volume integralsto be written as surface integrals. One can alsouse a quantity in place of a body volume that isawkward to handle with the built-in volume mech-anisms, as when a background metric is used.Each quantity is speci�ed in the data �le by thesurface integrand and the facets it is to be inte-grated over, plus the edge integrand and the edgesit is to be integrated over. A quantity acts as amathematical constraint when it is declared �xedand given a speci�ed value. Its actual value maybe displayed and its target value changed inter-actively. Quantities have the same mathematicalform as the surface and edge energy integrals dis-cussed in Section 4, but they are used for con-straints or information rather than as part of theobjective function.
5.4. VolumesThe term volume is used here for the highest-di-mensional measure of a region in n-space: area inR2, volume in R3, etc. A body may have a volumespeci�ed in the data �le, which then becomes avolume constraint. The volume of a body B canbe written as V = Z Z ZB 1 dV;which by the divergence theorem can be written asurface integral:V = Z Z@B z~k � d~S:This integral is evaluated over all the boundaryfacets of a body.The part of the boundary of a body lying on aconstraint need not be given in terms of facets. If itis not, the user can use Stokes' Theorem to convertthe part of the surface integral on the constraintto a line integral over the edges where the body
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surface meets the constraint. The line integrandsare given as part of the constraint de�nition in thedata �le. These edge volume integrals can also beused to overcome the volume calculation problemscaused by the gaps between curved constraints and
at facets.Volumes are a special case of quantities, andare implemented internally for Euclidean space and
at torus domains only. In general quotient spacesor in Riemannian metrics, it is up to the user to de-�ne volume constraints by using the general quan-tity constraint mechanism.
5.5. Volumes in a Torus DomainThe volume of a body can be automatically calcu-lated in a torus domain, but the wrapping of theedges across the faces of the fundamental regionmakes the calculation tricky. Ideally, we would liketo adjust the vertices by multiples of the fundamen-tal region basis vectors to get a body whose volumewe can �nd with regular Euclidean methods. Un-fortunately, all we know are the edge wraps, thatis, the di�erences in the adjustments to endpointsof edges. But this turns out to be enough if we arecareful with the initial volumes in the data �le.Let the facets of a body be indexed bym, and letvmi, for i = 0; 1; 2, be the vertices of facet m. Let~Ami be the (unknown) vertex adjustment for vertexvmi, and ~Tmi the (known) wrap vector (di�erence inendpoint adjustments) for edge i of facet m. ThenV = 16Xfacets m(~vm0 + ~Am0) � (~vm1 + ~Am1)� (~vm2 + ~Am2)= 16 (S1 + S2 + S3 + S4); (5.1)where S1 = Xfacets m~vm0 � ~vm1 � ~vm2;S2 = X0facets m~vm0 � ~vm1 � ~Am2;S3 = X0facets m~vm0 � ~Am1 � ~Am2;S4 = Xfacets m ~Am0 � ~Am1 � ~Am2:
In S2 and S3, the notation P0 means that eachfacet is included three times in cyclic permutation,once with each vertex as base point.

The �rst of these sums is straightforward. Thesecond sum can be regrouped with one term foreach edge j, pairing the two facets j and j0 foreach edge together:S2 = Xedges j ~vj0 � ~vj1 � ~Aj2 + ~vj1 � ~vj0 � ~Aj02= Xedges j ~vj0 � ~vj1 � ( ~Aj2 � ~Aj02)
= Xedges j ~vj0 � ~vj1 � 12(~Tj02 + ~Tj1 � ~Tj2 � ~Tj01):We can regroup this into a sum that can be donefacet by facet, each facet appearing three times:S2 = 12 X0facets m~vm0 � ~vm1 � (~Tm1 � ~Tm2):In S3 we group terms with a common vertex to-gether, with the inner facet sum over facets withvertex k as base vertex:S3 = Xvertices k�~vk �Xfacets i~Ai1 � ~Ai2�
= Xvertices k�~vk �Xfacets i( ~Ai1 � ~Ak)� ( ~Ai2 � ~Ak)�
= Xvertices k�~vk �Xfacets i~Ti0 ��~Ti2�=X0facets m~vm0 � ~Tm2 � ~Tm0;which again can be done facet by facet. The stepintroducing Ak is valid, since the Ai1 are just arelabeling of the Ai2, and so PiAi1 =PiAi2:The sum S4 is a constant, and so only needs tobe �gured once. Also, it is an integer multiple ofthe fundamental region volume Vc, so its contribu-tion to the body volume is a multiple of 16Vc, byequation (5.1). Therefore, if we assume that thevolume prescribed in the data �le is within 112Vc ofthe actual volume, we can calculate the other sumsand �gure out what the fourth sum should be.The body volume gradient at vertex v can beeasily found from the above sums, since the basevertex is dotted with other terms. The gradient isa sum over all facets with base vertex v:@V@v = 16 Xfacets m on v�~vm1 � ~vm2+ 12~vm1 � (~Tm1 � ~Tm2) + ~Tm2 � ~Tm0�:
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6. ITERATIONThe heart of the Evolver is the iteration step thatreduces energy while obeying any constraints. Thesurface is changed by moving the vertices. Nochanges in topology or triangulation are made. Theidea is to calculate the force at each vertex and tomove the vertex in that direction, thus using a gra-dient descent method of minimization.
6.1. Force CalculationThe �rst iterative step is the calculation of theforces on the vertices. The total energy of the sur-face is viewed as a function of the coordinates ofthe vertices. The negative gradient of the energyas a function of the position of a single vertex givesthe force on that vertex. Collectively, all the forceson all the vertices make up the negative of the totalgradient of energy. No new approximations are in-troduced by the force calculation; the energy maynot be exact due to numerical integrations, but thegradient is the exact gradient of the approximateenergy.Vertices on constraints have their forces projec-ted to the tangent spaces of the constraints. Ver-tices on boundaries have their forces mapped backto forces on the boundary parameters. Fixed ver-tices have their forces set to zero.
6.2. Volume and Quantity ConstraintsThe second iterative step is to enforce constraintson body volumes and other integrated quantities.It has two parts. The �rst part consists of cor-recting for any errors in the current values of thequantities. The second part consists of project-ing the vertex forces to be orthogonal to the quan-tity gradients. Both parts use the gradients of thequantities as functions of the vertices. Let ~Wvk bethe gradient of quantity k as a function of the po-sition of vertex v. These gradients are projectedon constraint level sets or boundaries or are set tozero in the same manner as forces.The value correction consists of applying a singlestep of Newton's method. Let the current excessvalue of quantity k be �k (which may be negative,of course). We assume that the correcting motion~Rv at vertex v is of the form~Rv =Xk ck ~Wvk

and satis�esXv ~Rv � ~Wvk = ��k for each k:This leads to the following linear system for the ck:Xk ckXv ~Wvk � ~Wvk0 = ��k0 for each quantity k0:
This system is solved for the ck, and hence for themotions ~Rv. The motion is not carried out imme-diately, but as part of the overall motion describedbelow. The quantity values are not perfectly cor-rected by this step, but over several iterations theyshould converge to the target values.The second part is the projection of the forces.Let ~Fv be the total force at vertex v. We want aprojected force ~F 0v of the form~F 0v = ~Fv �Xk ak ~Wvksuch thatXv ~F 0v � ~Wvk = 0 for each quantity k;which leads to the following linear system for ak:Xk akXv ~Wvk � ~Wvk0 =Xv ~Fv � ~Wvk0
for each quantity k0. The coe�cients ak are theLagrange multipliers for the quantity constraints,and can be interpreted as pressures for body vol-ume constraints. Whenever the user asks for bodyvolumes to be displayed, these pressure values arealso shown.
6.3. MotionEach vertex is moved by the quantity correctionmotion plus a scale factor times the force at thevertex. The scale factor is a global constant, thesame for all vertices. Its physical interpretation isthe time step over which the velocity acts. Theuser may set the scale factor explicitly or let theEvolver seek the optimal value. In the latter mode,the Evolver will successively double or halve thescale factor until a minimum in energy is bracketed.Then quadratic interpolation is used to estimatethe optimum scale factor, and that value is used inthe �nal motion.Each time a motion is done, all vertices on con-straints are projected back to their constraints by
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repeated application of Newton's method, until theconstraint function value is smaller than a con-straint tolerance factor, which the user may set.If vertices subject to one-sided constraints are onthe wrong side of the constraint, they are projectedto the constraint. If such a vertex wants to moveto the proper side of the constraint, it is freed fromthe constraint.From experience, it seems that, for two-dimen-sional surfaces driven by surface tension, the op-timum scale factor is around 0.2, independent ofthe �neness of the triangulation, as long as thesurface is evolving without problems. The univer-sality of the scale factor is expected in this case,since the scale factor is unitless in length for two-dimensional area only. When the scale factor divestoward zero, this usually signi�es some impend-ing problem, like an edge length or a facet areabecoming zero. Unfortunately, the value 0.2 ap-plies best to minimizing area; other models, suchas the string model and squared mean curvature,have \normal" scale factors that vary with trian-gulation size and other factors, so it is hard to tellwhen the surface is evolving properly and whenit is getting into trouble. In these circumstances,other methods have to be used, such as monitoringthe surface visually and checking edge length andfacet area histograms.
6.4. Motion by Mean CurvatureThe mean curvature vector �eld ~h of a surface S isde�ned to be the gradient of the area of S, in thesense that if S is deformed with an instantaneousvelocity ~u, the rate of change in its area isdAdt = Z ZS ~u � ~h dA:By de�nition, ~u = �~h under motion by mean cur-vature, so that dAdt = �Z ZS h2 dA: (6.1)
By default, the gradients of quantities like energyand volume are calculated simply as the gradient ofthe quantity as a function of vertex position. Thisgives the force on a vertex, for example. But tosimulate motion by mean curvature, it is necessaryto have force per area instead. In the triangulation

formulation, let Av be the area of the star of facetsaround vertex v and let~Fv = �@Av@vbe the force on v. ThendAdt =Xv ~u(v) � �~Fv:
Take the area associated with a vertex to be one-third of the total areas of the facets surroundingthe vertex, dA = 13Av. Since each facet has threevertices, this allocates all area. Hence, as the ap-proximation to ~h, we take~hv = � ~3FvAv :If the Evolver is operated in \area normalization"mode, the vertex motions are calculated using thisformula. In this mode, the user should set the scalefactor, which is the timestep for the evolution, toa constant small enough for the iteration to be agood approximation to the continuous evolution.Using an optimizing scale factor makes the timestep too large.The string model is more amenable to close scru-tiny of how the Evolver does motion by mean cur-vature. In x 2.3 an example was given of grainboundaries evolving in two dimensions. In approx-imating motion by mean curvature, there are twodiscretizations that must be made, in space andin time. The space discretization here consists ofrepresenting the grain boundaries as a set of linesegments, and the time discretization consists ofthe iteration steps. There is an intermediate stageof discretization, namely, the continuous time evo-lution of the discrete segments. The equation ofmotion for this problem has been chosen to approx-imate the fully continuous problem in the followingrespect. Two-dimensional grain evolution has theproperty that the rate of change of area of a graindepends only on the number of its sides. If ~h is themean curvature of the boundary of a grain G, sothat each point on the boundary moves with ve-locity �~h, the rate of change of area of the grainis dAdt = Z@G�h ds = �Z@G d�dsds = �Z@G d�:
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The total turning angle around the boundary ofa grain is 2�, but each triple vertex contributes aturning angle of �=3, so thatdAdt = (N � 6)�3for an N -sided grain. The space-discrete, time-continuous problem preserves this property. Themotion of each vertex is such that the change inarea of the grain due to the motion of that vertexis proportional to the turning angle at that vertex(or to the excess turning angle at triple vertices).A property that is not exactly preserved is thatthe rate at which work is performed as area is sweptis proportional to the rate of length loss,dWdt = Z@G ~v � ~F ds = Z@G h2 ds = �dLdt :The last equality is the string version of equation(6.1). To preserve this property would require solv-ing a system of linear equations linking togetherthe motions of all the vertices.The space-discretized evolution is guaranteed tobe dissipative, but the time-discretized evolutioncan su�er from instabilities. Consider a boundarymade up of segments of length L zigzagging abouta straight midline with small amplitude y. The ve-locity of a vertex will be 4y=L2, and if the time stepis �t, the amplitude will grow if 4y�t=L2 > 2y.Hence the maximum timestep allowable is �t =L2=2, or, conversely, the minimum edge length isL = p2�t. Exact damping of the zigzag occurswhen �t = L2=4.
6.5. Conjugate GradientFor minimizing a quadratic function, the techniqueknown as the conjugate gradient method [Press etal. 1988, x 10.6] is far more e�cient than gradientdescent. With exact arithmetic, it minimizes ann-dimensional quadratic function in at most n it-erations. This method does not follow the gradientdownhill, but makes an adjustment using the pasthistory of the minimization.The Evolver uses the Fletcher{Reeves variant ofthe conjugate gradient method. At iteration stepi, let Si be the surface, Ei its energy, ~Fi(v) theforce at vertex v as described above, and ~hi(v) the\history vector" of v. Then~hi(v) = ~Fi(v) + 
~hi�1(v);

where 
 = Pv ~Fi(v) � ~Fi(v)Pv ~Fi�1(v) � ~Fi�1(v) :For the actual motion, a one-dimensional mini-mization is performed in the direction of ~hi, us-ing the bracketing method described in x 6.3. It isimportant that all volumes and constraints be en-forced during the one-dimensional minimization, orelse the method can go crazy.The energy function of a surface is not exactlyquadratic, but the method can still be applied, andsometimes it yields very good results. But some-times it's worse than regular iteration. The saddlepoint of energy in the catenoid example of x 2.1seems to confuse the conjugate gradient method.With conjugate gradient, in e�ect, the saddle pointis passed at iteration 17 and the area decreasesagain until iteration 30, when it reaches 6.4486.But at this point further iteration produces nochange, and the conjugate gradient mode has tobe turned o� and on to erase the history vector.Once restarted, another 20 iterations will get thearea down to 6.4334. This shows that conjugategradient mode can work much better than ordi-nary mode, but it can also have problems.
6.6. Hessian MinimizationMinimization by gradient descent or even by con-jugate gradient can take many iterations. A moredirect way to try to minimize is to calculate theHessian matrix of second derivatives of energy andsolve for the motion that gives zero gradient. Thismethod is currently implemented only for the casewhere surface tension is the only energy and wherethe only constraints are �xed vertices. It assumesthat the surface is close enough to a local minimumfor the Hessian to be positive de�nite, which is notalways true. When the method works, it can �ndthe minimum energy to 15 decimal places in threeor four iterations. But if the Hessian is not pos-itive de�nite, the method blows up. It is easy to�nd examples with a saddle point of energy, suchas the catenoid example. There are checks in placeto ensure that the calculated motion does indeedreduce energy.
6.7. DiffusionIn real soap bubble clusters, air can di�use acrossthe soap �lms, driven by pressure di�erences. Since
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smaller bubbles have higher curvature and hencehigher pressure, they tend to shrink. One canwatch a foam evolve over the course of minutes,changing its topology as bubbles disappear. TheEvolver can simulate di�usion. If the di�usionmode is on, target volume is transferred acrosseach facet at the start of each iteration cycle, inan amount equal to the area of the facet timesthe di�erence in body pressures times the globaldi�usion constant. The iteration step then cor-rects the actual volumes to the target volumes anddoes its normal energy minimization step. Topol-ogy changes are not done automatically yet; it is upto the user to carry them out, using the operationsdescribed in Section 7.
7. SURFACE OPERATIONSThis section describes the main operations avail-able to the user for modifying a surface, aside fromthe iteration step described in the previous section.
7.1. RefiningTo re�ne a triangulation is to subdivide each facetto create a �ner triangulation. The Evolver doesthis by creating new vertices at the midpoints ofedges, which it then uses to subdivide each facetinto four new facets, each similar to the original.The �rst stage of re�ning is to subdivide all edgesby inserting a midpoint. Hence all facets temporar-ily have six sides. For an edge on constraints, themidpoint gets the same set of constraints and isprojected to them. For an edge on a boundary,the parameters of the midpoint are calculated byprojecting the vector from the edge tail to the mid-point back into the parameter space and by addingthat to the tail parameters. This avoids averag-ing parameters of endpoints, which gives bad re-sults when done with boundaries that wrap aroundthemselves, such as circles. In the second stage,each facet is subdivided into four facets by con-necting the new midpoints.Certain attributes of new elements are inheritedfrom the old elements from which they were cre-ated. The new facets inherit the surface tension oftheir parent facets. Fixity, constraints and bound-aries are always inherited by o�spring of all dimen-sions. In a quotient space, some, but not all, newedges inherited symmetry group wrapping, so thatthe surface is correctly embedded.

Re�ning can change surface area, energy and vol-umes if there are curved constraints or boundaries.For example, re�ning the surface of Figure 6 in-creases its area, because it decreases the gap area.In seeking the minimum energy, it is best toevolve with a coarse triangulation as far as pos-sible. Each iteration can propagate a position ad-justment only one edge at a time, so the �ner thetriangulation, the longer adjustments take to travelacross the surface.
7.2. EquiangulationTriangulations work best when the facets are asclose to equilateral (that is, equiangular) as pos-sible for a given set of vertices. Given a set ofvertices, how does one make a triangulation forthose vertices that has triangles as nearly as pos-sible equilateral? In the plane, the answer is theDelaunay triangulation, in which the circumcircleof each triangle contains no other vertex [Sibson1978]. It is almost always unique. It can be con-structed by local operations beginning with any tri-angulation. Consider any edge as the diagonal ofthe quadrilateral formed by its adjacent triangles.If the angles of the two vertices o� of the diago-nal add to more than �, the circumcircle criterionis violated, and the diagonal should be switchedto form a replacement pair of triangles (Figure 7).When no more switches can be done, we have aDelaunay triangulation.

b d
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FIGURE 7. The two adjacent triangles on the leftviolate the equiangulation criterion, since we have�1+�2 > �. Equiangulation 
ips the quadrilateraldiagonal, making the triangles more nearly equian-gular.Now suppose that we have a triangulation of acurved surface in space. For any edge with twoadjacent facets, we switch the edge to the other
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diagonal of the skew quadrilateral if the sum ofthe angles at the o�-vertices is more than �. As inFigure 7, let a be the length of the common edge, band c the lengths of the other sides of one triangle,and d and e the lengths of the other sides of theother triangle. Let �1 and �2 be the o�-angles. Bythe law of cosines,a2 = b2 + c2 � 2bc cos �1 = d2 + e2 � 2de cos �2:The condition �1 + �2 > � is equivalent to cos �1 +cos �2 < 0. So we switch ifb2 + c2 � a2bc + d2 + e2 � a2de < 0:The equiangulation procedure over the whole sur-face may have to be repeated several times to getcomplete equiangulation, but almost never morethan three or four times. The process is guaran-teed to terminate, since a switch reduces the radiiof the circumcircles, and a �nite set of vertices hasa �nite number of triangulations.Equiangulation can have an almost magical ef-fect in improving a triangulation, and I highly rec-ommend its regular use. It may temporarily in-crease area and change volumes, but the magni-tudes of these e�ects are within the approxima-tion error of using 
at facets for a curved surface.Equiangulation was used between the second andthird scenes in Figure 1.
7.3. Vertex AveragingAn evolving surface can get into trouble if some ofthe vertices of the triangulation get too scrunchedtogether, as in the second scene in Figure 3. Toget vertices to spread out, one can use vertex av-eraging. For each vertex, this operation computesa new position as the area-weighted average of thecentroids of the facets adjoining the vertex. Fixedvertices are not moved, and vertices on boundaries,constraints or singular curves are averaged onlywith neighboring vertices of the same type. Also,to keep the new surface as close as possible to theold one, volumes on both sides of the surface arepreserved. If vertex v is on facets fi with centroids~xi, the new position is calculated as

~vavg = Pi area fi � ~xiPi area fi :

The volume on one side of all the facets around thevertex calculated as a cone from the vertex isV = Xfacets f ~v � ~Nf ;
where ~Nf is the facet normal representing its area.The total normal ~N is~N = Xfacets f ~Nf :To preserve volume, we subtract a multiple � ofthe total normal from the average position:(~vavg � � ~N) � ~N = ~v � ~N;so � = ~vavg � ~N � ~v � ~N~N � ~N :Then the new vertex position is~vnew = (~vavg � � ~N):Constrained vertices are then projected to theirconstraints.Vertex averaging may slightly increase area, butthis is usually o�set by its bene�ts. It is usefulin getting the vertices spread out evenly. Evolu-tion can be awkward when facets are of very dif-ferent sizes, since the same scale factor applies tothe whole surface.
7.4. Notching EdgesA surface can be locally highly curved, resulting infacets forming pronounced ridges along edges. Oneway to selectively re�ne the surface is to re�ne onlyaround those edges whose adjacent facets are toofar from parallel, putting a notch in the edge tomake it more saddle-shaped. There is a commandthat lets the user do this with a cuto� angle of hischoosing. The re�nement is actually done by sub-dividing each adjacent facet by putting a new ver-tex in the center. Equiangulation then completesthe process. Formerly, the Evolver did notchingby just subdividing the o�ending edges, but thattended to create lots of long skinny triangles andnot always help matters. The new method seemsto work better.
7.5. Edge and Facet OperationsOne way to improve a triangulation is to simplyeliminate all edges that have become too short.
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This operation is known as tiny-edge weeding. Ev-ery edge shorter than a user-set cuto� length thatcan legitimately be removed is deleted by identify-ing its endpoints.Sometimes there are very skinny triangles thatshould be eliminated, but which don't have a shortedge to be found by tiny-edge weeding. One canthen use area weeding, an operation that removestriangles whose area is smaller than some cuto�,by �nding the shortest edge of the triangle andeliminating it by the same process as regular tiny-edge removal.There is a command that will bisect all edgeslonger than a user-chosen length. All facets ad-joining the edges are also subdivided into pairs offacets. If the new edges are still longer than thecuto� length, they are not further subdivided. Itis suggested that this step be followed by equian-gulation.Histograms of edge lengths and facet areas canbe displayed in conjunction with any of these com-mands.
7.6. Annealing, or JigglingSometimes it may be desirable to perturb the sur-face to get it o� a metastable position. Both ran-dom and user-de�nable perturbations are possible.Because of its similarity to the thermal perturba-tions responsible for annealing in metals, the char-acteristic magnitude of the perturbation is calledtemperature.Under a random permutation, or jiggle, each co-ordinate of each non�xed vertex is moved by �x =TLg, where g is a random value from the standardGaussian distribution (calculated from the sum of�ve random values from the uniform distributionon [0,1]), T is the current temperature, and L is acharacteristic length that starts as the diameter ofthe surface and is cut in half at each re�nement.A long jiggle is a sinusoidal displacement of eachvertex v by ~A sin(~v � ~w+ ). The amplitude ~A, thewave vector ~w and the phase  may be speci�edby the user or be chosen at random.
7.7. Popping Edges or VerticesThe Evolver does not change the topology of a sur-face on its own, but there are many times when anaturally evolving surface will need to change itstopology. A neck might pinch out in a catenoid

whose boundary rings are too far apart, or twogrowing metal grains might meet. Fortunately, thetypes of singularities possible in soap-�lm surfacesin three-dimensional space were classi�ed in [Tay-lor 1976] for uniform surface tension. Three sur-faces may meet along a curve, or four triple curvesmay meet at a point. The Evolver has proceduresknown as edge popping and vertex popping to de-tect improper singularities and to reduce them toproper types. These routines are designed only forsurfaces with uniform surface tension. Many moretypes of singularities are possible if the di�erentcomponent surfaces meeting at a singularity havedi�erent surface tensions.Edge popping looks for edges that are not �xed,are not on boundaries or constraints, and lie onmore than three facets. When found, such an edgeis split longitudinally, with a new facet in between.The two old facets with the smallest dihedral anglebetween them are attached to the new edge. This isrepeated until only three facets are on the originaledge. Each split is propagated along the multiplejunction line as far as possible. If it is impossibleto propagate the split beyond either endpoint, theedge is subdivided to provide a vertex that can besplit.Vertex popping assumes that each edge belongsto at most three facets, so it should be preceded byedge popping. The facet and edge structure aroundeach vertex is analyzed to �nd which vertices havethe wrong topology. This is done by looking at thelink of the vertex: the intersection of the facets andedges containing the vertex with the surface of asmall sphere around the vertex. The numbers ofsides of the cells in the link are counted. A sim-ple plane vertex has two cells of one side each. Atriple-edge vertex has three cells of two sides each.A tetrahedral point has four cells with three sideseach. Any other con�guration is popped. The pop-ping is done by replacing the vertex with a hollowformed by truncating each cell-cone except the cellwith the largest solid angle. If the link is discon-nected, the solid angles of all the cells will add upto over 4�. Then the vertex is duplicated and thedi�erent components are assigned to di�erent ver-tices. This lets necks shrink to zero thickness andpull apart.In the string model, vertices with more thanthree edges are popped by �nding the pair of edgesmaking the least angle, then pulling them out a
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short distance with a new vertex and joining thenew and old vertex with a short edge. This isrepeated until the original vertex has only threeedges.Improper vertices may exist in the original data�le, or they may be introduced by short-edge elim-ination. For example, the pinching neck in a cate-noid must have all the short edges around its waisteliminated to pinch the waist down to one vertex,which can then be popped. The other operationsdescribed in this section (re�ning, vertex averag-ing, equiangulation, notching) do not change theglobal topology and so do not introduce impropervertices. Improper vertices are not automaticallydetected unless the autopop feature is on.
7.8. ZoomingSometimes the detail of a surface may require acloser look. The graphics display can magnify asurface, but that doesn't change the triangulationto follow the detail. There can be cases, as whena boundary wire passes through a soap �lm, wherethe detail around a point is on a scale 100,000 timessmaller than the whole surface [Brakke 1992a]. Forthis reason the Evolver allows the user to zoom inon a vertex, throwing away the rest of the surfaceto save memory and time and to keep all trianglesizes reasonably close together.The user speci�es the vertex that the programshould zoom in on and a cuto� distance. All ver-tices beyond the cuto� distance from the given ver-tex are deleted. Then all edges and facets contain-ing any deleted vertices are deleted. Any remainingedge from which a facet was deleted is made �xedin order to anchor the cut edges of the surface.
8. USER INTERFACE DETAILSThis section describes the Evolver's user interface,including the initial data �le, the command mech-anism and the graphics interface.
8.1. The Initial Data FileThe initial con�guration of a surface is read froma text �le referred to as the data �le. The data�le has �ve sections: general de�nitions, vertices,edges, faces and bodies. The catenoid data �lecat.fe is presented in the sidebar on the nextpage, to give the 
avor. This �le is slightly atyp-ical in that none of the vertices are given directly

by their coordinates. The .fe �lename extensionis a relic of early versions of the Evolver in whichfacet-edges had to be explicitly listed in the data�le; I continue to use it out of habit to identifydata �les.The data-�le syntax provides several features for
exibility and ease of use. Simple macros can bede�ned to do text substitution. Compound ex-pressions can be used wherever a real number or aformula is expected. Normal arithmetic and stan-dard functions are available. For functions that areevaluated during runtime, such as constraints andquantities, expressions are stored as syntax treesthat are interpreted when the expression needs tobe evaluated. If interpretation is too slow, user-de�ned functions may be written in C and com-piled into the Evolver. Named variables, calledadjustable parameters, may be declared and usedin runtime expressions, and changed interactivelyat runtime. They are useful for moving constraintsand boundaries around, modifying the metric orcontact angles, and so forth.The de�nitions section contains data not per-taining to particular geometric elements, such as� declarations and initial values for adjustable pa-rameters;� the dimension of the surface and the dimensionof the ambient space containing the surface;� the speci�cation of a quotient space, or, for a
at torus domain, the vectors de�ning the fun-damental parallelepiped;� Riemannian metric tensor components;� for a crystalline surface energy, the name of theWul� vector �le;� constraint function formulas, together with en-ergy and volume integrands for edges on con-straints;� boundary de�nitions via formulas of coordinatesin term of parameters;� quantity integrands, with target values for con-strained quantities;� initial values for the gravitational constant, thedi�usion constant, the weighting factor for thesquared mean curvature in the energy, the Gaus-sian integration order, and linear or quadraticmode.None of these items are required. If an item ismissing, the feature is not used, or is used with anatural default value.
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// cat.fe: Evolver datafile for catenoid.// ring radius and height// adjustable at runtimePARAMETER radius = 1PARAMETER height = 0.55// upper ring, parametrized by p1boundary 1 parameters 1x1: radius * cos(p1)x2: radius * sin(p1)x3: height// lower ringboundary 2 parameters 1x1: radius * cos(p1)x2: radius * sin(p1)x3: -heightvertices /* second column = value of p1 */1 0*pi/3 boundary 1 fixed2 1*pi/3 boundary 1 fixed3 2*pi/3 boundary 1 fixed4 3*pi/3 boundary 1 fixed5 4*pi/3 boundary 1 fixed6 5*pi/3 boundary 1 fixed7 0*pi/3 boundary 2 fixed8 1*pi/3 boundary 2 fixed9 2*pi/3 boundary 2 fixed10 3*pi/3 boundary 2 fixed11 4*pi/3 boundary 2 fixed12 5*pi/3 boundary 2 fixededges /* given by endpoint vertices */1 1 2 boundary 1 fixed2 2 3 boundary 1 fixed3 3 4 boundary 1 fixed4 4 5 boundary 1 fixed5 5 6 boundary 1 fixed6 6 1 boundary 1 fixed7 7 8 boundary 2 fixed8 8 9 boundary 2 fixed9 9 10 boundary 2 fixed10 10 11 boundary 2 fixed11 11 12 boundary 2 fixed12 12 7 boundary 2 fixed13 1 714 2 815 3 916 4 1017 5 1118 6 12faces /* given by oriented edge list */1 1 14 -7 -132 2 15 -8 -143 3 16 -9 -154 4 17 -10 -165 5 18 -11 -176 6 13 -12 -18

The vertices section lists the vertices, one perline. Each vertex is numbered for later reference,and is de�ned by its coordinates (or boundary pa-rameters), which constraints or boundaries it is on,and whether it is �xed.The edges section lists the edges, one per line,also numbered for reference. Each edge is de�nedby its tail and head vertex numbers, the constraintsor boundaries it is on, which quantities it con-tributes to, and whether it is �xed. If a quotientspace is being used, the group element for wrappingthe head vertex to the proper place with respect tothe tail vertex is also given.The faces section lists polygons forming the ini-tial surface. Each polygon is given by its edge num-bers, in order around its circumference. Edges tra-versed in opposite direction from that given in theedges section are given as negative numbers. Thepolygons need not be planar, and they need not betriangles (which is why the section is called \faces"instead of \facets"). The Evolver will immediatelytriangulate nontriangular faces by putting a newvertex at the average position of the original ver-tices and by putting in edges from the new vertexto each original vertex. Each face may be on con-straints, on boundaries, or be �xed. It may begiven a speci�c surface tension; the default is 1.0.It may be deemed to contribute to certain quantityintegrals, and to have certain surface integrandscontribute to the total energy.In the bodies section, each body is de�ned bylisting its bounding faces by number, the numberbeing negative if the orientation of the face in theface list has an inward normal. There may be anynumber of faces in any order. Faces do not haveto completely enclose a body; they are used tocompute volume and other integrals, and if certainfaces are not needed for that, they may be omitted.A body may be declared to have a �xed volume ofa certain value. The actual initial volume need notbe that exact value; the volume will be adjustedduring the iteration process. A body may also begiven a density, which will cause the total energyto include the gravitational potential energy of thebody with that density.
8.2. Command InterfaceThe user command interface is built on a sim-ple terminal-type model for maximum portability.The main prompt is \Enter command:". There
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are two types of commands. The �rst consistsof one letter occasionally followed by a number;the second is an embryonic query language. Cur-rently, queries are supported that list, display, re-�ne or delete elements by various criteria. Com-mands may be read from a �le with the command\read �lename". The output of any command canbe piped to a system command. Commands thatchange the surface or the model will cause energiesand volumes to be recalculated. Commands can belogged to a �le for later repetition with the readcommand.
8.3. GraphicsIt is possible to run the Surface Evolver withoutany graphics. But being able see the surface isalways nice, and often essential to understanding.Unfortunately, every computer system has its ownway of displaying graphics, and there is no uni-versal standard. The Evolver isolates the system-dependent graphics to drawing line segments andtriangles in two dimensions. This cuts down thee�ort in porting to new systems. The Evolver'smain graphics routine calculates the triangles tobe displayed and calls the device-dependent sub-routine to do the display. The device could be ascreen display or a graphics output �le writer.Two classes of graphics devices are provided for:those that can do their own viewing transforma-tions and hidden surface removal, and those thatcan't. The former are simply provided with a listof triangles with vertex coordinates in three dimen-sions. For the latter, the Evolver keeps an inter-nal viewing transformation matrix, sorts the trans-formed triangles from back to front, and feeds themto the display routine (painter's algorithm). Thesorting algorithm will not subdivide intersectingtriangles. If two triangles overlap, it will just �ndone point in the overlap and compare depths there.This can lead to some strange-looking displays forstrange surfaces, but it works well for the types ofsurfaces for which the Evolver is designed.My favorite graphics system is the geomview pro-gram on Iris workstations. Geomview is an inter-active viewer that lets the user rotate, translate,zoom, and otherwise move the surface by dragginga mouse cursor over the window. A high-end Irisworkstation can light, shade and smoothly rotatea surface consisting of several thousand triangles.The Evolver is interfaced with geomview so that

the display is automatically updated whenever thesurface changes. Geomview was written at TheGeometry Center and is freely available (see \Soft-ware Availability" at the end of this article).Other types of screen displays do not have suchfancy view control as geomview. Instead, there is aterminal-type command interface that lets the usercontrol the viewing angle and size of the display.This viewing transformation is also used for thegraphics output �les.There are several graphics output �le formats,most notably PostScript. The surfaces illustratingthis article were done with the PostScript format.There are also formats that list transformed or un-transformed triangles as text, suitable for input toother programs.
8.4. Other CommandsIt is possible to reset the values of many param-eters during runtime, including the gravitationalconstant, body volumes, constrained quantity tar-gets, the di�usion constant and the user-de�nedvariables used in formulas for constraints, bound-aries, quantities and metrics.The current surface can be dumped to a text�le in the same format as the data �le. This isthe only way to save a �le; there is no binary saveformat. The text format has the advantages that itis portable, editable and not too much larger thana binary �le would be.After minimizing energy at several levels of re-�nement, it is possible to extrapolate the energyto an in�nitely �ne re�nement. The extrapolationuses the �nal energies of three successive re�ne-ments and assumes a power law approach to theultimate minimum.
9. APPLICATION: THE HOPF CONE CONJECTUREIn this section I present an example of a conjecturethat was settled (negatively) through the use of theEvolver.In constrast to the situation inR3, the classi�ca-tion of area-minimizing hypersurface cones in R4is unknown. Frank Morgan once conjectured thata certain cone in R4 is absolutely area minimizing[Morgan 1986, p. 1278]. Use of the Evolver showedthat this is not the case: a comparison surface wasfound that has less area for the same boundary.This example illustrates the use of a Riemannian
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metric to permit a surface in three dimensions torepresent one in four dimensions, by projecting outa symmetry.Morgan's cone is based on the Hopf �bration ofthe 3-sphere S3. Let S3 be parametrized by � 2[0; �=2], � 2 [0; 2�] and 
 2 [0; 2�], by means ofthe formulasx1 = cos� cos�;x3 = sin� cos 
; x2 = cos� sin�;x4 = sin� sin 
;where (x1; x2; x3; x4) are the Euclidean coordinatesof a point in S3 � R4. The boundary of Morgan'sHopf cone consists of the three surfaces� � 
 = 0� � 
 = 23�� � 
 = 43�
(mod 2�);(mod 2�);(mod 2�):These three surfaces have zero mean curvature andmeet at 120-degree angles along the two orthogonalcircles x21 + x22 = 1 and x23 + x24 = 1:

Theorem.Morgan's Hopf cone is not absolutely areaminimizing.
Proof of . The idea of the proof is to take the quo-tient space of R4 modulo the Hopf �bers S1, theresult being R3 with a metric such that the area ofa surface in R3 is the same as the 3-area of the liftof the surface back into R4. The metric turns outto have a natural interpretation as a cone space,leading to a simple counterexample that can beveri�ed by the Evolver.The metric on R4 in Hopf spherical coordinates(r; �; �; 
) isds2 = dr2 + r2d�2 + r2 cos2 � d�2 + r2 sin2 � d
2:The coordinates of the quotient space R3 will be(r; �; �), where � = � � 
. The orthogonally pro-jected metric isds2 = dr2 + r2d�2 + r2 sin2 � cos2 �d�2:The lift of a point in R3 is a circle of circumfer-ence 2�r. Hence we can make the 3-area of thelift of a surface have 2� times the 2-area in R3 bymultiplying the linear metric ds by pr, giving ane�ective metric ofds2 = r dr2 + r3d�2 + r3 sin2 � cos2 �d�2:

This can be made to look more like the ordinaryspherical coordinate metric by using coordinates� = 12r3=2 and ' = 2�. Thends2 = 169 d�2 + �2d'2 + �2 sin2 'd�2:This is the Euclidean spherical coordinate metric,except for the factor 169 > 1, which makes R3 intoa cone space.Morgan's Hopf cone projects to three planes thatmeet at 120 degrees, a con�guration known to beabsolutely area minimizing in the standard metricof R3. Its area inside the unit sphere (in the Hopfmetric) is 2�. However, the cone factor makes itmore expensive for a surface to go radially inwardthan to go sideways. In a two-dimensional cone, itis easily seen (by unrolling the cone) that geodesicsavoid the origin. A similar phenomenon happenshere. To improve on Hopf's cone, one starts bydeforming the three planes by pushing the pointat the origin out toward one of the boundaries.When fed into the Surface Evolver, this con�gura-tion evolves to the surface of Figure 8, which has

FIGURE 8. This surface is a counterexample toMorgan's Hopf cone conjecture. The three outeredges are equally spaced half{great-circles on theunit sphere. Note how the surface avoids the centerof the sphere.an area of 6.14, less than that of Morgan's Hopfcone. The numerical errors in this area are dueto the numerical integration used to calculate thearea of the facets and the gap between the curvedboundary and the facets. Both of these can easilybe estimated to be less than the improvement. �The Hopf cone that projects to the tetrahedralcone is also not minimizing. The Evolver gives 7.44for the area of the comparison surface in Figure 9,while the area of the cone is 4 cos�1(�1=p3) =
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7:6425. The only other minimizing cone in stan-dard R3, the 
at plane, also deforms to avoid theorigin. Thus none of the area-minimizing cones instandard R3 lifts via the Hopf �bration to a mini-mizing cone in R4.

FIGURE 9. Comparison surface for the tetrahedralHopf cone. The three outer edges lie on the unitsphere. Again, the surface avoids the center of thesphere.
10. FUTURE DIRECTIONSThe Surface Evolver is under continual develop-ment. I welcome suggestions from users for newfeatures. If they are reasonable, they will be addedas time permits.Some mathematical questions and programmingprojects for the future are the following:� How close in various senses is an Evolver mini-mal surface to the true smooth minimal surfacefor a given problem?� The Evolver gives an upper bound for the areaof a minimal surface. The technique of cal-ibrations, which generalizes the min-cut-max-
ow duality from network theory, can give lowerbounds. A near-minimal surface should be ableto generate a near-maximal calibration. Hencea goal is to have the Evolver generate such cal-ibrations.� How close is an Evolver evolution by mean cur-vature to an ideal smooth evolution? Given aninitial smooth surface, is it possible to constructan Evolver approximation that stays close tothe ideal evolution? A more permissive notionof approximation would say that for each Evol-ver evolution there is an ideal smooth evolutionthat stays near it.

� The current method of approximation to motionby mean curvature needs further investigation.The gradient of energy is a covector, and mo-tion is a vector. The conversion from covector tovector requires a metric or inner product. Theinner product used by the Evolver is the Eu-clidean inner product at vertices, weighted bythe vertex star area. Other inner products arepossible and may have desirable properties.� Instabilities of the type described in x 6.4 oftenlimit the size of the time step in an evolution.These instabilities need to be understood andmethods have to be developed to speed evolu-tion.� Automatic triangulation management needs tobe extended. Currently, users have to monitorthe surface triangulation closely and intervenemanually when it gets fouled up. I hope to beable to have any initial surface evolve for anylength of time without user intervention, as isnow the case for string evolution as described inx 2.3.� An interactive graphical interface could let usersselect with a mouse the geometric elements (ver-tices, edges, etc.) they wish to work with, andit could be an interactive tool for the design ofinitial surfaces and data �les.
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SOFTWARE AVAILABILITYThe Surface Evolver program is available free of charge.It is written in C, in such a way as to be portable be-tween systems. So far it has been ported to Sun, Iris,NeXT, Xenix and MS-DOS systems. The major e�ortin porting to a new system consists of writing a screengraphics interface. However, this is fairly simple, sincethe system-dependent routines need only display trian-gles. The program can also be run without any screengraphics, which makes it possible to run remotely.A package containing source code, manual and sam-ple data �les is available by anonymous ftp in the �lepub/evolver.tar.Z on the machine geom.umn.edu. Aseparate �le, pub/evolver.next.tar.Z, contains a ver-sion for the NeXT computer, including Interface Builder�les. The Evolver is also available on 
oppy disk fromthe author. The manual in TEX dvi format is includedin the ftp archive. A hardcopy version of the manualcan be requested separately from the author, or directlyfrom The Geometry Center, 1300 South Second Street,Minneapolis, MN 54554.Geomview is likewise available from geom.umn.edu,in directory pub/geomview.
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