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This article is the result of experiments performed using com-
puter programs written in the GAP language. We describe an
algorithm which computes a set of rational functions attached
to a finite Coxeter group W. Conjecturally, these rational func-
tions should be polynomials, and in the case where W is the
Weyl group of a Chevalley group G defined over [F, the values
of our polynomials at q should give the number of IF,-rational
points of Lusztig’s special pieces in the unipotent variety of G.
The algorithm even works for complex reflection groups. We
give a number of examples which show, in particular, that our
conjecture is true for all types except possibly B, and D,,.

1. INTRODUCTION

Let G be a connected reductive algebraic group de-
fined over some algebraically closed field k. Let Xg
be the partially ordered set of unipotent classes of
G, where we write C' < (" if and only if C lies in the
Zariski closure of C'. Following Spaltenstein [1982]
and Lusztig [1997], we can define a partition of X
into so-called special pieces. To do this, we first have
to recall some facts about the Springer correspon-
dence and special characters of Weyl groups. (These
facts can be found in [Lusztig 1984, (13.1)] for the
case where the characteristic of k is “good” for G,
and in [Geck and Malle 1999, Theorem 2.1] for the
case of “bad” characteristic.)

Let W be the Weyl group of G (with respect to
some maximal torus). The Springer correspondence
associates with each irreducible character of W a
pair (C,v), where C € X and 1 is an irreducible
character of the group of components of the cen-
tralizer of an element in C. This correspondence is
injective but, in general, not surjective. However, it
is a fact that all pairs (C, 1) arise in this way. Given
C € X we denote by ¢ the irreducible character
of W such that ¢ corresponds to (C,1).

Recall from [Lusztig 1984, Chap. 4] that the irre-
ducible characters of W are partitioned into families
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and that each family contains a unique special char-
acter. Another known fact is that all special charac-
ters are of the form pc for some C € Xg. A unipo-
tent class C € X is called special if the character
e is special.

The required partition of X is now defined as
follows. Each piece of this partition is a union of
some unipotent classes of G. Two unipotent classes
C,C" € Xg belong to the same piece if and only
if o, e belong to the same family of characters
of W. Since each family contains a unique spe-
cial character and each special character is of the
form ¢¢ for some class C, we see that each piece of
X contains a unique special unipotent class. These
pieces are called the special pieces of Xg. One of the
main results of [Lusztig 1997] asserts that a special
piece consists precisely of the unique special unipo-
tent class C' in it and all unipotent classes in the
closure of C' which are not contained in the closure
of any strictly smaller special unipotent class.

Now assume that k is an algebraic closure of the
finite field IF, (where ¢ is a power of some prime p)
and that G has a split [, -rational structure, with
corresponding Frobenius map F'. Then each unipo-
tent class is F-stable and, if C' is such a class, there
exists a polynomial fo € Q[u] (where u is an inde-
terminate) such that |CT"| = fo(q®) for all s > 1.
Note, however, that the classification of unipotent
classes is different for different primes p. Neverthe-
less, Lusztig has shown the following surprising re-
sult in [Lusztig 1997] (which appeared as a conjec-
ture in [Lusztig 1981al):

Theorem 1.1 [Lusztig 1997]. Let W be a finite Weyl
group. Then there exists a collection of polynomials
{f,} € Z[u], one for each special character ¢ of
W, such that the following hold: whenever G is a
connected reductive algebraic group with Weyl group
W and F : G — G is a Frobenius map corresponding
to some split F -rational structure on G (for some
prime power q), then |C¥| = f,(q) where C is the
special prece corresponding to .

Lusztig’s proof is case by case, using some very elab-
orate counting arguments. This paper arose from an
attempt to find a more conceptual proof. We pro-
pose a general algorithm for computing the poly-
nomials f,. This algorithm even works for complex
reflection groups. Several examples of computations

will be given. The algorithm was found by exper-
imentation, with the help of programs written in
CHEVIE [Geck et al. 1996] or GAP [Schonert et al.
1994]. See also the section on Electronic Availability
at the end of this paper.

2. THE ALGORITHM

We will describe an algorithm, which takes as input
a finite Coxeter system (W, S) and returns a list of
polynomials, one for each special character of W.
This algorithm is a variant of that for computing
Green functions, as explained in Shoji [1987].

First, we need to recall the basic definitions of the
a-invariants and the b-invariants of the irreducible
characters of W (see [Lusztig 1979] for more back-
ground).

Let V be a real vector space and W C GL(V)
the standard geometric realization of W, where the
elements in S are reflections (see [Bourbaki 1968,
Chap. V, §4]). Let u be an indeterminate; we define

I
u® —1
PW;:H u—1"

i=1

where dy,ds, ... are the degrees of W. Let CF(WW)
be the space of R-valued class functions on W, and
let R: CF(W) — R(u) be the map defined by

3 g 1 e(w)f(w)
R(f) :== Pw(u — 1)‘ | W] U)EZVV det(u - idy —w)

for f € CF(W), where ¢ denotes the sign charac-
ter. Then we have in fact R(f) € R[u] and even
R(f) € Zu] if f is a character (see [Carter 1985,
Proposition 11.1.1]). If ¢ € Irr(W), then R(yp) is
called the fake degree of . The b-invariant of ¢
is defined as the largest r > 0 such that «” di-
vides R(p) or, equivalently, as the smallest r > 0
such that ¢ occurs with nonzero multiplicity in the

character of the r-th symmetric power of the W-
module V.

We define a matrix Q = (wy,ur)pprenw) (With
entries in Z[u]) by

We ! = NR(‘P ®¢ ®e)

where N is the number of reflections in W. We shall
need the following result:



Lemma 2.1 (Lusztig). For any p, ¢’ € Irr(W), we have
We.pr = 04 u?N + remainder,

where remainder is a linear combination of strictly
smaller powers of u and d, . is the Kronecker sym-
bol. Consequently, the determinant of any principal
minor of  is nonzero.

Proof. Write ¢ @ ¢’ ® € = 3, conip” where the sum
is over all ¢"” € Irr(WW) and ¢, are nonnegative
integers. It is clear that c. = d, . Hence

Wepr = U 0y R(e) + Z coru™ R(¢").
P! Fe

Now the definition of R shows that R(ly) = 1
(where 1y denotes the trivial character) and that
R(¢") has constant term 0 if ¢” # ly. Combin-
ing this with the formula in [Carter 1985, Proposi-
tion 11.1.2], we conclude that R(¢) = u" and that
R(¢") is a polynomial in u of degree < N if p” # e.
Thus, the first statement is proved.

Now consider a principal minor of €2 of size k. The
diagonal entries of that minor are all monic polyno-
mials of degree 2NV, and the off-diagonal entries are
polynomials in u of degree strictly smaller than 2/V.
This implies that the determinant of that minor is a
monic polynomial in u of degree 2N k; in particular,
it is nonzero. ]

To define the a-invariants, we need the notion of
the generic degree of an irreducible character of W
(see [Benson and Curtis 1972]). They are defined
in terms of the 1-parameter generic Iwahori—-Hecke
algebra H associated with (W, S). This is an asso-
ciative algebra over the field R (u'/2) (where u!/? is
an indeterminate), with a basis {7}, | w € W} such
that the following relations hold:

1. Ty = T if l(ww') = l(w) + 1(w');
2. T2 =uTy + (u—1)T; forseS.

It is known that the algebra H is split semisimple
(see [Lusztig 1981b; Kilmoyer and Solomon 1973;
Alvis and Lusztig 1982]) and that the values of the
irreducible characters of H at basis elements T,
lie in R[u!/?]. By Tits’ Deformation Theorem (see
[Curtis and Reiner 1987, §68A]), we have in fact
a bijection between the irreducible characters of H
and those of W. If ¢ is an irreducible character of
W, we denote by ¢, the corresponding character of
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H; this correspondence is uniquely determined by
the condition that 6(y,(1,)) = ¢(w) for allw € W,
where 6 : R[u'/?] — R, u'/?2 s 1. The algebra H
carries a symmetrizing trace 7 : H — R(u) given
by 7(T}) = 1 and 7(7,,) = 0 for 1 # w € W. Us-
ing a specialization argument as above, we see that
every irreducible character of H appears in 7 with
nonzero multiplicity. The generic degrees D, asso-
ciated with the irreducible characters ¢ of W can
now be defined by the equation:

r= Y P
pelrr(W) — ¢

By [Benson and Curtis 1972; Kilmoyer and Solomon
1973; Lusztig 1979; Alvis and Lusztig 1982], we have
D, € Rlu] for all ¢ € Irr(W). The a-invariant of ¢
is defined to be the largest s > 0 such that «* divides
the polynomial D,. We always have a, < b, and ¢
is called special if we have equality.

We define a preorder on Irr(W) by the condition
that ¢ < ¢’ if and only if a, > a,. The equiva-
lence relation associated with this preorder will be
denoted by ¢ ~ ¢'. Thus, we have p ~ ¢’ if and
only if a, = a,. The following result and its proof
yield the promised algorithm.

Proposition 2.2. There exist unique elements p, ,» €
Q(u) and A, € Q(u), where @, ¢" € Irr(W), such
that the following conditions hold:

Ao =0 unless ¢ ~ ¢';
- Ppr =0 unless @ > @' or ¢ = ¢';
- Py =u for all ¢;

J— !
E , Po.or Ayt Dot o, = Wo,pr for all @, ¢’
)

[ O SR NC R

The uniqueness is clear. We prove the existence by
describing an algorithm for solving the system of
equations above. Choose a total ordering on Irr(W)
compatible with the preorder > and define matrices
of unknowns P = (p, ) and A = (A, ). Then the
system of equations above says that PAPY™ = Q.
Moreover, A is a block diagonal matrix, with blocks
corresponding to the equivalences classes under ~,
and P is a block lower triangular matrix with diago-
nal blocks consisting of identity matrices multiplied
by u*. Assume we have r blocks, of sizes ny,...,n,
and with corresponding a-values ag,...,a,; parti-
tioning P, A, € into blocks, the matrix equation
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above has the form

L 0 - 0 AL O --- 0 11P2tf1-~- P;ﬁ
LERL 0 Ay 0 I :
: 0 .0 : "-Pﬁ,rr—1
Poi--P 11, 0---0A, 0 -0 I
Ql,l 91,2 Ql‘r
_ Qa1 :
: Q'r’fl,r
Qr)l T Qr,rfl Qr,r

where I; = u* id,,. We can solve this system recur-
sively as follows.

We begin with the first block column. We have
LA = Qy,, which determines A;. For ¢ > 1
we have P, 1A, = ;. By Lemma 2.1, we know
that det€);; # 0. Hence A; is invertible, and we
can determine P, ;. Now consider the j-th block
column, where 5 > 1. Assume that the first j — 1
block columns of P and the first j—1 diagonal blocks
of A have already been determined. We have an
equation

IJAJI] + Pj,jflAjfl-Pjt;‘—l + tte + Pj,lAl_P;‘rl = Q

Jsi
which can be solved uniquely for A;. In particu-
lar, we have now determined all coefficients in P
and A which belong to the first j blocks. We con-
sider the subsystem of equations made up of these
blocks; this subsystem looks like the original system
written in matrix form above, with r replaced by j.
By Lemma 2.1, the right hand side has a nonzero
determinant. Hence so have the blocks Ay,..., A;.
Now we can determine the coefficients of P in the
j-column: for ¢ > j, we have an equation

P ;NI + -Pi‘jflAjfl-Pjt;_l +-- 4+ Pi,lAlpjt,rl =0

i
Since A; is invertible, P, ; is determined. Continuing
in this way, the system of equations above is solved.

Remark 2.3. Lusztig [1986, § 24] has described a sim-
ilar algorithm for the computation of (generalized)
Green functions of finite reductive groups. But in
that case, it is known in advance that solutions exist
(since the equations came from orthogonality rela-
tions for Green functions). In our case, we had done
some experiments in GAP (see Proposition 2.8 and
the examples below), and there it always turned out
that solutions exist. Lusztig pointed out that to

prove this in general, it is necessary to use Lemma
2.1, which he kindly communicated to us.

Remark 2.4. Instead of the preorder < defined above,
we could have also used any refinement of it such
that the equivalence classes are precisely the fami-
lies of Irr(W) (in the sense of [Lusztig 1979; 1982];
see also [Lusztig 1984, Chapter 4]). Since the a-
function is constant on families, this would just yield
a finer partition of Irr(W), but otherwise the algo-
rithm would be the same. But is not clear that the
result would also be the same; for this it would be
required that the following condition is satisfied:

Ay, = O unless ¢, ¢’ belong to the same family. (x)

In all examples that we computed, this condition
turns out to be satisfied.

Similarly to [Lusztig 1986, Theorem 24.8], we expect
that the algorithm above actually yields polynomi-
als:

Conjecture 2.5. We have p,, ,» € Z[u] and A, € Z[u]
for all ¢, ¢’ € Irr(W). Moreover, the coefficients of
Dy, are nonnegative.

To each irreducible character ¢ of W, we can asso-
ciate a rational function f, € R(u) by f, = Ay.
We expect that the rational functions associated
with the special characters will be of particular im-
portance:

Conjecture 2.6. We have ) f, = u?", where the
sum is over all special characters ¢ of W.

Conjecture 2.7. Assume that W is a Weyl group, and
let G be a connected reductive algebraic group such
that W is the Weyl group of G with respect to some
maximal torus. Assume, moreover, that F' : G —
G is a Frobenius map corresponding to some split
[F,-rational structure on G (where ¢ is some prime
power). Let ¢ be a special character of W and let C
be the corresponding special piece of the unipotent
variety of G. Then we have |C| = f,(q).

Proposition 2.8. The three conjectures above are true
if (W,S) is irreducible of type A, (anyn > 1), Ga,
F,, Eg, Eq, or Eg. Moreover, condition (x) in Re-
mark 2.4 holds in these cases.

Proof. If (W, S) is of exceptional type, we have used
an implementation of our algorithm in GAP and
CHEVIE to compute explicitly all elements p, .



and A, .. By inspection, Conjectures 2.5 and 2.6,
and condition (x) are verified. In order to verify
Conjecture 2.7, one has to compare the results of
our algorithm with the existing tables of unipotent
classes for exceptional Chevalley groups (due to Mi-
zuno and Shoji; see [Carter 1985] for references). In
principle, this could be done by hand, but we are
indebted to Frank Libeck for doing this comparison
using his data files on a computer.

Finally, let (W, S) be of type A, | so that the
corresponding Chevalley group is G = GL,,. In this
case, all irreducible characters of W are special, and
the special pieces are just the unipotent classes of G.
Hence it would be sufficient to show that our algo-
rithm produces the same result as that for comput-
ing the Green functions of G; see [Shoji 1987]|. In
the latter algorithm, we have to consider a system
of matrix equations

QN Q" =9,

where the matrices @), A’ satisfy similar requirements
as in Proposition 2.2 but they are partitioned into
blocks of size 1 (since all characters are special).
Thus, by the uniqueness of solutions, it is enough to
show that @, A’ are automatically partitioned into
blocks as required by our algorithm. This is clear
for A’ (since this is a diagonal matrix). As far as
Q is concerned, we must show that if a, = a,
(for ¢ # ¢') then g, = 0. Assume, if possible,
that this is not the case. Let C,C’ be unipotent
classes in G such that ¢ = p¢e, ¢ = per. The con-
dition ¢ # ¢’ implies C' # C’. Now it is known that
¢y, = 0 unless C' is contained in the closure of C’
(see [Shoji 1987, Sect. 5]). But if a, = a,, then
dimC = dimC’ and hence C = (', a contradic-
tion. The positivity of the coefficients of the p, .
asserted in Conjecture 2.5 follows from the corre-
sponding statement for the entries of @); see [Lusztig
1981a, Theorem 1]. O

We have also checked that the conjectures are true
for all Weyl groups of classical types of low rank.
For noncrystallographic finite Coxeter groups, the
algorithm yields the following results:

Lemma 2.9. Let W = (s,t) be a dihedral group such
that st has order m > 3. Then there are precisely
three special characters, namely the trivial character
1w, the sign character €, and the character p of the
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standard reflection representation. The associated

polynomials are given as follows.

v by, f

v
€ m 1
p 1 (w2 +1)(u™ —1)
lwy 0 u™?(u?—1)(u™—1)

The sum of these three polynomials is u*™, as it
should be.

Proof. We solve the system of equations defining P
and A along the lines of the proof of Proposition 2.2.
We label the irreducible characters of W such that
the first is the sign character, the second the re-
flection character and the last the trivial character.
This ordering is compatible with the preorder intro-
duced above. Then P, A have the shapes

u™ 0 0 )\11 0 0
P = p qu_g 0 y A= 0 A() 0 y
e ¢ 1 0 0 A
with p = (p217 e apk—1,1)tr, q = (ka, e 7pk,k71)tr7
while
u2m umRtr um~
Q=1u"R Q  u"R |,
um umRtr u2m
with

R = (R(p2), .., R(pr-1))",
R=(R(p2®¢),..., R(pr-1®¢))".
The upper left 2 by 2 block of PAP'™ equals
( u?™ Apy u™ A11p21 >
WrALD2 PhAn + U os
while the upper leftmost part of {2 equals

u2m um(umfl +U)
um(umfl +U) um(l +um +um72 +U2)
by the definition of w;;. The assertion on the first
and second line of the table follows.
More generally, this leads to the equations p = R,

pr1 = 1 and then
RR™ +u?N =/,
R+ulNq=u"R,
14 q"ANq+ Ay = u®™

Clearly this determines A’ = v=2( — RR"™). In-
serting this into the next equation gives

R+u}(Q — RR")q =u™R.
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We claim that ¢ = (1,0, ...,0)™ is a solution to this.
Then the last equation simplifies to 1+ Ao + A\ =
2m

4™ and the lemma is proved. Thus it remains to
check that

R(p) +u"'R(p@ ¢ ®e) —u~'R(p)R(p)
=u"R(p®c¢)

for all irreducible characters ¢ of W lying in the
same family as p, i.e., different from 1 and e. This
is an easy exercise. U

Example 2.10. Let (W,S) be a Coxeter system of
noncrystallographic type Hs or Hy. Using an im-
plementation of the algorithm above in GAP and
CHEVIE, we find the following polynomials f, cor-
responding to special characters ¢. We label an ir-
reducible character of W by a pair (m,e), where m
denotes the degree and e is the b-invariant. The
results are given in Tables 1 and 2; to abbreviate
notation, we let :* stand for the factor u’ — 1. The

H3 f<p
Y115 1
@3,6 (US + U4 + 1) :10
055 Y4610
013 8610
05 10610
031 102610
o1 y12:2.6.10

TABLE 1. Polynomials for special pieces in type Hj.
In all the tables and in the text, the notation :*
stands for a factor u* — 1.

H4 f<p
©1,60 1
©a31 (u28 +ul8 410 4 1):30
09 22 ulO(ulﬁ +ud + 1):20:30
016,18 u28(u6 + 1):20:30
02516 426 .12 .20 .30
036,15 uas(uw + 1):12:30
0246 u34(u12 +ut 4 1):12:20:30
©36.5 448 .12.20 .30
P54 448 .2.12.20 .30
©16.3 450 .2 .12.20 .30
©9,2 u52:2.12.20.30
041 454 -2 .12.20 .30
©10 456 :2.12.20 .30

TABLE 2. Polynomials for special pieces in type Hy.

sum of the polynomials f, (for ¢ special) is u*" and
u'??, respectively. Moreover, we have checked that

condition (*) in Remark 2.4 is satisfied.

We think that the polynomials above for noncrystal-
lographic finite Coxeter groups are those on whose
existence was speculated in [Lusztig 1997, (6.10)].
For this note that the first, second and last polyno-
mial in each case coincides with the value predicted
in that reference.

Remark 2.11. Lusztig [1997, (6.10)] gives a formula
for the size of the special piece corresponding to the
special character p ® €. Namely, let dy,...,d; be
the degrees of W, my,...,m; the coexponents (see
for example [Orlik and Solomon 1980]). Then we
should have

l

foge = (uh —1) ZumFl

i=1

where h = max{dy, ..., d;} is the Coxeter number of
W. A short calculation shows that this is the result
given by our algorithm if and only if

R(p® p) = R(p) (R(p) +u~" —u"").

This can be checked for the irreducible finite Cox-
eter groups. Unfortunately we do not see an a priori
proof of this formula. (The fake degree of the anti-
symmetric square A?(p) was computed in [Orlik and
Solomon 1980, Corollary 3.2].)

3. AN EXTENSION

Recall that our algorithm is a variant of that for
computing Green functions. Now the latter admits
a generalization to the computation of generalized
Green functions; see [Lusztig 1986, §24]. Lusztig
suggested that our algorithm should admit a similar
generalization.

What we have to do is to consider another Cox-
eter system (W7y,S;) such that S is a subset of S;
and the relations for W are determined from those in
W, by the scheme explained in [Lusztig 1993, (1.3)].
The choice of W, is subject to the requirement that
the parabolic subgroup of W, generated by S; \ S
should admit a “cuspidal unipotent character” (see
[Lusztig 1993, (2.4)]) and hence a cuspidal family of
characters in the sense of [Lusztig 1984, (8.1)]. We



then consider essentially a similar system of equa-
tions as before, but with some modifications taking
into account the presence of Wj.

We define a new matrix = (@y,4) e, err(w) by

P

— — — W
— MmN 8118 (g — 1yISil-IsI AT
Py

We ! @,

where N; is the number of reflections in W; and
Py, is defined in terms of the degrees of W;. (This
is analogous to the definition given in [Lusztig 1986,
(24.3.4)].)

We also have to modify the a-invariants attached
to the irreducible characters of W. The pair (W, W)
determines a function f : S — {1,2,...} such that
f(s) = f(t) whenever s,t € S are conjugate in W
(see [Lusztig 1993, 2.4(b)]). We consider the generic
Iwahori-Hecke algebra H/ defined in a similar way
as before, but now the quadratic relations read:

T2 =u/O7 + (W - 1)T, forsesS.

Again, we have corresponding generic degrees Dg;
(which are not necessarily polynomials!). The new
a-invariants are now defined by

al, = ag + (order of the pole at u = 0 of D),
where ag is the (usual) a-invariant of the characters
belonging to the cuspidal family of characters of the
parabolic subgroup of W; generated by S \ S.

Taking these data, we can formulate an analogous
version of Proposition 2.2, and one might expect
that Conjecture 2.5 still holds. We have checked
that this is in fact true for all (W, W;) where W,
is a finite Coxeter group of exceptional type. Note
that no new cases arise for Wy of type A, _;.

Example 3.1. Let (W3, S1) be of type Hy. According
to [Lusztig 1993, §3.3], we have three possibilities
such that the requirements for the setting above are
satisfied: (W, S) of type @, A; or I5(10). The first
case is trivial; we consider the other two possibilities.

If (W, S) is of type A;, the function f takes value
15, and we have a9 = 3. The modified a-invariants
of the sign and the trivial character are 18 and 3,
respectively. The matrix A consists of two 1 x 1-
blocks with entries u?2:12:20:30 and 4°0:12:20:30 We

have
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If (W, S) is of type I5(10), the function f takes values
1,5, and we have a9 = 1. The modified a-invariants
are given by

¥  ¥1,10 80'1,5 Y21 P22 P23 P24 80'1/,5 $1,0
a{; 31 22 6 6 6 6 2 1

The matrix A has 5 blocks, of sizes 1,1,4,1,1: the

entries are u®(u'®+1):12:30) 14122030
46 :12.20 .30 45 .12.20 .30 ,44.12.20 .30 43 .12.20.30
45122030, 46 .12.20 .30 ,45.12.20 .30 44 .12 .20 .30
44 :12.20 30 45 .12.20 .30, 46.12.20.30 ,,45.12.20.30 |>
43122030, 44.12.20 .30 ,45.12.20.30 46 .12.20.30
and y5%:%:12.30,30 ,54.2.:12.20.30  We have
T ut . T
426 w2
W30 22 yls b
» w2 byl W
T ot 2 W
W u®® oW s
u?s . N A Tk
u?t R 7 . 1)

In particular, we see that all entries in these matrices
are polynomials.

4. COMPLEX REFLECTION GROUPS

Let now V be a complex vector space and W C
GL(V) be a finite group generated by pseudoreflec-
tions. In order to describe a generalization of the
algorithm put forward in the previous section to W
we mimic the approach in the real case.

First note that the definition of R : CF(W) —
Clu] given by

. yaim(v dety (w) f(w)
R(f) = P (u = |W| Z = dety (u - 1dv —w)
for f € CF(W), where dety denotes the determi-
nant character of W on V, makes sense for com-
plex reflection groups and generalizes the definition
of R in Section 2. We let N* be the number of
pseudoreflections in W and define a matrix by
we.p = ul R(p ® ¢’ ® dety) as in Section 2.

To define the a-invariant of an irreducible char-
acter of W, we now work with H = H(W,u), the
cyclotomic Hecke algebra for W over C|u, v !] with
one single parameter u (see [Broué and Malle 1993;
Broué et al. 1999]). Let K be a sufficiently large
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extension of C(u) and Hy the algebra obtained by
extending scalars from Clu,u™'] to K. A deforma-
tion argument shows again that we have a bijection,
@ ¢ @,, between the irreducible characters of W
and those of Hy. The definition of generic degrees
is more subtle in the present situation: it is conjec-
tured in [Broué and Malle 1993; Broué et al. 1999]
(and has now been proved in [Malle and Mathas
1998] for all but finitely many irreducible W) that
H carries a canonical symmetrizing form 7 : H —
Clu,u™"], which in particular vanishes on all ele-
ments of a suitable basis (except the identity ele-
ment), and which specializes to the usual trace form
on the group ring of W. Hence, in a similar way as
before, we see that every irreducible character of Hy
appears in 7 with nonzero multiplicity, and we may
define generic degrees by the equation:

r= Y e

pelr(w) ¥
Assume that W is irreducible and generated by
dimV =n

reflections of order 2. Then it is expected that D,
is a polynomial in C[u]. We can then define a, to
be the precise power of v dividing D,. A character
¢ € Irr(W) is called special if a,, is also the precise
power of u dividing R(yp).

Let W be an irreducible complex reflection group
satisfying the assumptions made above. Then ei-
ther W is real, or W = G(e,e,n) for some e > 3,
n > 3, (here, the special characters have been iden-
tified in [Malle 1995, Lemma 5.16]), or W is one
of the primitive complex reflection groups G;, for
i € {24,27,29,33,34}, in the notation of [Shephard
and Todd 1954]. For such W the algorithm put for-
ward in Section 2 still makes perfect sense. We be-
lieve that the analogues of Conjectures 2.5 and 2.6
remain valid in this more general situation.

Example 4.1. We have used an implementation of the
algorithm in GAP and CHEVIE to verify the conjec-
tures on all the primitive complex reflection groups
G;, 1 € {24,27,29,33,34}. The a-values of the irre-
ducible characters of these groups were determined
in [Malle 1999]. Our algorithm yields polynomial
entries for P and A. The diagonal entries of A cor-
responding to special characters (the lengths of the

special pieces) are collected in Tables 3-5. Their
sums equal u*?, u%, u8°, 4, u?°? respectively. Note
that for each of the complex reflection groups above,
the size of the second special piece is again given by
the formula in Remark 2.11. Here, the special irre-
ducible characters are labeled by pairs (m, €), where
m denotes the degree and e is the a-invariant.
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