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GLOBAL EXISTENCE AND FINITE DIMENSIONAL GLOBAL

ATTRACTOR FOR A 3D DOUBLE VISCOUS MHD-α MODEL∗

DAVIDE CATANIA† AND PAOLO SECCHI‡

Abstract. We consider a magnetohydrodynamic-α model with kinematic viscosity and magnetic
diffusivity for an incompressible fluid in a three-dimensional periodic box (torus). Similar models are
useful to study the turbulent behavior of fluids in presence of a magnetic field because of the current
impossibility to handle non-regularized systems neither analytically nor via numerical simulations.

We prove the existence of a global solution and a global attractor. Moreover, we provide an upper
bound for the Hausdorff and the fractal dimension of the attractor. This bound can be interpreted in
terms of degrees of freedom of the system. In some sense, this result provides an intermediate bound
between the number of degrees of freedom for the simplified Bardina model and the Navier–Stokes-α
equation.
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1. Introduction

The basic system of equations that one can consider in magnetohydrodynamics is
obtained by combining Maxwell’s equations, which rule the magnetic field, with the
Navier–Stokes equation, which governs the fluid motion; this system has form

vt+(v ·∇)v−(B ·∇)B+∇
(

p+
1

2
|B|2

)

=ν∆v, (1.1a)

Bt+(v ·∇)B−(B ·∇)v=µ∆B, (1.1b)

∇·v=∇·B=0, (1.1c)

(v,B)|t=0=(v0,B0), x∈R
n, n=2,3, (1.1d)

where the fluid velocity field v(x,t), the magnetic field B(x,t), and the pressure
p(x,t) are the unknowns, while ν>0 is the constant kinematic viscosity and µ>0 is
the constant magnetic diffusivity. In this case, an incompressible fluid is considered.

This problem has been deeply studied. If ν >0 and µ>0, then there exists a
unique global solution in time when n=2, while for n=3 the problem is still open,
as discussed in [14].

When n=2, ν=0, and µ=1, local existence and small data global existence
results have been established by Kozono [11] for bounded domains and by Casella–
Secchi–Trebeschi [4] for unbounded domains.

When n=2, ν=1, and µ=0, there is a regularity criterion for the solution B
provided by Jiu–Niu [10], but the problem in its generality is still open.

As pointed out in [13] (see also the suggested bibliography), at the moment there
is no possibility to compute the turbulent behavior of fluids neither analytically nor
via direct numerical simulation (this task is prohibitively expensive and disputable as
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well due to sensitivity of perturbation errors in the initial data). Hence, one can try
to focus only on certain statistical features of the physical phenomenon through the
employment of suitable models. This is sufficient in many practical applications.

Because of the success of Navier–Stokes-α models in producing solutions in excel-
lent agreement with empirical data for a wide range of large Reynolds numbers and
flow in infinite channels or pipes, it is natural to consider such a kind of regularization
for magnetohydrodynamic models as well.

In α models, a function (or several functions) is substituted in one or more of its
occurrences with a regularized function; more precisely, the function v is substituted
with u, where

v=(1−α2∆)u, α>0.

This substitution is performed in nonlinear terms to make the nonlinearity milder, so
that the solution becomes smoother.

Linshiz–Titi [13] have suggested several models. For instance, filtering only the
velocity field, one can consider the following model, referred to as Navier–Stokes-α-
MHD (NSαMHD):

vt+(u ·∇)v+

n
∑

j=1

vj∇uj−(B ·∇)B+∇
(

p+
1

2
|B|2

)

=ν∆v, (1.2a)

Bt+(u ·∇)B−(B ·∇)u=µ∆B, (1.2b)

v=(1−α2∆)u, α>0, (1.2c)

∇·v=∇·u=∇·B=0, (1.2d)

(v,B)|t=0=(v0,B0). (1.2e)

In this case, Linshiz–Titi [13] have shown a global existence result in a three-
dimensional periodic box when ν >0 and µ>0, while Fan–Ozawa [8] have achieved
the same result in the whole space R

2 for both (ν=1, µ=0) and (ν=0, µ=1).
Let us note that, in the ideal case, i.e., when ν=µ=0, the NSαMHD model

possesses three quadratic invariants: the energy Eα= 1
2

∫

Ω

(

v(x) ·u(x)+ |B(x)|2
)

dx,

the cross helicity Hα
C = 1

2

∫

Ω
v(x) ·B(x)dx, and the magnetic helicity Hα

M= 1
2

∫

Ω
A(x) ·

B(x)dx, where A is the vector potential, so that B=∇×A. Moreover, as α→0,
these quantities reduce to the ideal invariants of the MHD equations.

Another model is the so-called simplified Bardina model, which is studied by
Cao–Lunasin–Titi in [3].

In [5], the following magnetohydrodynamic-α model, derived from Bardina model
for incompressible fluids, is considered:

vt+(u ·∇)u−(B ·∇)B+∇
(

p+
1

2
|B|2

)

=∆v in [0,T ]×R
2, (1.3a)

Bt+(u ·∇)B−(B ·∇)u=0 in [0,T ]×R
2, (1.3b)

v=(1−α2∆)u, α>0 in [0,T ]×R
2, (1.3c)

∇·v=∇·u=∇·B=0 in [0,T ]×R
2, (1.3d)

(v,B)|t=0=(v0,B0) x∈R
2. (1.3e)

Once again, a global existence result is obtained.
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In this paper, we consider the following model, referred to as Simplified Bardina
MHD (SBMHD):

vt+(u ·∇)u−(B ·∇)B+∇p=ν∆v+f in Ω× [0,T ], (1.4a)

Bt+(u ·∇)B−(B ·∇)u=µ∆B in Ω× [0,T ], (1.4b)

v=(1−α2∆)u, α>0 in Ω× [0,T ], (1.4c)

∇·u=∇·B=0 in Ω× [0,T ], (1.4d)

(v,B)|t=0=(v0,B0) x∈Ω, (1.4e)

where α,ν,µ>0 and Ω=[0,2πL]3, L>0, with periodic boundary conditions and hence
periodic solutions. Moreover, we assume that the forcing term f does not depend on
time and has zero mean:

∫

Ω
f(x)dx=0. We assume the same hypothesis of zero

mean for the initial data, so that also the solutions v (and u as well) and B have zero
mean.

The ideal version of system SBMHD conserves the energy and the magnetic he-
licity, but at the moment we are unable to find an invariant quantity corresponding
to cross helicity.

We will prove the following results.

Theorem 1.1 (Global Existence). Assume that the initial data satisfy

v0∈L2(Ω), B0∈H1(Ω),

∇·v0=∇·B0=0.
Then, problem (1.4) has a unique global solution (v,B) such that, for each time

T >0, one has

v∈L∞(0,∞;L2(Ω))∩L2(0,T ;H1(Ω)),

B∈L∞(0,∞;H1(Ω))∩L2(0,T ;H2(Ω)).

Note that local existence, uniqueness and continuous dependence on the initial
data can be achieved through Galerkin method following [3, 13] and using the a priori
estimates that we provide in section 3.

From now on, to simplify notation we set ‖·‖=‖·‖L2(Ω) and denote by the sub-
script σ a space of divergence-free and zero mean functions.

Theorem 1.2 (Finite Dimensional Global Attractor). There is a (unique) com-
pact global attractor A ⊂H1

σ(Ω)×L2
σ(Ω) in terms of the solution (u,B) to (1.4).

Moreover, we have an upper bound for the Hausdorff dimension dH(A ) and the frac-
tal dimension dF(A ) of the attractor A ; in particular, there is a positive constant C
such that

dH(A )6dF(A )6CG6/5

(

L

α

)3
[

(

L

α

)
3

5

+G6/5

(

L

α

)
9

5

+G3/10

]

,

where, setting η=min{ν,µ},

G=
L3/2‖f‖

η2

is the modified Grashoff number.
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We can interpret the estimate for the attractor dimension in terms of the mean
rate of energy dissipation, defined by

ε̄=
1

L3
sup

(u0,B0)∈A

limsup
T→∞

1

T

∫ T

0

(

ν‖∇u(t)‖2+να2‖∆u(t)‖2+µ‖∇B(t)‖2
)

dt.

Moreover, in analogy with Kolmogorov dissipation length in the classical theory of
turbulence, we define the dissipation length as

ℓd=

(

η3

ε̄

)1/4

,

so that

sup
(u0,B0)∈A

limsup
T→∞

1

T

∫ T

0

(

ν‖∇u(t)‖2+να2‖∆u(t)‖2+µ‖∇B(t)‖2
)

dt

=
L3η3

ℓ4d
.

(1.5)

We have the following result.

Theorem 1.3. The unique compact global attractor A ⊂H1
σ(Ω)×L2

σ(Ω) in terms of
the solution (u,B) to (1.4) has Hausdorff dimension dH(A ) and fractal dimension
dF(A ) bounded by

D
.
=Cmax

{

(

L

α

)12/5(
L

ℓd

)12/5

,

(

L

α

)3/2(
L

ℓd

)3
}

,

where C is a positive constant.

Identifying the dimension of the global attractor with the number of degrees of
freedom of the long-time dynamics of the solution, this means that the number of
degrees of freedom of problem (1.4) is bounded from above by a quantity which scales
like D. This information is useful to establish the validity of the model as a large-eddy
simulation model of turbulence.

Let us observe that, in space dimension n=3, the number of degrees of free-
dom of the simplified Bardina model (with no magnetic field) is bounded from above
by C(L/α)12/5(L/ℓd)

12/5, while for the Navier–Stokes-α model this upper bound is
C(L/α)3/2(L/ℓd)

3 (see [3] for the first result and further references). Hence, in some
sense, our result provides an intermediate bound.

As a final remark, let us note that the nonlinearity in the SBMHD model consid-
ered in this paper is milder than the one in the NSαMHD model studied by Linshiz–
Titi. This means that the SBMHD is easier to handle than NSαMHD from the point
of view of global existence, and one expects the same behavior for the estimates of
the global attractor dimension, that is to say, new difficulties might arise in the proof
of the dimension bounds for the NSαMHD case. Nevertheless, this problem has been
addressed in [6], where using an approach analogous to the one presented in this
paper, bounds for the global attractor dimension of the NSαMHD and the Modified
Leray-α-MHD models are provided.

Outline of the paper. In section 2 we provide some preliminary results that
we will use in the following sections. Section 3 is devoted to the prove of some a priori
estimates which imply, in particular, the global existence of the solution. In section 4
we prove the existence of the unique global attractor, whose dimension is estimated
in section 5.



D. CATANIA AND P. SECCHI 1025

2. Preliminary results

We consider functions with zero mean over Ω. This assumption is taken for all
functions in all the remainder of the paper.

If f is a divergence free function, then
∫

(f ·∇)g ·hdx=−
∫

(f ·∇)h ·gdx (2.1)

and
∫

(f ·∇)g ·gdx=0, (2.2)

where the integrals are intended over Ω.
Let us denote λ1 to be the minimal eigenvalue of −∆; we have λ1=L

−2 and the
Poincaré inequality becomes

λ1‖g‖26‖∇g‖2. (2.3)

We consider norms in nondimensional form

‖g‖H1(Ω)=‖g‖+L‖∇g‖,
‖g‖H2(Ω)=‖g‖+L‖∇g‖+L2‖∆g‖,

so that the Agmon inequality

‖g‖L∞(Ω)6C‖g‖1/2H1(Ω)‖g‖
1/2
H2(Ω) (2.4)

can be recast in homogeneous form

‖g‖L∞(Ω)6C‖∇g‖1/2‖∆g‖1/2. (2.5)

We recall the Gagliardo–Nirenberg inequality: let us set

|f |k,p=





∑

|l|=k

|∂lf |p




1/p

;

then

|f |j,s6C|f |am,r‖f‖1−a
Lq (2.6)

provided

1

s
− j

n
=a

(

1

r
−m

n

)

+(1−a)1
q
,

j

m
6a61,

where n is the space dimension (there are some exceptional cases that we will not
consider).

In particular, we will use the following estimates:

‖g‖L5/2 6C‖g‖7/10‖g‖3/10L6 , (2.7)

‖∇g‖L4 6C‖∆g‖7/8‖g‖1/8 . (2.8)

Moreover, the following estimate holds:

‖g‖L6 6C‖∇g‖. (2.9)
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3. Global existence

The global existence of the solution follows from the local existence (see the
introduction) and the following estimates. Let us note that such estimates imply
uniform in time estimates, hence the global existence result.

3.1. Estimate for u∈H1, B∈L2.

Proposition 3.1 (Some A Priori Estimates). Assume that a solution (v,B) of
problem (1.4) is defined in the time interval [0,T ]. Let us set

k0=‖u(0)‖2+α2‖∇u(0)‖2+‖B(0)‖2,

K1=min

{‖A−1f‖2
να2

,
‖A−1/2f‖2

ν

}

,

η=min{ν,µ}, and λ1=L−2 (minimum eigenvalue of −∆).
Then, the following estimates hold:

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖26k0 e−ηλ1t+
K1

ηλ1
(1−e−ηλ1t), (3.1)

∫ t+r

t

(ν‖∇u(τ)‖2+να2‖∆u(τ)‖2+µ‖∇B(τ)‖2)dτ 6 rK1+k1 (3.2)

provided r>0 and t+r6T ,

∫ T

0

e−ηλ1t/4
(

ν‖∇u(t)‖2+να2‖∆u(t)‖2+µ‖∇B(t)‖2
)

dt6
4K1

ηλ1
+k0. (3.3)

Proof. We test the first equation by u (i.e. we take the scalar product with u
and integrate over Ω) and the second one by B; summing up, using (2.1) and (2.2),
and integrating by parts when needed (in particular, the term with the pressure p
disappears, since ∇·u=0), we obtain the energy identity

1

2

d

dt

(

‖u‖2+α2‖∇u‖2+‖B‖2
)

+ν‖∇u‖2+να2‖∆u‖2+µ‖∇B‖2=(f ,u),

where (·, ·) denotes the standard scalar product in L2(Ω), i.e.,

(f ,u)=

∫

Ω

f ·udx.

Now, setting A=−∆, where ∆ is the Laplace operator with domain D(A)=
(H2

σ(Ω))
3, we have that A is a positive self-adjoint operator and

|(f ,u)|6
{

‖A−1f‖‖∆u‖
‖A−1/2f‖‖∇u‖

6

{

‖A−1f‖2

2να2 + να2

2 ‖∆u‖2
‖A−1/2f‖2

2ν + ν
2‖∇u‖2

(3.4)

by Young’s inequality.
If we set

K1=min

{‖A−1f‖2
να2

,
‖A−1/2f‖2

ν

}

,
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we have

|(f ,u)|6 (K1+να
2‖∆u‖2+ν‖∇u‖2)/2,

hence we deduce the energy estimate

d

dt

(

‖u‖2+α2‖∇u‖2+‖B‖2
)

+ν‖∇u‖2+να2‖∆u‖2+µ‖∇B‖26K1 . (3.5)

We set η=min{ν,µ}>0 and use Poincaré inequality (2.3) to recast the previous
estimate in the form

d

dt

(

‖u‖2+α2‖∇u‖2+‖B‖2
)

+ηλ1(‖u‖2+α2‖∇u‖2+‖B‖2)6K1

and obtain, by the Gronwall lemma,

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖26k0 e−ηλ1t+
K1

ηλ1
(1−e−ηλ1t) ,

where

k0=‖u(0)‖2+α2‖∇u(0)‖2+‖B(0)‖2.

This gives (3.1).

Setting k1=k0+
K1

ηλ1
, we have from (3.1)

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖26k1. (3.6)

Moreover, integrating (3.5) for τ ∈ [t,t+r], where r>0, yields

∫ t+r

t

(ν‖∇u(τ)‖2+να2‖∆u(τ)‖2+µ‖∇B(τ)‖2)dτ 6 rK1+k1,

that is (3.2).

In the following, we will need an exponential variant of the previous estimate.
Let us multiply (3.5) by e−ηλ1t/4>0 and integrate in time over the interval [0,T ]:

∫ T

0

e−ηλ1t/4
d

dt

(

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖2
)

dt

+

∫ T

0

e−ηλ1t/4
(

ν‖∇u(t)‖2+να2‖∆u(t)‖2+µ‖∇B(t)‖2
)

dt

6

∫ T

0

K1 e
−ηλ1t/4dt=

4K1

ηλ1
(1−e−ηλ1T/4)6

4K1

ηλ1
.

An integration by parts of the first integral yields

[

e−ηλ1t/4(‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖2)
]T

0

+
ηλ1
4

∫ T

0

e−ηλ1t/4
(

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖2
)

dt,
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hence we have

e−ηλ1T/4(‖u(T )‖2+α2‖∇u(T )‖2+‖B(T )‖2)

+
ηλ1
4

∫ T

0

e−ηλ1t/4
(

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖2
)

dt

+

∫ T

0

e−ηλ1t/4
(

ν‖∇u(t)‖2+να2‖∆u(t)‖2+µ‖∇B(t)‖2
)

dt

6
4K1

ηλ1
+k0 ;

neglecting the first two terms, which are positive quantities, we conclude

∫ T

0

e−ηλ1t/4
(

ν‖∇u(t)‖2+να2‖∆u(t)‖2+µ‖∇B(t)‖2
)

dt6
4K1

ηλ1
+k0,

that is (3.3).

3.2. Estimate for u∈H2 and B∈H1.

Proposition 3.2 (Further A Priori Estimate). Let us assume that a solution
(v,B) of problem (1.4) is defined in the time interval [0,T ]. Let us set

k′0=‖v(0)‖2+‖B(0)‖2+α2‖∇B(0)‖2,

η=min{ν,µ} and λ1=L
−2 (minimum eigenvalue of −∆).

Then, the following estimate holds for a suitable k′2=k
′
2(f ,k0,α,η,λ1)>0:

‖v(t)‖2+‖B(t)‖2+α2‖∇B(t)‖26k′0e−ηλ1t/4+
4k′2
ηλ1

(1−e−ηλ1t/4). (3.7)

Proof. We test Equ. (1.4a) by v and (1.4b) by (1−α2∆)B; proceeding similarly
as before, we obtain

1

2

d

dt

(

‖v‖2+‖B‖2+α2‖∇B‖2
)

+ν‖∇v‖2+µ‖∇B‖2+µα2‖∆B‖2

=−
∫

(u ·∇)u ·v+
∫

(B ·∇)B ·v+α2

∫

(u ·∇)B ·∆B

+

∫

(B ·∇)u ·(B−α2∆B)+

∫

f ·v

=α2

∫

(u ·∇)u ·∆u−α2

∫

(B ·∇)B ·∆u+α2

∫

(u ·∇)B ·∆B

−α2

∫

(B ·∇)u ·∆B+

∫

f ·v

=−α2

∫

∂kui∂iuj∂kuj+α
2

∫

∂kBi∂iBj∂kuj−α2

∫

∂kui∂iBj∂kBj

+α2

∫

∂kBi∂iuj∂kBj+

∫

f ·v,

where the sum over i,j,k=1,2,3 is assumed.
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We denote ∂ to be a generic first order spatial derivative. First, we have to
estimate nonlinear terms of form

α2

∫

|∂u||∂u|26Cα2‖∇u‖L∞‖∇u‖2

6Cα2‖∆u‖1/2‖∇∆u‖1/2‖∇u‖2

6C‖v‖1/2‖∇v‖1/2‖∇u‖2

6 εν‖∇v‖2+ Cε

ν1/3
‖v‖2/3‖∇u‖8/3

6 εν‖∇v‖2+ενλ1‖v‖2+
Cε

νλ
1/2
1

‖∇u‖4,

having used the Hölder inequality, estimate (2.5), the identities

‖v‖2=‖u‖2+2α2‖∇u‖2+α4‖∆u‖2, (3.8)

‖∇v‖2=‖∇u‖2+2α2‖∆u‖2+α4‖∇∆u‖2, (3.9)

and Young’s inequality. An application of the Poincaré inequality yields

α2

∫

|∂u|362εν‖∇v‖2+ Cε

νλ
1/2
1

‖∇u‖4. (3.10)

Let us note that we can not follow a similar approach for terms with ∂B, since we
can not handle the quantity ‖∇B‖4.

Nonetheless, using Hölder inequality, estimate (2.8) and Young’s inequality, we
easily deduce

α2

∫

|∂u||∂B|26Cα2‖∇u‖‖∇B‖2L4

6Cα2‖∇u‖‖∆B‖7/4‖B‖1/4

6 εµα2‖∆B‖2+ Cεα
2

µ7
‖∇u‖8‖B‖2. (3.11)

It remains to estimate
∫

f ·v=
∫

f ·u−α2

∫

f ·∆u.

By slightly modifying (3.4), we have

|(f ,u)|6
{

‖A−1f‖2

να2 + να2

4 ‖∆u‖2
‖A−1/2f‖2

ν + ν
4‖∇u‖2

and hence, recalling (3.9),

|(f ,u)|6K1+
να2

4
‖∆u‖2+ ν

4
‖∇u‖26K1+

3ν

8
‖∇v‖2.

Similarly,

α2|(f ,∆u)|6
{

α2‖A−1/2f‖‖∇∆u‖
α2‖f‖‖∆u‖

6

{

‖A−1/2f‖2

ν + να4

4 ‖∇∆u‖2
α2‖f‖2

ν + να2

4 ‖∆u‖2
(3.12)
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by Young inequality.
If we set

K2=min

{‖A−1/2f‖2
ν

,
α2‖f‖2

ν

}

,

we have

α2|(f ,∆u)|6K2+
να4

4
‖∇∆u‖2+ να2

4
‖∆u‖26K2+

3ν

8
‖∇v‖2.

In conclusion,
∣

∣

∣

∣

∫

f ·v
∣

∣

∣

∣

6K1+K2+
3ν

4
‖∇v‖2. (3.13)

Combining (3.10), (3.11), (3.13), and (3.6), we obtain

1

2

d

dt

(

‖v‖2+‖B‖2+α2‖∇B‖2
)

+ν‖∇v‖2+µ‖∇B‖2+µα2‖∆B‖2

6

(

3

4
+2ε

)

ν‖∇v‖2+εµα2‖∆B‖2+K1+K2

+Cε‖∇u‖4
(

1

νλ
1/2
1

+
α2

µ7
‖∇u‖4‖B‖2

)

6
7

8

(

ν‖∇v‖2+µ‖∇B‖2+µα2‖∆B‖2
)

+K1+K2+
Ck21
α4

(

1

νλ
1/2
1

+
k31
µ7α2

)

, (3.14)

which implies, thanks to (2.3),

y′(t)+
ηλ1
4
y(t)6k′2, (3.15)

having set

y(t)=‖v(t)‖2+‖B(t)‖2+α2‖∇B(t)‖2,

k′2=2(K1+K2)+
2Ck21
α4

(

1

νλ
1/2
1

+
k31
µ7α2

)

.

Hence we deduce

‖v(t)‖2+‖B(t)‖2+α2‖∇B(t)‖26k′0 e−ηλ1t/4+
4k′2
ηλ1

(1−e−ηλ1t/4) (3.16)

and finally

‖v(t)‖2+‖B(t)‖2+α2‖∇B(t)‖26k2, (3.17)

where

k′0=‖v(0)‖2+‖B(0)‖2+α2‖∇B(0)‖2,

k2=k
′
0+

4k′2
ηλ1

.
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4. Existence of a unique compact global attractor

From the existence and uniqueness properties of the solution to (1.4), we get a
semigroup of solution operators, which we will denote by (S(t))t>0, that associates to
each couple of initial data (u0,B0)∈H1

σ(Ω)×L2
σ(Ω) the semiflow for time t>0, i.e.,

S(t)(u0,B0)=(u(t),B(t)).
Let us note that, following the computations performed for instance in Babin–

Vishik [2, Chapter 7, Section 5], one can prove that S(t) is differentiable with respect
to the initial data. This property is needed in order to apply the techniques presented
in section 5.

First, we show the existence of an absorbing ball in D1
.
=H1

σ×L2
σ. From (3.1),

we choose t′ large enough so that

‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖26 2K1

ηλ1
∀t> t′; (4.1)

in particular, we have

limsup
t→∞

(‖u(t)‖2+α2‖∇u(t)‖2+‖B(t)‖2)6 2K1

ηλ1

.
= r21.

Hence the ball B1 of radius r1 and centered at the origin is an absorbing ball in D1

for system (1.4). Note that r1 is independent of the initial data.
Now, let us note that we can modify inequality (3.15). Indeed, from (3.14), we

also obtain

y′(t)+
ηλ1
4
y(t)62(K1+K2)+2C‖∇u‖4

(

1

νλ
1/2
1

+
α2

µ7
‖∇u‖4‖B‖2

)

62(K1+K2)+
8CK2

1

α4η2λ21

(

1

νλ
1/2
1

+
8K3

1

α2µ7η3λ31

)

.
=K ′

2

for each t> t′, where we have used (4.1). We multiply both members by eηλ1t/4 and
integrate from t′ to t to obtain

y(t)6y(t′)e−ηλ1(t−t′)/4+
4K ′

2

ηλ1
(1−e−ηλ1(t−t′)/4) ∀t> t′.

Thus we can choose t′′>t′ large enough so that

‖v(t)‖2+‖B(t)‖2+α2‖∇B(t)‖26 5K ′
2

ηλ1
∀t> t′′.

In particular, we have

limsup
t→∞

(‖v(t)‖2+‖B(t)‖2+α2‖∇B(t)‖2)6 5K ′
2

ηλ1

.
= r22;

this implies that the ball B2 of radius r2 and centered at the origin is an absorbing
ball in D2

.
=H2

σ×H1
σ for problem (1.4). Observe that r2 as well is independent of the

initial data.
From Rellich lemma (see [1]), D2 is compactly imbedded in D1, hence we have

that S(t) :D1→D2, t>0, is a compact semigroup from D1 to itself (bounded sets in
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D1 are mapped in bounded sets in D2 that are compactly imbedded in D1). This
implies that S(t)B1 6=∅ is compact in D1 for each t>0.

Moreover, S(t)B1⊆B2 if t is sufficiently large, thus, if we assume s>0 large
enough, the set Cs .=∪t>sS(t)B1 is nonempty and compact, since it is closed and
contained in B2, which is compact in D1. By monotonicity of Cs for s>0 and by the
finite intersection property of compact sets, we deduce that

A
.
=
⋂

s>0

⋃

t>s

S(t)B1

is a nonempty compact set in D1. A is a global attractor, since it attracts bounded
sets of the whole space D1, therefore it is the unique global attractor in D1.

5. Estimate for the finite dimension of the attractor

First of all, we linearize the model about a solution (v(t),B(t)), where v(t)=
u(t)−α2∆u(t). We denote by δv= δu−α2∆δu and δB perturbations satisfying











d
dt δv−ν∆δv+B(δu,u)+B(u,δu)−B(δB,B)−B(B,δB)=0,
d
dt δB−µ∆δB+B(δu,B)+B(u,δB)−B(δB,u)−B(B,δu)=0,

(δv(0),δB(0))=(δv0,δB0),

where, by definition, B(u,B)=(u ·∇)B. Let us note that the first equation can be
recast in terms of u and B only:

d

dt
δu−ν∆δu+(I−α2∆)−1[B(δu,u)+B(u,δu)−B(δB,B)−B(B,δB)]=0.

The above system has the form
{

d
dt δw+T (t)δw=0,

δw(0)= δw0=(δu0,δB0)
(5.1)

if we set δw=
(

δu
δB

)

, A=−∆, T (t)=
(

νI3 0
0 µI3

)

A+T0(t), where I3 is the 3×3 identity
matrix, and

T0(t)

(

δu
δB

)

=

(

(I−α2∆)−1[B(δu,u)+B(u,δu)−B(δB,B)−B(B,δB)]
B(δu,B)+B(u,δB)−B(δB,u)−B(B,δu)

)

.

Now, let E0={δwi(0) : i=1,2, . . . ,N} be a set of linearly independent vectors in
H1

σ(Ω)×L2
σ(Ω) and let E={δwi(t) : i=1,2, . . . ,N} be the set of the solutions to (5.1)

with initial data in E0. Moreover, we set E1={
( δvi(t)
δBi(t)

)

: i=1,2, . . . ,N} and

TN (t)=Trace(PN (t)◦T (t)◦PN (t)), (5.2)

where PN (t) is the orthogonal projection of H1
σ(Ω)×L2

σ(Ω) onto the span of E1.

Finally, let {Φi=
(φi

ψi

)

: i=1,2, . . . ,N} be an orthonormal basis for PN (H1
σ×L2

σ)=

span(E1) with respect to the inner product

[(

φi

ψi

)

,

(

φj

ψj

)]

=(φi,φj)+α
2(∇φi,∇φj)+(ψi,ψj), (·, ·)=(·, ·)L2 .
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Let us note that [Φi,Φj ]= δij (Kronecker symbol) and hence ‖φi‖2+α2‖∇φi‖2+
‖ψi‖2=1 for each i=1,2, . . . ,N .

Thanks to the trace representation (5.2), we obtain

TN (t)=
N
∑

i=1

[T (t)Φi(·,t),Φi(·,t)]

=

N
∑

i=1

(

[(

νI3 0
0 µI3

)

AΦi,Φi

]

+(B(φi,u),φi)−(B(ψi,B),φi)

+(B(φi,B),ψi)−(B(ψi,u),ψi)

)

,

having simplified terms according to the definition of the inner product [·, ·], which
implies that

[(

(I−α2∆)−1u1

B1

)

,

(

u2

B2

)]

=(u1,u2)+(B1,B2),

and (2.1).

We have

N
∑

i=1

[(

νI3 0
0 µI3

)

AΦi,Φi

]

=

N
∑

i=1

(

(

M2∇Φi,∇Φi

)

+να2‖∆φi‖2
)

=
N
∑

i=1

(

‖M∇Φi‖2+να2‖∆φi‖2
) .
=QN ,

where

M =

(√
νI9 0
0

√
µI9

)

, ∇Φi=(∂x1
φ
(1)
i ,∂x2

φ
(1)
i , . . . ,∂x2

ψ
(3)
i ,∂x3

ψ
(3)
i )T

and φi=(φ
(1)
i ,φ

(2)
i ,φ

(3)
i )T, where T denotes the transposition of a vector. Thus we

obtain

TN (t)=QN (t)+RN (t), (5.3)

where

RN =

N
∑

i=1

(

(B(φi,u),φi)−(B(ψi,B),φi)+(B(φi,B),ψi)−(B(ψi,u),ψi)
)

.

Let us set

Ψi=(φi,α∂x1
φi,α∂x2

φi,α∂x3
φi)

T

and note that (Ψi,Ψi)6 [Φi,Φi]=1.
We need the following estimate (see Cao–Lunasin–Titi [3]):

‖φ‖2L∞ 6
C

α2

(

N
∑

i=1

‖∇Ψi‖2
)1/2

, (5.4)



1034 GLOBAL PROPERTIES FOR A 3D DOUBLE VISCOUS MHD-α MODEL

where φ2=
∑N

i=1(φi ·φi) and C>0 is a constant independent of N . Therefore, re-
membering the definition of QN , we deduce:

‖φ‖L∞ 6
CQ

1/4
N

αν1/4
,

(

N
∑

i=1

‖∇φi‖2
)1/2

6
Q

1/2
N

ν1/2
,

(

N
∑

i=1

‖∇ψi‖2
)1/2

6
Q

1/2
N

µ1/2
,

(

N
∑

i=1

‖∆φi‖2
)1/2

6
Q

1/2
N

αν1/2
.

Another tool that we will exploit is the Lieb–Thirring inequality (see [7, 12, 15]).
Let us assume that {Θi}Ni=1 is an orthonormal set of functions in (L2

σ)
k. Then there

exists a positive constant C=C(k), independent of N , such that

∫

Ω

(

N
∑

i=1

Θi(x) ·Θi(x)

)5/3

dx6C

N
∑

i=1

∫

Ω

(∇Θi(x) :∇Θi(x))dx .

We can take

Θi=(φi,ψi,α∂x1
φi,α∂x2

φi,α∂x3
φi)

T,

since (Θi,Θi)= [Φi,Φi]=1, and set Θ2(x,t)
.
=
∑N

i=1Θi(x) ·Θi(x); hence we have
∫

Ω

Θ10/3
6
CQN

η
. (5.5)

We want to estimate RN .

N
∑

i=1

|(B(φi,u),φi)|6
∫

Ω

N
∑

i=1

|(φi ·∇)u ·φi|dx

6

∫

(

N
∑

i=1

|φi|2
)

|∇u| ·16C‖φ‖2L∞‖∇u‖|Ω|1/2

6
CQ

1/2
N

α2ν1/2
‖∇u‖|Ω|1/26 1

8
QN +

C

α4ν
‖∇u‖2|Ω| (5.6)

by applying the Hölder inequality and then Young’s inequality.

N
∑

i=1

|−(B(ψi,B),φi)|=
N
∑

i=1

|(B(ψi,φi),B)|

6

N
∑

i=1

∫

|ψi| |∇φi| |B|6 1

α

∫

(

N
∑

i=1

|ψi|2
)1/2( N

∑

i=1

|α∇φi|2
)1/2

|B|

6
1

α

∫

Θ2|B|6 1

α
‖Θ2‖L5/3‖B‖L5/2

6
CQ

3/5
N

αη3/5
‖B‖7/10‖∇B‖3/10

6
1

8
QN +

C‖B‖1/2
α5/2η3/2

‖B‖5/4‖∇B‖3/4

6
1

8
QN +

CL5/4‖B‖1/2
α5/2η3/2

‖∇B‖2, (5.7)
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having applied (5.5), (2.7), Young’s inequality and then the Poincaré inequality.

N
∑

i=1

|(B(φi,B),ψi)|=
N
∑

i=1

|−(B(φi,ψi),B)|

6

N
∑

i=1

∫

|φi| |∇ψi| |B| ·16
∫ ( N

∑

i=1

|φi|2
)1/2( N

∑

i=1

|∇ψi|2
)1/2

|B| ·1

6‖φ‖L∞

∥

∥

∥

∥

∥

∥

(

N
∑

i=1

|∇ψi|2
)1/2

∥

∥

∥

∥

∥

∥

‖B‖L3‖1‖L6

6
CQ

1/4
N

αν1/4

( N
∑

i=1

‖∇ψi‖2
)1/2

‖∇B‖1/2‖B‖1/2|Ω|1/6

6
CQ

3/4
N

αν1/4µ1/2
‖∇B‖1/2‖B‖1/2|Ω|1/6

6
1

8
QN +

C

α4νµ2
‖∇B‖2‖B‖2|Ω|2/3. (5.8)

Finally, proceeding similarly as for (5.7), we have

N
∑

i=1

|(B(ψi,u),ψi)|6
∫ N
∑

i=1

|ψi|2|∇u|

6

∫

Θ2|∇u|6 1

8
QN +

CL5/4‖∇u‖1/2
η3/2

‖∆u‖2. (5.9)

Combining (5.6), (5.7), (5.8), and (5.9) into (5.3) we can deduce

TN (t)>
QN (t)

2
−CR(t), (5.10)

where

R(t)=
L3

α4ν
‖∇u‖2+ L2

α4νµ2
‖∇B‖2‖B‖2+ L5/4‖B‖1/2

α5/2η3/2
‖∇B‖2

+
L5/4‖∇u‖1/2

η3/2
‖∆u‖2 .=R1(t)+R2(t)+R3(t)+R4(t),

since |Ω|=(2πL)3.

We will use the following result (see, for example, [7] and [15]). By the trace
formula, if N is large enough so that

XN
.
=liminf

T→∞

1

T

∫ T

0

TN (t)dt>0,

then N is an upper bound for the Hausdorff dimension dH(A ) and the fractal dimen-
sion dF(A ) of the global attractor A :

dH(A )6dF(A )6N.
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Now, the asymptotic behavior of the eigenvalues of the operator A is such that

λi>
λ1i

2/3

C
,

hence we obtain (we refer to [7] and [15] for both the previous estimate and the middle
part of the following one)

QN >η
N
∑

i=1

‖∇Ψi‖2>η
N
∑

i=1

λi>
ηλ1N

5/3

C
,

since, by induction, one can easily prove that 2
∑N

i=1 i
2/3>N5/3. This implies that

XN >
ηλ1N

5/3

C
−C limsup

T→∞

1

T

∫ T

0

(

R1(t)+R2(t)+R3(t)+R4(t)
)

dt. (5.11)

For R1, thanks to (3.2), we have the estimate

limsup
T→∞

1

T

∫ T

0

R1(t)dt=limsup
T→∞

L3

α4ν2T

∫ T

0

ν‖∇u(t)‖2dt

6
L3

α4ν2
limsup
T→∞

TK1+k1
T

=
L3K1

α4ν2
. (5.12)

Let us note that the last term in the previous inequality is independent of the initial
data.

As to R2, we have

limsup
T→∞

1

T

∫ T

0

R2(t)dt=
L2

α4νµ2
limsup
T→∞

1

T

∫ T

0

‖B(t)‖2‖∇B(t)‖2dt

6
L2

α4νµ2
limsup
T→∞

k0
T

∫ T

0

e−ηλ1t‖∇B(t)‖2dt+ L2K1

α4νµ2ηλ1
limsup
T→∞

1

T

∫ T

0

‖∇B(t)‖2dt,

since ‖B‖26k0 e−ηλ1t+K1/(ηλ1) because of (3.1). Now we use (3.3) and (3.2) for
the first and the second integral respectively, and deduce

limsup
T→∞

1

T

∫ T

0

R2(t)dt6
L2k0
α4νµ3

limsup
T→∞

1

T

(

4K1

ηλ1
+k0

)

+
L2K1

α4νµ3ηλ1
limsup
T→∞

1

T
(TK1+k1)=

L4K2
1

α4νµ3η
,

(5.13)

since λ1=L
−2.

As to R3, recalling (3.1) we have

limsup
T→∞

1

T

∫ T

0

R3(t)dt6
L5/4

α5/2η3/2
limsup
T→∞

1

T

∫ T

0

‖B(t)‖1/2‖∇B(t)‖2dt

6
L5/4

α5/2η3/2
limsup
T→∞

k
1/4
0

T

∫ T

0

e−ηλ1t/4‖∇B(t)‖2dt

+
L5/4

α5/2η3/2
limsup
T→∞

K
1/4
1

λ
1/4
1 η1/4T

∫ T

0

‖∇B(t)‖2dt

=
L7/4K

1/4
1

α5/2η7/4
limsup
T→∞

TK1+k1
µT

=
L7/4K

5/4
1

α5/2µη7/4
, (5.14)



D. CATANIA AND P. SECCHI 1037

having used (3.3) and (3.2).

Similarly, we obtain

limsup
T→∞

1

T

∫ T

0

R4(t)dt6
L5/4

η3/2
limsup
T→∞

1

T

∫ T

0

‖∇u(t)‖1/2‖∆u(t)‖2dt

6
L5/4

η3/2
limsup
T→∞

k
1/4
0

α1/2T

∫ T

0

e−ηλ1t/4‖∆u(t)‖2dt

+
L5/4

η3/2
limsup
T→∞

K
1/4
1

α1/2λ
1/4
1 η1/4T

∫ T

0

‖∆u(t)‖2dt

=
L7/4K

1/4
1

α1/2η7/4
limsup
T→∞

TK1+k1
να2T

=
L7/4K

5/4
1

α5/2νη7/4
. (5.15)

We conclude that

limsup
T→∞

1

T

∫ T

0

R(t)dt6C

[

L3K1

α4η2
+
L4K2

1

α4η5
+
L7/4K

5/4
1

α5/2η11/4

]

. (5.16)

Now, since

K16
‖A−1f‖2
να2

6
(λ−1

1 ‖f‖)2
να2

6
L4‖f‖2
ηα2

,

we have

limsup
T→∞

1

T

∫ T

0

R(t)dt6C
L6‖f‖2
α5η3

[

(

L

α

)
3

5

+

(

L6‖f‖2
α3η4

)
3

5

+

(

L3/4‖f‖1/2
η

)

3

5

]

5

3

.

In view of (5.11), we look for an N such that

ηN5/3

CL2
−CL

6‖f‖2
α5η3

[

(

L

α

)
3

5

+

(

L6‖f‖2
α3η4

)
3

5

+

(

L3/4‖f‖1/2
η

)

3

5

]

5

3

>0.

Introducing the modified Grashoff number

G=
L3/2‖f‖

η2

(observe that this is a nondimensional quantity), this request is satisfied if

N >CG6/5

(

L

α

)3
[

(

L

α

)
3

5

+G6/5

(

L

α

)
9

5

+G3/10

]

,

hence we have Theorem 1.2.

It remains to prove Theorem 1.3. With this aim, we prove an alternative estimate
for RN . From (5.6), we have

N
∑

i=1

|(B(φi,u),φi)|6
1

8
QN +

CL3

α4η
‖∇u‖2. (5.17)
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From the computations for (5.7), we obtain

N
∑

i=1

|−(B(ψi,B),φi)|6
1

α

∫

Θ2|B|6 1

α
‖B‖L6‖Θ2‖L6/5

6
C

α
‖∇B‖

(∫

Θ ·Θ7/5

)5/6

6
C

α
‖∇B‖

(∫

Θ10/3

)
1

4
(∫

Θ2

)
7

12

6
C

α
‖∇B‖Q

1/4
N N7/12

η1/4
6

1

8
QN +

CN7/9‖∇B‖4/3
α4/3η1/3

, (5.18)

since
∫

Ω

Θ2(x,t)dx=N.

Similarly, from (5.9) we deduce

N
∑

i=1

|(B(ψi,u),ψi)|6
∫

Θ2|∇u|6 1

8
QN +

CN7/9‖∆u‖4/3
η1/3

. (5.19)

Finally, we have

N
∑

i=1

|(B(φi,B),ψi)|6
N
∑

i=1

∫

|φi| |ψi| |∇B|

6

∫ ( N
∑

i=1

|φi|2
)1/2( N

∑

i=1

|ψi|2
)1/2

|∇B|

6‖φ‖L∞

∥

∥

∥

∥

∥

∥

(

N
∑

i=1

|ψi|2
)1/2

∥

∥

∥

∥

∥

∥

‖∇B‖

6
CQ

1/4
N

αν1/4

(∫ N
∑

i=1

|ψi|2
)1/2

‖∇B‖6 CQ
1/4
N

αν1/4

(∫

Θ2

)1/2

‖∇B‖

=
CQ

1/4
N N1/2

αν1/4
‖∇B‖6 1

8
QN +

CN2/3

α4/3η1/3
‖∇B‖4/3. (5.20)

Combining (5.17), (5.18), (5.19) and (5.20), we conclude that

RN (t)6
1

2
QN +

CL3

α4η
‖∇u(t)‖2+ CN7/9

α4/3η1/3
‖∇B(t)‖4/3

+
CN7/9

η1/3
‖∆u(t)‖4/3. (5.21)

Now, using (1.5), we have

limsup
T→∞

1

T

∫ T

0

L3

α4η
‖∇u(t)‖2dt= L3

α4ην
limsup
T→∞

1

T

∫ T

0

ν‖∇u(t)‖2dt

6
L6η

α4ℓ4d
. (5.22)
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On the other hand, also using the Hölder inequality,

limsup
T→∞

1

T

∫ T

0

N7/9

α4/3η1/3
‖∇B(t)‖4/3dt

=
N7/9

α4/3η1/3µ2/3
limsup
T→∞

1

T

∫ T

0

µ2/3‖∇B(t)‖4/3 ·1dt

6
N7/9

α4/3η

(

limsup
T→∞

1

T

∫ T

0

µ‖∇B(t)‖2dt
)2/3

6
N7/9L2η

α4/3ℓ
8/3
d

. (5.23)

Similarly, we also have

limsup
T→∞

1

T

∫ T

0

CN7/9

η1/3
‖∆u(t)‖4/3dt6 N7/9L2η

α4/3ℓ
8/3
d

. (5.24)

Therefore, in order to have XN >0, it is sufficient to have

ηN5/3

CL2
>C

L6η

α4ℓ4d
+C

N7/9L2η

α4/3ℓ
8/3
d

,

or

N >C

(

L

α

)12/5(
L

ℓd

)12/5

+CN7/15

(

L

α

)4/5(
L

ℓd

)8/5

.

Hence we need to have

N >Cmax

{

(

L

α

)12/5(
L

ℓd

)12/5

,

(

L

α

)3/2(
L

ℓd

)3
}

,

which is Theorem 1.3.
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