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l introduce the recurrence D(n) = D(D(n—1))+D(n—1—D(n—2)),
D(1) = D(2) = 1, and study it by means of computer experi-
ments. The definition of D(n) has some similarity to that of Con-
way’s sequence defined by a(n) = a(a(n—1)) + a(n — a(n—1)),
a(1) = a(2) = 1. However, unlike the completely regular and
predictable behaviour of a(n), the D-numbers exhibit chaotic
patterns. In its statistical properties, the D-sequence shows strik-
ing similarities with Hofstadter’s Q(n)-sequence, given by Q(n) =
Qn — Q(n—1)) + Qin — Q(n—2)), Q(1) = Q2) = 1. Com-
pared to the Hofstadter sequence, D shows higher structural or-
der. It is organized in well-defined “generations”, separated by
smooth and predictable regions. The article is complemented
by a study of two further recurrence relations with definitions
similar to those of the Q-numbers. There is some evidence that
the different sequences studied share a universality class.

INTRODUCTION

The recursion relation
Q(n)=Q(n — Q(n—1)) + Q(n — Q(n—2)) for n>2,
Q(1)=Q(2)=1,
introduced by D. R. Hofstadter [1979], is a challenge
[Guy 1981, Problem E31]. Its apparently chaotic be-
haviour (see Figure 1) is far from being understood.
There appear to be no rigorous results about the
behaviour of Q(n).

In [Pinn 1999] I reported a number of empirical
observations on the @-numbers. The main conclu-
sions were:

e The sequence shows signs of order. It is organized
in “generations”, making up for a Fibonacci-type
structure on a logarithmic scale.

e The variance of fluctuations around n/2 grows
like n*, with a = 0.88 £ 0.01.

e R(n) = (Q(n) — n/2)/n* has a strongly non-
Gaussian probability density p*.

e There is scaling: z,, = R(n) — R(n —m) is dis-
tributed according to A,,p*(z,,/A,,). The rescal-
ing factor \,, converges exponentially fast to /2
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FIGURE 1. Graph of Q(n).

for large m, i.e., \,, ~ exp(—m/¢), with a decay
length £ = 3.

It is an interesting question whether similar obser-
vations can be made on other integer recurrences.
In this paper, I introduce and study the recurrence

D(n)=D(D(n—1)) + D(n—1 — D(n—2)) for n>2,
D(1)=D(2)=1.

Its definition is not too different from that of Con-
way’s sequence a(n), defined by

a(n) = a(a(n—1)) + a(n — a(n—1)) for n > 2,
a(l) =a(2) =1.

The a-sequence has been investigated by Hofstadter,
Conway and others at various times since about
1975 [Conolly 1989; Hofstadter 1988]. Conway dis-
covered many of its properties. A cash prize that he
offered for information about its asymptotic growth
was won by Mallows [Mallows 1991]. See also [Kubo
and Vakil 1996] for a detailed study of a(n).

Conway’s sequence has a lot of fascinating prop-
erties. However, it behaves in a regular and com-
pletely predictable way. In contrast, D(n) develops
chaotic and irregular patterns, separated by smooth
and predictable regions. The latter property under-
lines its close relation to the a(n) function.

In Section 1, I formulate a conjecture about the
“genealogy” of the D-numbers. The statements of
the conjecture have been confirmed with the help of
a computer for the first 22° terms of the sequence. A
proof is still lacking. Section 2 is about some strik-
ing similarities in the behaviours of a(n) and D(n),

allowing for a kind of “marriage” of the two se-
quences. Section 3 reports on empirical observations
of mainly statistical properties of D(n), like step
size distribution, scaling properties, and frequency
counting. Section 4 complements the study of the
D-sequence by empirical investigations of two fur-
ther chaotic recurrences that might be called chaotic
cousins of the Hofstadter sequence. It appears that
all sequences studied share various statistical prop-
erties. This suggests they could belong to a common
universality class. Because of its clear structure the
D-sequence seems to be a natural candidate for rig-
orous studies of this class.

1. CONJECTURE ABOUT THE GENEALOGY OF D(n)

Figure 2 shows the first 2048 terms of the a- and D-
sequences. Both a and D are organized in “genera-
tions” of increasing length and stay in some neigh-
bourhood of n/2. These facts become even more
obvious when looking at 2a(n) —n and 2D(n) — n;
see Figure 3.

To make the “genealogy” more precise, we define
a generation number g(n) for each n > 1 by

(n) {0 ifn=1,
n:
g ko2l <n <2 forn > L.

This can also be written as g(n) = [log, n]|, where
log, denotes the logarithm with respect to base 2,
and [x] is the smallest integer greater than or equal
to x. As in [Pinn 1999], we interpret D(n) as the
sum of its mother at position D(n,) and its father
at D(n,), with
n; = D(n - ].),
ny=n—1—D(n—2).
Table 1 shows the structure of the generations and
the genealogy. An inspection of an extended version

of Table 1 suggests the following conjecture (con-
firmed with the help of a computer for k£ < 26):

Conjecture. For generation k, with & > 5, the follow-
ing properties hold:

C1. For the first £k —2 members the function D takes
the value 272, The (k—1)th element is 2" 72 +1.
(The first kK — 1 members of a generation will be
called the head.)

C2. For the last k£ — 2 members the function D takes
the value 271, The element just before the last
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FIGURE 2. Graphs of a(n) and D(n).
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k — 2 members has value 2¢~1 — 1. We will call
the last k¥ — 1 members of a generation its ta:l.
The last member of generation k—2 is simultane-
ously the mother of all head members of genera-
tion k and the father of the first head member of
generation k. The fathers of the remaining head
members are (in ascending order) the members
of the head of generation k — 1.

The parents of the tail members are tail mem-
bers of generation k — 1.

The values of D(n) lie in the range [2F72,2571].

C3.

C4.

C5.

2. MARRIAGE OF a(n) AND D(n)

An interesting observation can be made when one
plots together D(n) and a(n). Figure 4 shows the
function 2 D(n)—n, together with +(2a(n)—n). The
latter two functions nicely model the “outer” bound-

2D(n) —n
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FIGURE 3. Graphs of 2a(n) —n and 2D(n) — n.
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ary of the fluctuating D(n) in some neighbourhood
of the generation boundaries.

The close relation of ¢ and D is also underlined
by the following experiment: Use the a-recurrence of
Conway to generate the first k£ generations of num-
bers. Then continue with the recursion relation of
the D-numbers. The resulting function f;(n) is thus
given by

Br(Br(n—1)) + Br(n—1 = Br(n—2))
a(n)

for g(n) > k,
for g(n) < k.

Graphs illustrating the behaviour of 2(5,(n) — n
are shown in Figure 5, for k from 7 to 10. With
increasing k the “chaotic” fluctuations get reduced
and the function becomes very similar to a(n). It
seems that one can in this way generate a large fam-
ily of sequences with different “levels of chaos”.
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k n ni  gni) na  gne) D(n) k n ny  gni) na  gne) D(n)

2 3 1 0 1 0 2 6 33 16 4 16 4 16

4 2 1 2 1 2 34 16 4 17 5 16

35 16 4 18 5 16

3 5 2 1 2 1 2 36 16 4 19 5 16

6 2 1 3 2 3 37 16 4 20 5 17

T3 2 4 2 4 38 17 5 21 5 18

8 4 2 4 2 4 39 18 5 21 5 18

4 9 4 5 4 5 4 4 18 5 21 5 18

0 4 5 5 3 A 4 18 5 22 5 18

PR e 5 43 18 5 24 5 19

13 6 3 7 3 7 44 19 ) 25 ) 21

14 7 3 7 3 8 45 21 5 25 5 23

15 8 3 7 3 8 46 23 5 24 5 21

16 8 3 7 3 8 47 21 5 23 5 20

48 20 ) 26 ) 24

5 17 8 3 8 3 8 49 24 ) 28 ) 25

18 8 3 9 4 8 50 25 5 25 5 26

19 8 3 10 4 8 51 26 5 25 5 28

20 8 3 11 4 9 52 28 5 25 5 27

21 9 4 12 4 10 53 27 ) 24 ) 26

22 10 4 12 4 10 54 26 ) 26 ) 30

23 10 4 12 4 10 59 30 ) 28 ) 30

24 10 4 13 4 11 56 30 5 25 5 29

25 11 4 14 4 13 57 29 5 26 5 30

26 13 4 14 4 15 58 30 ) 28 ) 30

27 15 4 13 4 15 59 30 ) 28 ) 30

28 15 4 12 4 14 60 30 ) 29 ) 31

29 14 4 13 4 15 61 31 5 30 5 32

30 15 4 15 4 16 62 32 5 30 5 32

31 16 4 15 4 16 63 32 5 30 5 32

32 16 4 15 4 16 64 32 ) 31 ) 32

TABLE 1. Genealogy of the D-sequence. The head, body and tail of a generation are separated by horizontal lines.
Note that tails are not defined for k& < 5.
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3. EMPIRICAL INVESTIGATION OF STATISTICAL
PROPERTIES

In generation k, that is, for 2*°1 < n < 2*, the
function D(n) takes values in the range 2872 < n <
271 Tt seems natural to plot y = D(n)/2""! in
terms of

n‘__2k—1
T= oo
We have 0 < x < 1, and y < 0.5 < 1. Plots of
this type for generations 6 to 13 are shown in Fig-
ure 6. The similarity of the graphs suggests that
there could be some statistical properties becoming
independent of k£ when k£ becomes large.
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FIGURE 5. Graphs of 23,(n) —n, for k=17, 8, 9, 10.

3A. Step Size Statistics

The function inside a given generation may be con-
sidered representing a random walk of 2¥= —1 steps,
starting from 2¢=% and arriving at 2*~1. It is inter-
esting to look at the distribution of the step sizes.
Set

S(n) =D(n)—D(n—1).

The square of the variance of this quantity is given
by
MK = (S(n)?), = ().
where (- ), denotes the average over the k-th genera-
tion. Table 2 shows numerical results for log, M (k)
for generations 13 to 25 and also the logarithmic ra-
tios o = log, (M (k)/M(k —1)). The results for the
latter quantity converge to 0.884+0.01. We conclude
that
M (k)
M(k—1)

~ 29,

k log, M (k) QO

13 6.857 0.949
15 8.683 0.910
17 10.498 0.896
19 12.291 0.888
21 14.071 0.888
22 14.961 0.890
23 15.845 0.884
24 16.726 0.882
25 17.598 0.872

TABLE 2. Variances M (k) and logarithmic ratios ay =
log, (M (k)/M(k —1)).

with o = 0.88 £+ 0.01. This exponent is consistent
with the one found for the Hofstadter (n) [Pinn
1999].

Figure 7 shows a histogram p* of the variable
x = S(n)/2088 =D for k = 24 and k = 25, plotted
on top of each other. The two histograms match
nicely. The statistical distribution for £ = 25 is
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FIGURE 7. Top graph: statistical distribution of x =
(D(n) — D(n—1))/2°8 (=1 "in generations k = 24
and k = 25. Bottom: same distribution on logarith-
mic scale for k = 25.

plotted on a logarithmic scale in the lower part of
the figure. As was the case with the distribution
function of suitable Q-number observables, the tails
can be nicely fitted with a properly rescaled error
function erfc, defined by

erfc(z) = % /00 dt exp(—t?).

It was observed in [Pinn 1999] that the probabil-
ity density p,,(z,,) of the rescaled difference z,, =
(Q(n) —Q(n—m))/n* was (up to a rescaling) with
high precision identical with the distribution p* of
Q) —n/2)[nc, ie.,

P (Tm) = A" (i /Am) - (3-1)

O o001
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FIGURE 8. The functions Cp = |\2,—1.57] (full lines),
Co = |A\2,—2]| (dotted lines), and exp(—m/3).

A similar type of scaling applies here. We define
T, = (D(n) — D(n —m))/2¢*-1,

Note that in the present case p* is the distribution
of z;. One observes validity of Equation (3-1) with
very good precision for m > 2. One can determine
the A, from the second moments,

o (T = (o)
(o) = (e)?
They converge against A2 = 1.57. Looking at
= - x|

as function of m, we observe a striking similarity
with the corresponding function for the Hofstadter
sequence; see Figure 8. The ups and downs in both
cases are very similar. The decay is approximated

by exp(—m/3).

3B. Numbers Left Out and Frequency Counting

A. K. Yao [1997] has observed that the range of the
(Q-sequence seems to omit infinitely many positive
integers.

The D-function maps generation k, i.e., the range
[2F71 4+ 1,2*%], to the interval I, = [2F72 2F71]. We
consider the question which fraction r(M) of the
282 4+ 1 numbers in I, are generated exactly M
times. It turns out that these fractions converge
with increasing k.  Table 3 shows r(M), M < 6,
for k = 23 and k = 24. The D-function omits some
14% of all numbers. The table also shows r(M)
for the sequences @, Fio, and Fj;. The latter two
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M k=23 k=24 Q Fio Fi,
n<225 n <222 pn<2??
0 0.1446 0.1443 0.1358 0.1358 0.1342
1 0.2728 0.2722 0.2709 0.2706 0.2697
2 0.2615 0.2624 0.2700 0.2703 0.2709
3 0.1730 0.1731 0.1803 0.1804 0.1810
4 0.0885 0.0886 0.0900 0.0903 0.0909
5 0.0379 0.0380 0.0362 0.0361 0.0365
6 0.0143 0.0141 0.0122 0.0120 0.0122

TABLE 3. Relative frequency r(M) of numbers in I,
that are generated by D exactly M times. The last
column gives estimates for the r-ratios of the se-
quences (), Fio, and Fi;. The latter two recurrences
will be introduced in Section 4.

sequences are close relatives of the Hofstadter se-
quence and will be introduced in Section 4. There
is a fair agreement of the ratios r(M) for all the four
sequences. Figure 9 shows (M) for M < 16 in gen-
erations 23 and 24. Ounly a small deviation between
the two sets of numbers is seen for larger M.
Figure 10 shows a plot of the i-th left-out number
in I, rescaled by a factor 2*~!. The z-variable is i
divided by the length of interval I;. The graphs are
for kK = 16 and 17. The difference between the two
curves is already small. Of course, such graphs can
also be generated for M # 0. They look similar.

4. TWO COUSINS OF HOFSTADTER’S SEQUENCE

It is natural to generalize Hofstadter’s recurrence
(see beginning of this article) by introducing con-
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10+ | ]

10° ¢ + 3

10—6 Il Il Il Il Il Il Il

FIGURE 9. The function r(M), for k = 23 (+) and
k=24 (x).

stant shifts ¢ and j in the arguments on the right
hand side:

F,j(n) = F;j(n1) + F;;(ns)
Fi;(1) = Fyy(2) = 1,

forn > 2,
(4-1)

with ny = n—i—F;;(n—1) and ny, = n—j—F;;(n—2).
Of course, one has to check whether the recursion
(together with given initial conditions) leads to a
well-defined sequence for all n. Ill-definition occurs
if there exists an n such that either n; or n, is out-
side of [1, n—1]. It turns out that the recursion (4-1)
is ill-defined except for the cases i = 00, 01, 10,
and 11, where I confirmed consistency for n < 22°.
Note that Foo = (. The sequence with 5 = 01
seems to have a simple regular structure, very sim-
ilar to Tanny’s sequence [1992]. (It might be in-
teresting to compare also with the appearance of
Golomb’s recursions studied in [Barbeau and Tanny
1996; 1997].) The other two cousins, Fiy, and F,
look chaotic. A graph of the first 2000 elements of
Foo, Flo, and Fp; is shown in Figure 11.

4A. Statistical Properties
We consider the sequences Fj;(n) = Fy;(n) — n/2.
Again we study the variances M (k), defined by

2

M(k)* = (F;(n)*), — (Fi;(n)),
where (), denotes the average over intervals
[2F1 41, 2F).
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X
FIGURE 10. The ¢-th left-out number in I, rescaled
by a factor 2871 for k = 16 (full line) and k = 17

(dotted line). The z-variable is ¢ divided by the
length of interval Ij,.
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Table 4 shows the results for
. = log, (M (k)/M (k — 1)),

where k£ < 25. We estimate for o = lim;,_,, o, and
obtain 0.88+0.01 for ij = 00 (Hofstadter sequence),
0.86 £ 0.01 for 45 = 10, and 0.89 £ 0.01 for ij =
11. It seems that the exponent for Fj, is smaller
than that for the other sequences. There are still
fluctuations in Table 4, and we cannot strictly rule
out the possibility that the exponents of the three
sequences agree.

k 00 10 11
13 | 0.849 | 0.852 | 0.867
14 | 0.885 | 0.864 | 0.925
15 | 0.879 | 0.869 | 0.904
16 | 0.879 | 0.862 | 0.883
17 | 0.870 | 0.863 | 0.895
18 | 0.882 | 0.865 | 0.889
19 | 0.881 0.859 [ 0.895
20 | 0.882 | 0.857 | 0.886
21 0.882 | 0.859 | 0.891
22 | 0.880 | 0.864 | 0.890
23 | 0.882 | 0.861 0.887
24 | 0.880 | 0.857 | 0.884
25 | 0.876 | 0.851 0.878
o' 0.88* 0.86* 0.89*

TABLE 4. Logarithmic variance ratios «y, for Fyo, Flo,
and Fi;. The * indicates £0.01, that is, an uncer-
tainty of 0.01 on a 1 sigma level.

Figure 12 shows the statistical distribution func-
tions of the quantities Fj;(n)/n®, where the o’s are
taken from the last line of Table 4. The binning was
done over periods [2871 2*] for the 10 and 11 se-
quences. For Fy, the generation structure requires
intervals [2%=15 28=05] The distributions for the
different k’s agree nicely. The plot shows the k = 24
results. The function with the highest peak belongs
to 25 = 00, the Fj;-numbers have the broadest dis-
tribution. In contrast to the 00-distribution which
(as the D-distribution) goes like exp(—ca?)/z for
large x, the 10- and 11-distributions can be fairly
well approximated by Gaussians. It is an interesting
question whether the various behaviours can be un-
derstood and modelled. It seems natural to try a fit
with limiting distributions of random walks. Nar-
row non-Gaussian distribution can in principle be
generated by sub-diffusive random walks [Bouchaud
and Georges 1990]. The observed asymptotics ~
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exp(—cz?)/x, however, does not seem to be com-
patible with sub-diffusion.

12

10 1

-15 -1 05 0.5 1 15

X

FIGURE 12. Statistical distributions of F};(n)/n®, for
ij = 00 (highest peak), 10, and 11 (broadest).

Again we observe scaling, if we look at the distri-
butions of

Ty = Fj(n —m) — Fj(n).

More precisely, the probability density of z,,, m > 2
is up to a rescaling the same as that of z,,_;. For
1y = 11 one can detect some small scaling violations
for the first 2 values of m. The approach of the A,
factors to their asymptotic value is the same for all
three F-sequences, and very similar to that of the
D-sequence. The convergence is again governed by
a correlation length of 3.

4B. Correlation Functions

For all three F-sequences we define a variable o,, by
[ +1 if F(n) > n/2,

on = { —1 else.

Then we “measure” the 2-point correlator
G(m) = (Ungn—m> - <0n>2

over the range [2'% 2%4]. The results for |G(m)| are
shown in Figure 13. The lower part of the figure
shows |G(m)| on a logarithmic scale, together with
the functions Cg and Cp of Figure 8. The sur-
prise is not only that the correlators of the three
F-sequences seem to be identical. They also have a
striking similarity with the functions describing the
decay of the rescaling factors A,.

0.3 T T T

02

10t |

102

103 ¢

104 |

10—5 1 1 1
10 15

m

FIGURE 13. Top: G(m) for ij = 00, 10, and 11. The
lower plot shows |G (m)| for the same three sequences
on a logarithmic scale (lower three graphs) together
with the functions C'p and Cg, of figure 8 (upper two

graphs).

4C. Frequency Counting

Results for the relative frequencies of numbers n oc-
curring M times in the F-sequences were already
given in Table 3. They agree fairly well with those
for D and Q.

SUMMARY AND CONCLUSIONS

In this paper, a chaotic cousin of Conway’s sequence
was introduced and studied empirically. Its statis-
tical properties showed some intriguing similarities

20



with the Hofstadter sequence () and also with the
two cousins Fio and Fi;:

e All the four sequences studied have (to the given
precision) the same exponent «, governing the
increase of variance with increasing n or k. (The
value for Fy, seems to be a little bit lower, but
agreement can however not be excluded.)

e The probability densities obey a scaling law. The
rescaling parameter follows a characteristic con-
vergence, governed by a correlation length 3.

e The correlation function G(m) is identical for all
three F-sequences. It also decays with correla-
tion length 3, and in a way very similar to the
behaviour of the A, factors.

e The relative frequencies of numbers occurring ex-
actly M times in the sequence seems to be the
same for all the four sequences.

The D-numbers and the three F-sequences have a
lot of common structure. One might say that they
share a universality class. A precise definition of
such a class is, however, still lacking.

The D-sequence is unique insofar, as it has a reg-
ular generation structure with smooth interplays in-
between. This could make it a candidate for studies
aiming at some rigorous results about the chaotic
recurrence relations.

It is presently an open question how much one can
learn from the relation of the D-recurrence with the
“solved” a-sequence. That there is some deep rela-
tion is suggested by the apparent similarity of the
two sequences in the regions between the genera-
tions. The experiments with seeding the D-recur-
rence with k generations of a-numbers (Section 2)
could be a first step towards a better understanding
of this relation.

Whenever one observes the phenomenon of uni-
versality in a model, one is tempted to look for re-
alizations of the same universality class in nature.
It is an interesting question whether recurrences of
the type studied in this article represent real phys-
ical processes or might be of use in the study of
some dynamical system occurring in real life. A
physical picture (e.g., in terms of random walks in
some bizarre surrounding) could perhaps help to
better understand some of the interesting proper-
ties of these sequences.
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