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From numerical experiments, D. E. Knuth conjectured that
0 < Dny4 < D, for a combinatorial sequence (D,,) de-
fined as the difference D,, = R, — L,, of two definite hy-
pergeometric sums. The conjecture implies an identity of type
L, = |R,], involving the floor function. We prove Knuth’s
conjecture by applying Zeilberger’s algorithm as well as clas-
sical hypergeometric machinery.

1. THE CONJECTURE

In a combinatorial study, D. E. Knuth [1994] was
led to comsider a nonterminating hypergeometric
series representation of the numbers

"~ 2k
L, ::Z( k ), where n > 0.

k=0

The (ordinary) generating function of the se-
quence it := (Zkk) is 1/4/1 — 4z, a special instance
of the binomial series, and thus

- - 1
2 Lud" = 1—2)vI_4z

n=0

Expanding 1/(1—2) as a series in powers of (1—4z)
and equating like coefficients results in

L= (" ) o

=0
Let 7, denote the summand expression, and re-
call a bit of hypergeometric notation, for instance,
from [Graham et al. 1994]. The rising factorials are
defined as zF = z(z+1)...(x + k — 1) for k > 1,

2% = 1, and the general hypergeometric series as
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Now, if the series representation of L, is rewritten
in hypergeometric form,

_ _af2n %7 Ly
oyt 420,
the essential asymptotic information about L,, for
n — 0o becomes explicit. But Knuth observed a
good deal more. Assuming n as fixed, we quote
from [Knuth 1994): “First the terms r,  decrease
rapidly, until k& = [3n + ], after which they in-
crease and begin to oscillate wildly—so they look
like they’re diverging for sure. But then after k =
|3n + 1] they begin to settle down and soon are
converging like (—1)*”. He added some numerical
evaluations; for instance, for n = 10 the partial
sum
121043)
> ri0x = 250953.29

k=0

is quite close to the exact value of Ly = 250953.
From those experiments he became convinced of
the “curious” identity

i(if) - {

k=0

[(8n+2) /4] P
> sepr(f ) e
k=0
(1.1)
More generally, if R,, denotes the sum inside the
floor brackets on the right hand side of (1.1), Knuth

proposed the following conjecture:

Conjecture 1.1 (Knuth). For D, := R,, — L,

0< Dypia <D, foraln2>D0. (1.2)

Indeed, this implies (1.1), because the four initial
values are less than 1 (Dy = %, D, = g, Dy, =1

9
1
D3 = ﬁ)’ and

0=|D,] = |Rn— Ln] = |Ry| — Ln.

In view of the preceding derivation one could
guess that there are many more identities involv-
ing the floor function like (1.1). But up to now
identities of this type have not been discussed in
the literature, and no standard tools are available

for their treatment. The object of this note is to
show that the key for the proof of Knuth’s con-
jecture consists in applying methods belonging to
different, sometimes even considered as opposite,
paradigms, the Zeilberger algorithm and the clas-
sical hypergeometric machinery. For an introduc-
tion to both theories see, for instance, [Graham et
al. 1994].

2. THE PROOF

Because of the floor function arising in the upper
summation bound of R,,, we consider the problem
separately for each congruence class mod 4. First,
forn = 4m, m > 0, let l,, = Lypn, T™m = Raim,
and d,, = Dy, The proof of (1.2) splits into the
monotonicity part, d,,+1 < d,,, and the positivity
part, 0 < d,,.

The Monotonicity Part

The Mathematica implementation by Paule and
Schorn [1995] of Zeilberger’s algorithm is able to
treat also definite hypergeometric sums where the
summation bounds are integer linear in the recur-
rence parameter. Applying the program to [, =
i:o (2kk) and r,, = ZZO T4m,k delivers the simple
inhomogeneous recurrences

lmt1—lm =a(m) and 7y —7m = a(m)—b(m),

where

a(m) = 16 (680m> + 1302m? + 784m + 147)
(8m + 1)!
X
(4m)! (4m + 4)!

and

(2m + 1)! (6m + 1)!
(m+1)! (3m)! (4m + 3)!

b(m) = 57 Bm+7) (5)™"

The proof of the computer result is human-veri-
fiable and is also delivered by the program.
Combining the recurrences by subtraction yields

dp — g1 = b(m), @.1)



which, because of b(m) > 0, proves the monotonic-
ity part of (1.2) for n = 4m.

The other cases work analogously; see (2.5) be-
low.

The Positivity Part

Applying the computer program from [Paule and
Schorn 1995], monotonicity turned out to be sur-
prisingly simple to prove. In this section we demon-
strate that recursion (2.1), derived with the help of
the computer, also provides the key for the proof of
positivity, i.e., of 0 < d,, for all m > 0. But to this
end we have to make extensive use of classical hy-
pergeometric machinery. Nevertheless, the Math-
ematica package hyp.m developed by C. Kratten-
thaler [1996] greatly facilitates the work.
From (2.1) and dy = 3, for all M > 0 we have

M-1

dy = do + Z (dmt1 — dim)

m=0

=d0—2b(m)>§—2b(m).

=0

Hence positivity is proved once we can show that

> b(m) =1L (2.2)

m=0

The convergence of this series is extremely slow,
and all computer algebra systems I have access to
failed on its evaluation.

The hypergeometric evaluation proceeds as fol-
lows. First one rewrites the series as a hypergeo-
metric 5F}, and, because no standard summation
formula can be found, one—in view of there being
a top entry 1 and a bottom entry 2—applies con-
tiguous relation C16 of Krattenthaler’s package,

> 1
Zb(m):g5p4(2’

m=0
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This reduces the original problem to showing
that the ,F3 evaluates to zero. Again no stan-
dard summation formula can found. But, observ-
ing that top entry g and bottom entry —% differ
exactly by 1, a further reduction is possible by ap-
plying contiguous relation C30 of Krattenthaler’s
package,

Now the decisive step consists in using an impor-
tant but less known cubic transformation of W. N.
Bailey [Bailey 1928, Eq. (4.06)], which the author
found in a paper by I. Gessel and D. Stanton [Ges-
sel and Stanton 1982, Eq. (5.6)], namely

<a,a+§,a+§‘ 272> )
P\b+ 1, 3a—b+174(1 )3
3a,b,3a—b+%_

=(1- 3“F(
(=25 P o) 60 —2p 11

4$). (2.4)

The two 3 F from (2.3) correspond to the left-hand
side of (2.4) with z = 1 and (a,b) = (—¢,—3) or
(3,2), respectively. In both cases we have 3a =
2b. This means that applying (2.4) reduces each of
the two 3F» from (2.3) to a o F; with argument 1,
which can be evaluated in closed form by using

well-known Gauss summation

a,f N\ _ Tly—a-pI'(y)
A (% ’1)_F(7—a)F(7—ﬂ)'

For the latter see, for instance, [Graham et al.
1994]. From the closed form evaluations it is easily
verified that the difference on the right hand side
of (2.3) indeed is zero, which completes the proof
of the positivity part of (1.2) for n = 4m. The
other cases work analogously as made explicit in
the following section.
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Summary

In order to give a complete picture of the situa-
tion, let dS}'L) := Dymyi. The general version of the
monotonicity result, including (2.1), is this:

Proposition 2.1 (Monotonicity). For i € {0,1,2,3}
and m > 0 we have
d® —dP., =9 (m) (2.5)
where b (m) = b(m) and
b (m) = 18 (168m? 4 343m + 170) (1)°"
(2m + 1)! (6m + 1)!

"l (3m)! (dm 1 5)!
)3777,

b® (m) = 53 (40m +47) (3
(2m)! (6m + 5)!
"l (3m 1 2)! (4m 4 5)!
b (m) = £ (8m + 7)(2m +3) (1)™"
(2m + 1)! (6m + 5)!
! (3m +2)! (4m + 7)!

This settles monotonicity, i.e., D, 4 < D,, for all
n > 0; the proof is analogous to that of (2.1).

The proof of positivity, i.e., of 0 < D,, (which
equals d® if n = 4m + i), follows analogously to
that of the case ¢ = 0 using this result:

Proposition 2.2 (Positivity). Fori € {0,1,2,3},

> b (m) =dg). (2.6)
m=0

These evaluations can be obtained by following es-
sentially the same steps as in the derivation of the
corresponding result (2.2) for ¢ = 0. For the reader
who is interested in the underlying hypergeometric
structure, we spell out a more conceptual proof of
(2.6) in Section 3. It is based on one-parameter
generalizations of the crucial cubic Bailey trans-
form evaluation; it also explains a slight subtlety
that arises in the case ¢ = 1.

Combining monotonicity (2.5) and the positivity
result (2.6) Knuth’s conjecture (1.2) is proved for
all n > 0.

We conclude this section with a corollary.

Corollary 2.3. For the differences d%[) = Rapryi —
Lyprii, with i € {0,1,2,3} and M > 0, we have

oo

di} =" b9 (m) (2.7)

m=M

Proof. The monotonicity part (2.5) establishes (2.7)
up to a constant; the positivity part (2.6) estab-
lishes (2.7) for M = 0. O

3. GENERALIZATIONS

In Section 2 (page 85), we evaluated Y, ., b®(m)
to = 3, using Bailey’s transform (2.4). " Here we
state one-parameter generalizations (Proposition
3.2) that, in certain combinations, specialize to
evaluations of Y . b®(m) for all residues i. The
two-parameter generalization (3.3) sheds additional
light on the underlying hypergeometric structure.

For base case evaluation we need the following
lemma.

Lemma 3.1. If 3a + 1 = 2b then

(a,a—i—%,a—i—% ) (2)3e
3 1) =

; = . 3.1
b+%,3a—b+2 a+1 G-

Proof. By contiguous relation €34 from Kratten-
thaler’s package, the left-hand side of (3.1) equals

3a—b+1 (a,a—f—%,a—i—% ‘1)
20 —b+1""°\b+1 3a—b+1’
a a—l—%,a—l—%,a—l—l
20 -b+1 b+3,3(a+3)—b+1

Now on each of the 3F»’s Bailey’s transform (2.4)
can be applied and the lemma follows by

POTED)
LOI(d+ 3) ’
which is a consequence of the factorial duplication

formula, for example [Graham et al. 1994, Exercise
5.22]. O



For 6 € {1,2} let

a,a—i—%,a—l—%,c—f—l,l_ )

Ks(a,b, ::F( ;
o(a,b,¢) i= 5y b+l 3a—b+6,c 2

Then the generalizations involving the extra pa-
rameter c read as follows:

Proposition 3.2. (i) If 3a = 2b then

K,(a,b,c)

() ble—1) (3) c—1
a—1(-Dec ' ¢ (1+(a—1)(b—1))'
(i) If 3a + 1 = 2b then
(3)? (b—3)b(c—1)
a—1(0-3)(b_1)c

(%)Zb a—c a(c—1)
+(a—1)c(b—|—1 (a——)(b—l))

Proof. The evaluations can be derived by following
the same steps as in Section 2 (page 85); in the
situation of part (ii) one needs the above lemma
for base case evaluation. 0

K(a,b,c) = —

Now positivity can be derived as follows; note that
because of (2.5) it suffices to prove (2.7) for M = 0.

Proof of of Proposition 2.2. The cases ¢ =2 and ¢ = 3
are immediate from the representations

i b2 (m
m=0

and
- 2
Zb(3)(m) ¥K1(57%7%)7
m=0

which can be verified easily. The i = 1 evalua-
tion is more delicate, because b*)(m) involves the
polynomial factor 168m? +343m + 170 which turns
out to be irreducible over the rational number field.
Nonetheless, a suitable representation can be found
automatically by using the software mentioned ear-
lier [Paule and Schorn 1995]. Calling the procedure
Gosper[F, m, order] with order = 2 and F =
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F(m) = bM(m)/(168m? + 343m + 170) one finds a
quadratic-polynomial multiple f(m) of F(m),

f(m) = (72m® 4 139m + 65) - F(m),

such that
7 oo
m=0

and that f(m) =g(m+1)

g(m) =—=9(m+ 1)(dm + 3)(4m + 5) - F(m).

— g(m), where

Hence Y °_, f(m) telescopes and reduces to —g(0),
which equals %. Finally, evaluating

1
O e
completes the proof. O

Remark. Case ¢ = 1 can be put in a somehow more
natural hypergeometric context if one climbs up
the “hypergeometric hierarchy” as follows. Let

Ly(a,b,c,d)
—F (a, a—i—%, a—i—%, c+1,d+1,1 ‘1)
— 645 1 )
b+3,3a—b+2,¢,d,2
Then one can prove (details are left to the reader):

Proposition 3.3. If 3a + 1 = 2b, then

(3 (0—3)b(c—1)(@d—1)

Ly(a,b,c,d) =

a-1 (b-3)(b—1)cd
—I—(i)%r(a,b,c,d), (3.3)
where
5 (0= 3)b(e—1)(d-1)
b d =5 T - - 1)
Cth(a—o)a—d) . b-c)b—d)
(a—l)(a+1)+3

(b— Hb+1)
= b

One easily checks that Ly(a,b, ¢, 00)
For i = 1 we have

- 2¢.7.¢c-d
Z b(l)(m) = WLQ(%, %,C, d),
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where

343— V3409 343+ /3400
= - I ==
336 & 336

We also get an alternative and simpler represen-
tation for the case ¢ = 2, namely

> 247
> 00m) = S L3, 5,4, 8).
m=0

c

35

It is clear that several further families of hyper-
geometric series evaluations could be found along
similar lines. For instance, as pointed out by one
of the referees, Lemma 3.1 can be generalized to

a,a+ 3,0+ 2
3F2 ( 1 ° 3 ) U))
b+ 3 3a—b+2

_3a+1(1—m>3“ 2a (1—93)3““

a+1 y a+1\ y ’
where again 3a +1 = 2b, but w = & - 2?/(1 — z)?
and y = (1 4+ +/1 — 4x)/2. The proof is almost the

1

same as that of Lemma 3.1, which has z = 7; the

only difference is that instead of Gauss summation
one uses the summation formula

a, a+ 1t 14+41—2\"%
(e rr %) = (5 )

- 3.4
20+1 7 (3-4)

for evaluating the resulting ,F;’s. This formula
follows directly from Gauss’s quadratic transfor-
mation [Graham et al. 1994, Eq. (5.110)].

The same referee also indicated that analogously
explicit formulae for

F( aa+g,a+3 .w)
2\(Ba+n)/2,Ba+n~+1)/2" ")

where n is an integer, and for an xz-generalization of
Proposition 3.2 can be found. For instance, Propo-
sition 3.2 generalizes as follows:

Proposition 3.4. For 6 € {1,2} and
w=2.2*/(1-x)%
let

a,a—i—%,a—i—%,c—i—l, 1 )

Ky(a,b,60) 1= T ,
o(a,b, ciw) i= 5Py b+%,3a—b+6,c,2 v

() If 3a =2b and y = (14 /1 — 4x), then

Ki(a,b,c;w) = —%C(Lg_i (()15(3__1;2
s (5 (5"

~—

(i) If 3a + 1 = 2b and y is as above then

L (5)” (0=3)b(c—1)

Ky(a,b,¢) = —— =~ (b—2)(b—1)c
1) (b—3)(e=1)
wa—1(b—2)(b—1)c

y 3(b_1)<;x 2b3_2(b_g)<1_—$)2b2)

y
+ (a_f)zbcﬂ)c <3b<1;x)2b1—2(b—%) <1_7x>2b) .

Again, the proof is almost the same as that of
Proposition 3.2, which has z = %; the only dif-
ference is using (3.4) for evaluating the resulting
o Fs.

We also want to note that independently P. W.
Karlsson [Karlsson 1995] derived some evaluations
of type sF3(“,")* ;2) at z = % from transforma-
tions related to Bailey’s other cubic transforma-
tion [Bailey 1928, Eq. (4.05)], listed also as [Gessel
and Stanton 1982, Eq. (5.3)]. There the results are
based on a limit formula [Karlsson 1995, Eq. (1)],
but contiguous relations are used in an analogous
manner.

4. CONCLUSION

In his letter, D. E. Knuth asked whether his conjec-
ture can be proved with “mechanical summation
methods”. With respect to this question the so-
lution presented here succeeds only partially. De-
spite the fact that Krattenthaler’s package was sig-
nificantly helpful, it has to be viewed as a collection
of manipulation rules that provides computer as-
sistance in classical hypergeometric work. Hence,
not only concerning the 5F, arising in (2.2) and



(2.6), but also in general, the problem of mechani-
cal evaluation of (nonterminating) hypergeometric
series seems to be quite far from being solved.

One possible approach is to make algorithmic
use of contiguous relations. With respect to ter-
minating cases this has been suggested by G. E.
Andrews in connection with his recent work on
“Pfaff’s method” [Andrews 1996; a; b]. A first in-
teresting attempt has been made by N. Takayama
[1996].
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