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STRONG CONVERGENCE OF PRINCIPLE OF AVERAGING FOR

MULTISCALE STOCHASTIC DYNAMICAL SYSTEMS∗

DI LIU†

Abstract. In this paper, we study stochastic differential equations with two well-separated time
scales. We prove that the rate of strong convergence to the averaged effective dynamics is of order
O(ε1/2) , where ε≪1 is the parameter measuring the disparity of the time scales in the system. The
convergence rate is shown to be optimal through examples.
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1. Introduction

Consider the following stochastic dynamical system with a time scale separation
measured by ε≪1:

Ẋε
t =a

(

Xε
t ,Y

ε
t ,ε
)

+σ
(

Xε
t ,Y

ε
t ,ε
)

Ẇt, Xε
0 =x,

Ẏ ε
t =

1

ε
B
(

Xε
t ,Y

ε
t ,ε
)

+
1√
ε
C
(

Xε
t ,Y

ε
t ,ε
)

Ẇt, Y ε
0 =y,

(1.1)

where Xε
t ∈R

n, and Y ε
t ∈R

m are variables in vector spaces and Wt is a standard d-
dimensional Wiener process. a(·)∈R

n, B(·)∈R
m, σ(·)∈R

n×R
d and C(·)∈R

m×R
d

are all functions of O(1) magnitude. Systems in the form of (1.1) arise from a wide
range of applications including chemical kinetics, material sciences, fluid dynamics,
and finance. We have assumed that the phase space can be decomposed into slow
degrees of freedom x and fast degrees of freedom y. Under appropriate assumptions
on B(·) and C(·), the dynamics for Y ε

t with Xε
t =x fixed is ergodic with a unique

invariant measure µε
x(dy). In this case, the Principle of Averaging has been proved

such that in the limit of ε→0, Xε
s converges to a stochastic differential equation of

the following form:

˙̄Xt= ā
(

X̄t

)

+ σ̄
(

X̄t

)

Ẇt, X̄0=x, (1.2)

where

ā(x)= lim
ε→0

∫

a(x,y,ε)µε
x(dy),

σ̄(x)σ̄T (x)= lim
ε→0

∫

σ(x,y,ε)σT (x,y,ε)µε
x(dy).

(1.3)

From the point of view of numerical analysis, an important question is in which
sense, as well as how fast, the system will converge to the effective dynamics. The
recent motivation for this problem is the progress on numerical methods for dynam-
ical systems with multiple time scales. In [12], a multiscale integration scheme was
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proposed to deal with systems in the form of (1.1) by solving the effective dynamics
(1.2). Fitting into the framework of Heterogeneous Multiscale Methods (HMM) [1],
the scheme consists of a macro solver to evolve (1.2) and a micro solver for the fast
dynamics in (1.1). An estimator is chosen to estimate the coefficients ā(·) and σ̄(·)
on-the-fly at each time step of the macro solver using data obtained from the fast
simulations with the micro solver. Without having to resolve all the details of the
fast process on the O(ε) time scale, the method is able to overcome the numerical
stiffness induced by the time scale separation. To fully justify this strategy, we need
an accurate quantitative estimate on the validity of the effective dynamics (1.2). The
convergence in probability for (1.1) to (1.2) has been proved in [11, 3] with no explicit
convergence rate given. The weak convergence has been proved using the asymptotic
expansion of the the backward operator [5, 7], which implies that the convergence
rate is O(ε). What is of further interest is the convergence in the strong sense, which
provides pathwise asymptotic information for the dynamical trajectories of the sys-
tems.

The problem of the strong convergence rate for (1.1) has been studied in previous
literature under the condition that the diffusion in the slow dynamics is independent
of the fast variable, i.e.,

σ(x,y,ε)=σ(x,ε). (1.4)

Assuming (1.4), the strong convergence rate was proved to be O(ε1/6) in [9] and
O(ε1/4) in [4]. In this paper, we will show that the strong convergence rate is O(ε1/2)
in this case. We will also show through examples that the rate is not only sharper but
also optimal. The result here is a generalization of the theorem proved in [2] when
σ=0. We also discuss the fully coupled systems for which assumption (1.4) is not
true and the slow diffusion does depend on the fast variables. For this situation, it can
be seen through simple examples that although the weak convergence of (1.2) is still
valid, the strong convergence does not hold in general. In this paper, we provide a
closed form effective dynamics in terms of the slow variables, which takes the form of
the slow dynamics with the fast variable being replaced by a quasi-stationary process
depending on the slow variable x and parameter ε, i.e.,

˙̄Xε
t =a

(

X̄ε
t ,ξt

(

X̄ε
t ,ε
)

,ε
)

+σ
(

X̄ε
t ,ξt

(

X̄ε
t ,ε
)

,ε
)

Ẇt, X̄0=x, (1.5)

where the process ξs(x,ε) has a stationary distribution of µε
x(·). The strong conver-

gence rate for this case is proved to be also O(ε1/2).
Throughout the paper, we denote C to be a generic constant that does not have

to have the same value. In chains of inequalities, we will adopt C, C′, C′′, . . . or C1,
C2, C3 to avoid confusion.

2. A simple example

In this section, we want to illustrate the main result of the paper through a simple
example, for which the effective dynamics can be explicitly obtained and the strong
convergence rate can be easily calculated.

Example 1. Let us consider the following linear equation:

Ẋε
t =Y ε

t +Ḃt, X0=x,

Ẏ ε
t =−1

ε
Y ε
t +

1√
ε
Ẇt, Y0=y.

(2.1)
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The above equation can be solved analytically such that

Xε
t =x+

∫ t

0

Y ε
s ds+Bt,

Y ε
t = e−t/εy+

1√
ε

∫ t

0

e−(t−s)/εdWs.

(2.2)

Since the fast process is an Ornstein-Uhlenbeck process which admits a unique invari-
ant measure with mean zero, the effective dynamics prescribed by (1.2) can be simply
written as

˙̄Xt= Ḃt, X0=x, (2.3)

or equivalently,

X̄t=x+Bt. (2.4)

The strong rate for Xε
t to converge to X̄t can be obtained through

E
∣

∣Xε
t −X̄t

∣

∣=E

∣

∣

∣

∫ t

0

Y ε
s ds

∣

∣

∣
. (2.5)

Notice that the process Y ε
t is a Gaussian process. Therefore its time integral, as a

limit of sums of Gaussian random variables, is also Gaussian with mean

E

∫ t

0

Y ε
s ds=y

∫ t

0

e−s/εds=O(ε). (2.6)

We can calculate its variance such that

E

(

∫ t

0

Y ε
s ds

)2

=2E

∫ t

0

Y ε
s ds

∫ t

s

Y ε
τ dτ

=2

∫ t

0

ds

∫ t

s

dτ
(e−(τ−s)/ε−e−(τ+s)/ε

2
+e−(τ+s)/εy2

)

= tε+O(ε2), (2.7)

which, together with (2.5), implies that

E
∣

∣Xε
t −X̄t

∣

∣=O(
√
ε). (2.8)

The above example shows that the O(ε1/2) convergence rate is optimal in the
sense that any sharper rate can be counter-exampled by (2.1). It can also be seen
from this example that it is the exponential decay of the correlation function of the
fast dynamics that is guaranteeing the O(ε1/2) standard deviation of the time average
of the fast process, which leads to the O(ε1/2) strong convergence of the effective
dynamics.

3. The strong convergence rate

In this section, we want to prove the theorem for the strong convergence of the
multiscale dynamics (1.1) to the effective dynamics (1.2). We will first make some
assumptions on system (1.1) and provide the theorem for the strong convergence.
Then we will elaborate on the proof.
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3.1. Assumptions and the convergence theorem. Define C
∞
b to be the

space of smooth functions with bounded derivatives of any order. We assume the
following conditions for system (1.1):

Assumption 3.1. The coefficients a(·), σ(·), B(·), and C(·), viewed as functions of

(x,y,ε), are in C
∞
b . Moreover, a(·) and σ(·) are bounded.

Assumption 3.2. There exists a constant α>0 such that for any (x,y,ε),

yTC(x,y,ε)CT (x,y,ε)y≥α|y|2. (3.1)

Assumption 3.3. There exists a constant β>0 such that for any (x,y1,y2,ε),

〈

y1−y2, B(x,y1,ε)−B(x,y2,ε)
〉

+
∥

∥C(x,y1,ε)−C(x,y2,ε)
∥

∥

2

≤−β
∣

∣y1−y2
∣

∣

2
,

(3.2)

where ‖·‖ denotes the Frobenius norm.

Suppose Xε
t and X̄t are solutions to (1.1) and (1.2), respectively. We will prove

the following theorem for the strong convergence rate:

Theorem 3.4. Suppose that Assumptions 3.1–3.3 hold and the following is true:

σ=σ(x,ε). (3.3)

Then for any T0>0, there exists a constant C>0 independent of ε such that

sup
0≤t≤T0

E|Xε
t −X̄t|2≤Cε. (3.4)

Condition (3.3) in Theorem 3.4 implies that the effective dynamics (1.2) takes a
simpler form such that

˙̄Xt= ā
(

X̄t

)

+σ
(

X̄t

)

Ẇt, X̄0=x, (3.5)

in which the diffusion term is obtained simply by taking the limit of ε→0, without
averaging with respect to the equilibrium of the fast dynamics:

σ(x)= lim
ε→0

σ(x,ε). (3.6)

As we will see later in section 4, the condition (3.3) is necessary for the strong con-
vergence of Principle of Averaging in the form of (3.4). In section 4 we will discuss
the case of fully coupled systems when σ depends on the fast variable y such that
σ=σ(x,y,ε). The main purpose of Assumptions 3.2 and 3.3 is to guarantee the ex-
ponential convergence of the fast processes to the equilibrium. Based on the recent
progress on the theory for stability of Markov processes [10], we believe Assumptions
3.2 and 3.3 can be relaxed. It can be seen from the examples in section 2 that As-
sumption 3.1 is also not necessary for Theorem 3.4. We will leave finding necessary
conditions for Theorem 3.4 to future investigations.
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3.2. Proof of the strong convergence theorem. Under Assumptions 3.2
and 3.3, it has been shown [6] that for each fixed (x,ε), the following dynamics

Żt=
1

ε
B
(

x,Zt,ε
)

+
1√
ε
C
(

x,Zt,ε
)

Ẇt, Z0= z, (3.7)

is exponentially mixing with a unique invariant probability measure µε
x(·). To facili-

tate our proof, we define

ā(x,ε)=

∫

Rm

a(x,y,ε)µε
x(dy), (3.8)

and

σ̄(x,ε)σ̄T (x,ε)=

∫

Rm

σ(x,y,ε)σT (x,y,ε)µε
x(dy). (3.9)

Notice that the following relations hold between the above functions and those defined
by (1.3):

ā(x)= lim
ε→0

ā(x,ε), (3.10)

and

σ̄(x)= lim
ε→0

σ̄(x,ε). (3.11)

Let Zε
x,z,t denote the solution of (3.7) with initial condition z and parameter (x,ε).

We define the following function:

â(x,z,t,ε)=Ea
(

x,Zε
x,z,t,ε

)

. (3.12)

We also define the following axillary process which is a modification of the process
defined in [3]. Partitioning [0,T0] into subintervals of the same length ∆, we construct
for t∈ [k∆,(k+1)∆), k≥0, the process (X̃ε

t ,Ỹ
ε
t ) such that

˙̃Xε
t = a

(

Xε
k∆,Ỹ ε

t ,ε
)

+σ
(

Xε
t ,ε
)

Ẇt,

˙̃Y ε
t =

1

ε
B
(

Xε
k∆,Ỹ ε

t ,ε
)

+
1√
ε
C
(

Xε
k∆,Ỹ ε

t ,ε
)

Ẇt,
(3.13)

with the continuity condition at the left end of each subinterval

X̃ε
(k+1)∆= lim

t→(k+1)∆−
X̃ε

t , Ỹ ε
(k+1)∆= lim

t→(k+1)∆−
Ỹ ε
t , (3.14)

and also the initial condition

X̃ε
0 =x, Ỹ ε

0 =y. (3.15)

Denote ⌊x⌋ to be the largest integer less than or equal to x; we can also write (3.13)–
(3.15) in the integral form

X̃ε
t = x+

∫ t

0

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

ds+

∫ t

0

σ
(

Xε
s ,ε
)

dWs,

Ỹ ε
t = y+

1

ε

∫ t

0

B
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

ds+
1√
ε

∫ t

0

C
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

dWs. (3.16)
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By Assumption 3.1 on the smoothness of the coefficients a and σ, E
∣

∣Xε
t

∣

∣

2
is

bounded over finite time intervals. Here we want to show the stability of the fast
processes implied by Assumption 3.3 on the dissipative structure of the fast processes.

Lemma 3.5. For any T0>0, there exists a constant C independent of (ε,∆) such

that

E
∣

∣Y ε
t

∣

∣

2
, E
∣

∣Ỹ ε
t

∣

∣

2≤C. (3.17)

Proof. Fixing y1=y and y2=0 in Assumption 3.3 will give us

〈

y,B(x,y,ε)−B(x,0,ε)
〉

+
∥

∥C(x,y,ε)−C(x,0,ε)
∥

∥

2≤−β
∣

∣y
∣

∣

2
. (3.18)

By Assumption 3.1, we have for any γ >0,

∥

∥C(x,y,ε)
∥

∥

2≤ (1+γ)
∥

∥C(x,y,ε)−C(x,0,ε)
∥

∥

2
+(1+1/γ)‖C(x,0,ε)‖2

≤
∥

∥C(x,y,ε)−C(x,0,ε)
∥

∥

2
+C1γ|y|2+C2(1+1/γ)

(

|x|2+ε2+1
)

, (3.19)

where C1 and C2 are the Lipschitz and linear growth constants of function C(x,y,ε).
If we choose an appropriate value for γ such that C1γ≤β/4, by (3.18), (3.19), and
Assumption 3.1, we can obtain

〈

y,B(x,y,ε)
〉

+
∥

∥C(x,y,ε)
∥

∥

2≤
〈

y,B(x,y,ε)−B(x,0,ε)
〉

+
〈

y,B(x,0,ε)
〉

+
∥

∥C(x,y,ε)−C(x,0,ε)
∥

∥

2
+

β

4
|y|2+C′

(

|x2|+ε2+1
)

≤−β

2
|y|2+C′′

(

|x|2+ε2+1
)

. (3.20)

The Ito formula then suggests that

dE
∣

∣Y ε
t

∣

∣

2
=

2

ε
E

〈

Y ε
t , B

(

Xε
t ,Y

ε
t

)

〉

dt+
1

ε
E

∥

∥

∥
C
(

Xε
t ,Y

ε
t ,ε
)

∥

∥

∥

2

dt

≤−β

ε
E
∣

∣Y ε
t

∣

∣

2
+

C
ε
E

(

|Xε
t |2+ε2+1

)

, (3.21)

which, by the Gronwall inequality, implies the boundedness of E
∣

∣Y ε
t

∣

∣

2
. Repeating the

same argument, we can also obtain the boundedness of E
∣

∣Ỹ ε
t

∣

∣

2
.

The following Lemma describes how Ỹ ε
t deviates from Y ε

t .

Lemma 3.6. For any T0>0, there exists a constant C>0 independent of (ε,∆) such
that

sup
0≤t≤T0

E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2≤C∆. (3.22)

Proof. For each k≥0 and t∈ [k∆,(k+1)∆), direct computation with the Ito
formula gives that

dE
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
=

2

ε
E
(

Y ε
t − Ỹ ε

t

)

·
(

B
(

Xε
t ,Y

ε
t ,ε
)

−B
(

Xε
k∆,Ỹ ε

t ,ε
)

)

dt

+
1

ε
E

∥

∥

∥
C
(

Xε
t ,Y

ε
t ,ε
)

−C
(

Xε
k∆,Ỹ ε

t ,ε
)

∥

∥

∥

2

dt. (3.23)
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By Assumptions 3.1 and 3.3, we have

(

Y ε
t − Ỹ ε

t

)

·
(

B
(

Xε
t ,Y

ε
t ,ε
)

−B
(

Xε
k∆,Ỹ ε

t ,ε
)

)

+
1

2

∥

∥

∥
C
(

Xε
t ,Y

ε
t ,ε
)

−C
(

Xε
k∆,Ỹ ε

t ,ε
)

∥

∥

∥

2

≤
(

Y ε
t − Ỹ ε

t

)

·
(

B
(

Xε
t ,Y

ε
t ,ε
)

−B
(

Xε
t ,Ỹ

ε
t ,ε
)

)

+
(

Y ε
t − Ỹ ε

t

)

·
(

B
(

Xε
t ,Ỹ

ε
t ,ε
)

−B
(

Xε
k∆,Ỹ ε

t ,ε
)

)

+
∥

∥

∥
C
(

Xε
t ,Y

ε
t ,ε
)

−C
(

Xε
t ,Ỹ

ε
t ,ε
)

∥

∥

∥

2

+
∥

∥

∥
C
(

Xε
t ,Ỹ

ε
t ,ε
)

−C
(

Xε
k∆,Ỹ ε

t ,ε
)

∥

∥

∥

2

≤−β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
+C
(

∣

∣Y ε
t − Ỹ ε

t

∣

∣

∣

∣Xε
t −Xε

k∆

∣

∣+
∣

∣Xε
t −Xε

k∆

∣

∣

2
)

. (3.24)

Note that since β>0, we have

C
∣

∣Y ε
t −Ỹ ε

t ||Xε
t −Xε

k∆

∣

∣≤ 1

2
β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
+

C2

2β

∣

∣Xε
t −Xε

k∆

∣

∣

2
, (3.25)

which easily leads to

(

Y ε
t − Ỹ ε

t

)

·
(

B
(

Xε
t ,Y

ε
t ,ε
)

−B
(

Xε
k∆,Ỹ ε

t ,ε
)

)

+
1

2

∥

∥

∥
C
(

Xε
t ,Y

ε
t ,ε
)

−C
(

Xε
k∆,Ỹ ε

t ,ε
)

∥

∥

∥

2

≤−1

2
β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
+C
∣

∣Xε
t −Xε

k∆

∣

∣

2
. (3.26)

By the boundedness of a(·) and σ(·) and the quadratic variation of the Brownian
motion we have for t∈ [k∆,(k+1)∆),

E
∣

∣Xε
t −Xε

k∆

∣

∣

2≤C∆. (3.27)

Combining (3.23), (3.26), and (3.27), it follows that

dE
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2≤−β

ε
E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
dt+C∆

ε
dt. (3.28)

The Gronwall inequality implies that

E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2≤ e−β
(t−k∆)

ε E
∣

∣Y ε
k∆− Ỹ ε

k∆

∣

∣

2
+C
(

1−e−β
(t−k∆)

ε

)

∆. (3.29)

By the continuity condition (3.14) we can take t=(k+1)∆ in the above inequality,
which gives

E
∣

∣Y ε
(k+1)∆− Ỹ ε

(k+1)∆

∣

∣

2≤ e−β ∆

ε E
∣

∣Y ε
k∆− Ỹ ε

k∆

∣

∣

2
+C
(

1−e−
β
ε
∆
)

∆. (3.30)

Applying the above inequality recursively for reducing value of k until k=0, we can
obtain by the initial condition (3.15) that

E
∣

∣Y ε
(k+1)∆− Ỹ ε

(k+1)∆

∣

∣

2≤C
(

1−e−
β
ε
∆
)

∆
∑

0≤ℓ≤k

e−ℓβ ∆

ε ≤C∆, (3.31)

which, together with (3.29), gives (3.22).

Lemma 3.6 easily gives the following asymptotic behavior of X̃ε
t .
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Proposition 3.7. For any T0>0, there exists a constant C>0 independent of (ε,∆)
such that

sup
0≤t≤T0

E
∣

∣Xε
t −X̃ε

t

∣

∣

2≤C∆. (3.32)

Proof. By the smoothness of the coefficients and Lemma 3.6, we can write

E
∣

∣Xε
t −X̃ε

t

∣

∣

2
=E

∣

∣

∣

∫ t

0

(

a
(

Xε
s ,Y

ε
s ,ε
)

−a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

ds
∣

∣

∣

2

≤CE
∫ t

0

(

∣

∣Xε
s −Xε

⌊s/∆⌋∆

∣

∣

2
+
∣

∣Y ε
s − Ỹ ε

s

∣

∣

2
)

ds

≤C∆. (3.33)

Now we want to give an estimate for the expectation E
∣

∣X̃ε
t −X̄t

∣

∣

2
.

Proposition 3.8. For any T0>0, there exists a constant C>0 independent of (ε,∆)
such that

sup
0≤t≤T0

E|X̃ε
t −X̄t|2≤C

(

∆+ε
)

. (3.34)

Proof. First of all, we notice that

E|X̃ε
t −X̄t|2≤2E

(

∫ t

0

(

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

− ā
(

X̄s

)

)

ds

)2

+2E

(

∫ t

0

(

σ
(

Xε
s ,ε
)

−σ
(

X̄ε
s

)

)

dWs

)2

. (3.35)

For the second term on the right hand side of the above inequality, we have by Ito
Isometry

E

(

∫ t

0

(

σ
(

Xε
s ,ε
)

−σ
(

X̄ε
s

)

)

dWs

)2

=

∫ t

0

E

(

σ
(

Xε
s ,ε
)

−σ
(

X̄ε
s

)

)2

ds. (3.36)

Proposition 3.7 and the smoothness of the coefficients gives the following estimate:

E

(

σ
(

Xε
s ,ε
)

−σ
(

X̄ε
s

)

)2

≤C
(

E
∣

∣Xε
s −X̄s

∣

∣

2
+ε2

)

≤C′

(

E
∣

∣X̃ε
s −X̄s

∣

∣

2
+∆+ε2

)

. (3.37)

Therefore we have

E

(

∫ t

0

(

σ
(

Xε
s ,ε
)

−σ
(

X̄ε
s

)

)

dWs

)2

≤C
(

∫ t

0

E
∣

∣X̃ε
s −X̄s

∣

∣

2
ds+∆+ε2

)

. (3.38)
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Now we want to give an estimate for the first term on the right hand side of (3.35).
Notice that

E

(

∫ t

0

(

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

− ā
(

X̄s

)

)

ds

)2

≤3E

(

∫ t

0

(

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

− ā
(

Xε
⌊s/∆⌋∆

))

ds

)2

+3E

(

∫ t

0

(

ā
(

Xε
⌊s/∆⌋∆

)

− ā
(

Xε
s

))

ds

)2

+3E

(

∫ t

0

(

ā
(

Xε
s

)

− ā
(

X̄s

))

ds

)2

.

(3.39)

By the smoothness of ā(x,ε) proved in the Appendix, we have

E

(

∫ t

0

(

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

− ā
(

X̄s

)

)

ds

)2

≤3E

(

∫ t

0

(

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

− ā
(

Xε
⌊s/∆⌋∆

))

ds

)2

+C
(

∆+E

∫ t

0

∣

∣Xε
s −X̄s

∣

∣

2
ds

)

.

(3.40)

We can evaluate the above double integral in the above inequality as

E

(

∫ t

0

(

a
(

Xε
⌊s/∆⌋∆,Ỹ ε

s ,ε
)

− ā
(

X̄⌊s/∆⌋∆

)

)

ds

)2

≤ E

∑

0≤k≤⌊t/∆⌋

(

∫ ((k+1)∆)∧t

k∆

(

a
(

Xε
k∆,Ỹ ε

s ,ε
)

− ā
(

Xε
k∆

)

)

ds

)2

+2E
∑

0≤i<j≤⌊t/∆⌋

(

∫ ((i+1)∆)∧t

i∆

(

a
(

Xε
i∆,Ỹ ε

s ,ε
)

− ā
(

Xε
i∆

)

)

ds

)

·
(

∫ ((j+1)∆)∧t

j∆

(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

dτ

)

def
= A1+2A2. (3.41)

For A1, we have the following estimate:

E

(

∫ ((k+1)∆)∧t

k∆

(

a
(

Xε
k∆,Ỹ ε

s ,ε
)

− ā
(

Xε
k∆

)

)

ds

)2

≤2

∫ ((k+1)∆)∧t

k∆

E

(

a
(

Xε
k∆,Ỹ ε

s ,ε
)

− ā
(

Xε
k∆

)

)

ds

·
∫ (k+1)∆

s

Es

(

a
(

Xε
k∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
k∆

)

)

dτ, (3.42)

where Es denotes the conditional probability for information up to time s. By the
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smoothness of ā(x,ε), we have
∣

∣

∣

∣

∣

Es

(

a
(

Xε
k∆,Ỹ ε

s ,ε
)

− ā
(

Xε
k∆

)

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

Es

(

a
(

Xε
k∆,Ỹ ε

s ,ε
)

− ā
(

Xε
k∆,ε

)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Es

(

ā
(

Xε
k∆,ε

)

− ā
(

Xε
k∆

)

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

Es

(

a
(

Xε
k∆,Ỹ ε

s ,ε
)

− ā
(

Xε
k∆,ε

)

)

∣

∣

∣

∣

∣

+Cε. (3.43)

By the exponential mixing (A.17) given in the Appendix and Lemma 3.5 for the
boundedness of E

∣

∣Y ε
t

∣

∣, we can write

E

∣

∣

∣

∣

∣

Es

(

a
(

Xε
k∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
k∆,ε

)

)

∣

∣

∣

∣

∣

≤CE
(

∣

∣Xε
s

∣

∣+
∣

∣Y ε
s

∣

∣+ε+1
)

e−β
(τ−s)

ε

≤C′e−β
(τ−s)

ε . (3.44)

Therefore, by the Assumption that a is bounded, we have

A1≤C
∑

0≤k≤⌊t/∆⌋

∫ (k+1)∆∧t

k∆

ds

∫ (k+1)∆∧t

s

dτ
(

e−β
(τ−s)

ε +ε
)

≤C′ε.

(3.45)

To estimate A2, we define the auxiliary process Zε
i,τ for i∆≤ τ such that it satisfies

(3.7) with parameter x=Xε
i∆ and initial condition Ỹ ε

i∆, i.e.,

Żε
i,τ =

1

ε
B
(

Xε
i∆,Zε

i,τ ,ε
)

+
1√
ε
C
(

Xε
i∆,Zε

i,τ ,ε
)

Ẇτ ,

Zi,i∆= Ỹ ε
i∆.

(3.46)

Notice that by the above definition, we have

Zε
k,τ = Ỹ ε

τ , when τ ∈ [k∆,(k+1)∆), (3.47)

and continuity implies that

Zε
(k+1),(k+1)∆=Zε

k,(k+1)∆= Ỹ ε
(k+1)∆. (3.48)

Using the boundedness of ā(x,ε), we obtain
∣

∣

∣

∣

∣

E

(

a
(

Xε
i∆,Ỹ ε

s ,ε
)

− ā
(

Xε
i∆

)

)

·
(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E

(

a
(

Xε
i∆,Ỹ ε

s ,ε
)

− ā
(

Xε
i∆

)

)

·Ei∆

(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

∣

∣

∣

∣

∣

≤CE
∣

∣

∣

∣

∣

Ei∆

(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

∣

∣

∣

∣

∣

≤CE
∣

∣

∣

∣

∣

Ei∆

{(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

−
(

a
(

Xε
i∆,Zε

i,τ ,ε
)

− ā
(

Xε
i∆

)

)}

∣

∣

∣

∣

∣

+CE
∣

∣

∣

∣

∣

Ei∆

(

a
(

Xε
i∆,Zε

i,τ ,ε
)

− ā
(

Xε
i∆

)

)

∣

∣

∣

∣

∣

. (3.49)
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By the exponential mixing (A.17) and the smoothness of ā(x,ε), we have

E

∣

∣

∣

∣

∣

Ei∆

(

a
(

Xε
i∆,Zε

i,τ ,ε
)

− ā
(

Xε
i∆

)

)

∣

∣

∣

∣

∣

≤C
(

e−β
(τ−i∆)

ε +ε
)

. (3.50)

The smoothness of ā(x,ε) suggests that

E

∣

∣

∣

∣

∣

Ei∆

{(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

−
(

a
(

Xε
i∆,Zε

i,τ ,ε
)

− ā
(

Xε
i∆

)

)}

∣

∣

∣

∣

∣

≤E

∣

∣

∣

∣

∣

Ei∆

{(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆,ε

)

)

−
(

a
(

Xε
i∆,Zε

i,τ ,ε
)

− ā
(

Xε
i∆,ε

)

)}

∣

∣

∣

∣

∣

+Cε

≤
j−1
∑

k=i

E

∣

∣

∣

∣

∣

Ek∆

{(

a
(

Xε
(k+1)∆,Zε

k+1,τ ,ε
)

− ā
(

Xε
(k+1)∆,ε

)

)

−
(

a
(

Xε
k∆,Zε

k,τ ,ε
)

− ā
(

Xε
k∆,ε

)

)}

∣

∣

∣

∣

∣

+Cε. (3.51)

From the definition of â(x,z,t,ε) by (3.12), we can see that for i≤k and (k+1)∆≤ t,

Ei∆a
(

Xε
k∆,Zε

k,t,ε
)

=Ei∆â
(

Xε
k∆,Ỹ ε

k∆,t−k∆,ε
)

=Ei∆â
(

Xε
k∆,Ỹ ε

(k+1)∆,t−(k+1)∆,ε
)

. (3.52)

Let ã(x,z,t,ε)= â(x,z,t,ε)− ā(x,ε). By the smoothness of â(x,z,t,ε) given in the
Appendix, we can perform the following Taylor expansion:

E

∣

∣

∣

∣

∣

Ek∆

{(

a
(

Xε
(k+1)∆,Zε

k+1,τ ,ε
)

− ā
(

Xε
(k+1)∆,ε

)

)

−
(

a
(

Xε
k∆,Zε

k,τ ,ε
)

− ā
(

Xε
k∆,ε

)

)}

∣

∣

∣

∣

∣

=E

∣

∣

∣

∣

∣

Ek∆

{

ã
(

Xε
(k+1)∆,Ỹ ε

(k+1)∆,τ−(k+1)∆,ε
)

− ã
(

Xε
k∆,Ỹ ε

(k+1)∆,τ−(k+1)∆,ε
)}

∣

∣

∣

∣

∣

≤E

∣

∣

∣

∣

∣

Ek∆

3
∑

|I|=1

∇I
xã
(

Xε
k∆,Ỹ ε

(k+1)∆,τ−(k+1)∆,ε
)

·
(

Xε
(k+1)∆−Xε

k∆

)I
∣

∣

∣

∣

∣

+C∆2. (3.53)

We can further have for any multi-index I,

E

∣

∣

∣

∣

∣

Ek∆∇I
xã
(

Xε
k∆,Ỹ ε

(k+1)∆,τ−(k+1)∆,ε
)(

Xε
(k+1)∆−Xε

k∆

)I
∣

∣

∣

∣

∣

≤E

∣

∣

∣

∣

∣

Ek∆∇I
xã
(

Xε
k∆,Ỹ ε

k∆,τ−(k+1)∆,ε
)

·
(

Xε
(k+1)∆−Xε

k∆

)I
∣

∣

∣

∣

∣

+E

∣

∣

∣

∣

∣

Ek∆∇I
x

{

â
(

Xε
k∆,Ỹ ε

(k+1)∆,τ−(k+1)∆,ε
)

−â
(

Xε
k∆,Ỹ ε

k∆,τ−(k+1)∆,ε
)

}

·
(

Xε
(k+1)∆−Xε

k∆

)I
∣

∣

∣

∣

∣

. (3.54)
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Using independent increments and exponential mixing for the derivatives of ā(x,ε)
given by (A.19) in the Appendix and the fact that for any diffusion process xt,

E(dxt)
I =O

(

dt

⌊

|I|+1
2

⌋

)

, (3.55)

we have

E

∣

∣

∣

∣

∣

Ek∆∇I
xã
(

Xε
k∆,Ỹ ε

k∆,τ−(k+1)∆,ε
)

·
(

Xε
(k+1)∆−Xε

k∆

)I
∣

∣

∣

∣

∣

≤∆

⌊

|I|+1
2

⌋

E

∣

∣

∣

∣

∣

Ek∆∇I
x

{

â
(

Xε
k∆,Ỹ ε

k∆,τ−(k+1)∆,ε
)

− ā
(

Xε
k∆,ε

)}

∣

∣

∣

∣

∣

≤C∆e−β
(τ−(k+1)∆)

ε , (3.56)

and

E

∣

∣

∣

∣

∣

Ek∆∇I
x

{

â
(

Xε
k∆,Ỹ ε

(k+1)∆,τ−(k+1)∆,ε
)

−â
(

Xε
k∆,Ỹ ε

k∆,τ−(k+1)∆,ε
)}

·
(

Xε
(k+1)∆−Xε

k∆

)I
∣

∣

∣

∣

∣

≤∆

⌊

|I|+2
2

⌋

E

∣

∣

∣

∣

∣

Ek∆∇I
x

∑

|J|=1

∇J
z â
(

Xε
k∆,Ỹ ε

k∆,τ−(k+1)∆,ε
)

∣

∣

∣

∣

∣

+C∆2

≤C′
(

(∆e−β
(τ−(k+1)∆)

ε +∆2
)

. (3.57)

Combining (3.53), (3.54), (3.56), and (3.57), we have

E

∣

∣

∣

∣

∣

Ek∆

{(

a
(

Xε
(k+1)∆,Zε

k+1,τ ,ε
)

− ā
(

Xε
(k+1)∆,ε

)

)

−
(

a
(

Xε
k∆,Zε

k,τ ,ε
)

− ā
(

Xε
k∆,ε

)

)}

∣

∣

∣

∣

∣

≤C
(

∆2+∆e−β
(τ−(k+1)∆)

ε

)

. (3.58)

Substituting the above inequality into (3.51) gives

E

∣

∣

∣

∣

∣

Ei∆

{(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)

−
(

a
(

Xε
i∆,Zε

i,τ ,ε
)

− ā
(

Xε
i∆

)

)}

∣

∣

∣

∣

∣

≤C
(

j−1
∑

k=i

(

∆2+∆e−β
(τ−(k+1)∆)

ε

)

+ε

)

≤C
(

(j− i)∆2+∆
e−β

(τ−j∆)
ε

1−e−β ∆

ε

+ε

)

. (3.59)

Using (3.49), (3.50), and (3.59), we have
∣

∣

∣

∣

∣

E

(

a
(

Xε
i∆,Ỹ ε

s ,ε
)

− ā
(

Xε
i∆

)

)

·
(

a
(

Xε
j∆,Ỹ ε

τ ,ε
)

− ā
(

Xε
j∆

)

)∣

∣

∣

≤C
(

(j− i)∆2+∆
e−β

(τ−j∆)
ε

1−e−β ∆

ε

+e−
β
ε
(τ−i∆)+ε

)

. (3.60)
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Therefore, by the boundedness of a, we have

A2≤C
∑

0≤i<j≤⌊t/∆⌋

∫ (i+1)∆

i∆

ds

∫ (j+1)∆

j∆

dτ

(

(j− i)∆2+∆
e−β

(τ−j∆)
ε

1−e−β ∆

ε

+e−
β
ε
(τ−i∆)+ε

)

≤C
∑

0≤i<j≤⌊t/∆⌋

(

(j− i)∆4+ε∆2+e−β
(j−i)∆

ε

(

1−e−β ∆

ε

)

ε∆

)

≤C
(

∆+ε
)

. (3.61)

Combining (3.38), (3.40), (3.45), and (3.61), we have

E
∣

∣X̃ε
t −X̄t

∣

∣

2≤C
(

∫ t

0

E
∣

∣X̃ε
s −X̄s

∣

∣

2
ds+∆+ε

)

. (3.62)

The Gronwall inequality then implies (3.34).

Now we can finish the proof for the O(ε1/2) strong convergence rate.

Proof. [Proof of Theorem 3.4] In Proposition 3.7 and 3.8, taking ∆= ε, we have

E
∣

∣Xε
t −X̄t

∣

∣

2≤2E
∣

∣Xε
t −X̃ε

t

∣

∣

2
+2E

∣

∣X̃ε
t −X̄t

∣

∣

2≤Cε. (3.63)

4. Effective dynamics for fully coupled systems

The previous sections concern only the situation when σ=σ(x,ε). In this section,
we want to discuss the situation where σ=σ(x,y,ε), i.e., the diffusion term in the
slow dynamics does depend on the fast variable. It is easy to show that the weak
convergence of (1.2) is still true for this case [7]. But the strong convergence does not
hold. In the following, we will first show this by an example. Then we will provide the
effective dynamics for the fully coupled system and prove the the strong convergence
rate is also O(ε1/2).

4.1. An illustrative example. Consider the following example:

Ẋε
t =Y ε

t Ẇt, X0=x,

Ẏ ε
t =−1

ε
Y ε
t +

1√
ε
Ẇt, Y0=y.

(4.1)

According to (1.3), we have ā=0 and σ̄2= 1
2 . Then (1.2) takes the form

˙̄Xt= σ̄Ẇt. (4.2)

Although the above effective dynamics is true in the weak sense, we are going to show
that strong convergence does not hold. Using Ito Isometry, we can easily calculate
that

E
∣

∣Xε
t −X̄t

∣

∣

2
=E

∣

∣

∣

∫ t

0

(

Y ε
t − σ̄

)

dWt

∣

∣

∣

2

=

∫ t

0

E
∣

∣Y ε
t − σ̄

∣

∣

2
dt=O(t), (4.3)

which implies that the strong convergence of effective dynamics according to (1.2) is
not valid.
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To give the effective dynamics for (4.1) in the strong sense, we define the following
stationary process ξεt with an Gaussian invariant measure of mean zero and variance
1
2 satisfying the following SDE over the whole time domain t∈ (−∞,∞):

ξ̇εt =−1

ε
ξεt +

1√
ε
Ẇt. (4.4)

The existence of the above process is provided in the Appendix. It is also shown in
the Appendix that

E
∣

∣Y ε
t −ξεt

∣

∣

2≤ (y2+1)e−2 t
ε . (4.5)

The above estimate suggests the effective slow dynamics could be given in the following
form:

˙̄X= ξεt Ẇt, X̄0=x, (4.6)

for which the strong convergence holds with the rate

E
∣

∣Xε
t −X̄t

∣

∣

2
=E

∣

∣

∣

∫ t

0

(

Y ε
t −ξεt

)

dWt

∣

∣

∣

2

=

∫ t

0

E
∣

∣Y ε
t −ξεt

∣

∣

2
dt=O(ε). (4.7)

Equation (4.6) gives a closed form dynamics in terms of the slow variable x, but its
coefficient still depends on ε. A natural question is whether there exists a closed form
dynamics in terms of only x such that (4.6) converges strongly when ε→0. We are
going to show that the answer is no. From the simple form of (4.6), we can see that
this problem can be reduced to the existence of a random process independent of ε
to which the process

∫ t

0
ξεsdWs converges strongly. We want to show that this is not

possible. Direct calculation shows that

Eξεt ξ
ε′

t =E

( 1√
ε

∫ t

−∞

e−(t−s)/εdWs
1√
ε′

∫ t

−∞

e−(t−s)/ε′dWs

)

=E
1√
εε′

(

∫ t

−∞

e−(t−s)
(

1
ε
+ 1

ε′

)

ds
)

=

√
εε′

ε+ε′
. (4.8)

Letting ε′= ε2, we have

Eξεt ξ
ε2

t =O(ε1/2)→0, ε→0. (4.9)

The above inequality means that as Gaussian random variables, ξεt and ξε
2

t are asymp-
totically independent to each other when ε→0. Ito Isometry then implies that

E

(

∫ t

0

ξεsdWs

∫ t

0

ξε
2

s dWs

)

=

∫ t

0

Eξεsξ
ε2

s ds=O(ε1/2). (4.10)

Suppose that there is a stochastic process ηt such that

E
∣

∣

∫ t

0

ξεsdWs−ηt
∣

∣

2→0, ε→0. (4.11)
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Then we have

E

∣

∣

∣

∫ t

0

ξεsdWs−
∫ t

0

ξε
2

s dWs

∣

∣

∣

2

≤2E
∣

∣

∣

∫ t

0

ξεsdWs−ηt

∣

∣

∣

2

+2E
∣

∣

∣

∫ t

0

ξε
2

s dWs−ηt

∣

∣

∣

2

→0, ε→0. (4.12)

This contradicts the fact (4.10) since by the stationarity of ξεt , we have

E

(

∫ t

0

ξεsdWs−
∫ t

0

ξε
2

t dWs

)2

=E

(

∫ t

0

ξεsdWs

)2

+E

(

∫ t

0

ξε
2

s dWs

)2

+2E
(

∫ t

0

ξεsdWs

∫ t

0

ξε
2

s dWs

)

=

∫ t

0

E
(

ξεs
)2
ds+

∫ t

0

E
(

ξε
2

s

)2
ds+2

∫ t

0

Eξεsξ
ε2

s ds

= t+O(ε1/2). (4.13)

4.2. Effective dynamics with strong convergence. Now we want to
establish the validity of effective dynamics of type (4.10) by proving its strong conver-
gence. For each (x,ε), the existence of a stationary process with invariant distribution
µε
x is guaranteed by Lemma A.2 provided in the Appendix such that for t∈ (−∞,∞),

ξ̇t(x,ε)=
1

ε
B
(

x,ξt(x,ε),ε
)

+
1√
ε
C
(

x,ξt(x,ε),ε
)

Ẇt. (4.14)

Using the integration by parts and the Ito formula, we obtain for any process Xt with
quadratic variation

dξt(Xt,ε)=
1

ε
B
(

Xt,ξt(Xt,ε),ε
)

dt+
1√
ε
C
(

Xt,ξt(Xt,ε),ε
)

dWt

+ηt(Xt,ε)dXt+
1

2
θt(Xt,ε)<dXt,dXt>

+<dηt(Xt,ε),dXt>, (4.15)

where

ηt(x,ε)=∇xξt(x,ε), θt(x,ε)=∇xxξt(x,ε). (4.16)

Let Xε
t and X̄ε

t be solutions of (1.1) and (1.5), respectively. The following theorem
says that when ε≪1, the difference between Xε

t and X̄ε
t in the strong sense is O(ε1/2).

Theorem 4.1. Suppose Assumption 3.1– 3.3 holds. Then for any T0>0, there exists

a constant C>0 independent of ε such that

sup
0≤t≤T0

E|Xε
t −X̄ε

t |2≤Cε. (4.17)

To prove the above theorem, we define the following process that is similar to (3.16):

X̂ε
t = x+

∫ t

0

a
(

Xε
⌊s/∆⌋∆,Ŷ ε

s ,ε
)

ds+

∫ t

0

σ
(

Xε
s ,Y

ε
s ,ε
)

dWs,

Ŷ ε
t = y+

1

ε

∫ t

0

B
(

Xε
⌊s/∆⌋∆,Ŷ ε

s ,ε
)

ds+
1√
ε

∫ t

0

C
(

Xε
⌊s/∆⌋∆,Ŷ ε

s ,ε
)

dWs. (4.18)
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By the same proof for Lemma 3.5 and 3.6, we can easily have the following Lemmas.

Lemma 4.2. For any T0>0, there exists a constant C independent of (ε,∆) such that

E
∣

∣Ŷ ε
t

∣

∣

2≤C. (4.19)

Lemma 4.3. For any T0>0, there exists a constant C>0 independent of (ε,∆) such
that

sup
0≤t≤T0

E
∣

∣Y ε
t − Ŷ ε

t

∣

∣

2≤C∆. (4.20)

We also easily have the following Proposition by the same argument as for Propositon
3.7.

Proposition 4.4. For any T0>0, there exists a constant C>0 independent of (ε,∆)
such that

sup
0≤t≤T0

E
∣

∣Xε
t −X̂ε

t

∣

∣

2≤C∆. (4.21)

Now we want to provide the counterpart of Proposition 3.8 for fully coupled
systems.

Proposition 4.5. For any T0>0, there exists a constant C>0 independent of (ε,∆)
such that

sup
0≤t≤T0

E|X̂ε
t −X̄ε

t |2≤C
(

∆+ε
)

. (4.22)

Proof. By Assumption 3.1 and Ito Isometry, we have

E|X̂ε
t −X̄ε

t |2≤2E

(

∫ t

0

{

a
(

Xε
⌊s/∆⌋∆,Ŷ ε

s ,ε
)

−a
(

X̄ε
s ,ξs

(

X̄ε
s ,ε
)

,ε
)}

ds

)2

+2E

(

∫ t

0

{

σ
(

Xε
s ,Y

ε
s ,ε
)

−σ
(

X̄ε
s ,ξs

(

X̄ε
s ,ε
)

,ε
)}

dWs

)2

≤CE
∫ t

0

ds
{∣

∣

∣
Xε

⌊s/∆⌋∆−Xε
s

∣

∣

∣

2

+
∣

∣

∣
Xε

s −X̂ε
s

∣

∣

∣

2

+
∣

∣

∣
X̂ε

s −X̄ε
s

∣

∣

∣

2

+
∣

∣

∣
Y ε
s − Ŷ ε

s

∣

∣

∣

2

+
∣

∣

∣
Y ε
s −ξs

(

X̄ε
s ,ε
)∣

∣

∣

2}

. (4.23)

By the quadratic variation of Brownian motions, Lemma 4.3 and Proposition 4.4, we
have by the same argument for (3.26) that

E

∣

∣

∣
Xε

⌊s/∆⌋∆−Xε
s

∣

∣

∣

2

, E
∣

∣

∣
Xε

s −X̂ε
s

∣

∣

∣

2

, E
∣

∣

∣
Y ε
s − Ŷ ε

s

∣

∣

∣

2

≤C∆. (4.24)

By the Ito formula and Assumptions 3.1 and 3.3 , it is easy to show that

E
∣

∣ηt(x,ε)
∣

∣

2
, E
∣

∣θt(x,ε)
∣

∣

2≤C. (4.25)

Using the above estimate and (4.15), we can have

dE
∣

∣

∣
Y ε
s −ξs

(

X̄ε
s ,ε
)∣

∣

∣

2

≤ 2

ε
E

〈

Y ε
s −ξs

(

X̄ε
s ,ε
)

, B
(

Xε
t ,Y

ε
t ,ε
)

−B
(

X̄t,ξt(X̄t,ε),ε
)〉

dt
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+
5

4ε
E

∥

∥

∥
C
(

Xε
t ,Y

ε
t ,ε
)

−C
(

X̄t,ξt(X̄t,ε),ε
)∥

∥

∥

2

dt+Cdt

≤−β

ε

∣

∣

∣
Y ε
s −ξs

(

X̄ε
s ,ε
)∣

∣

∣

2

dt+
C′

ε

∣

∣

∣
Xε

s −X̄ε
s

∣

∣

∣

2

dt+C′′dt, (4.26)

which, by the Gronwall inequality, implies that

E

∣

∣

∣
Y ε
s −ξs

(

X̄ε
s ,ε
)∣

∣

∣

2

≤C
(

sup
0≤τ≤s

∣

∣

∣
Xε

τ −X̄ε
τ

∣

∣

∣

2

+ε
)

. (4.27)

Taking the supremum on both sides of (4.23), we obtain

sup
0≤s≤t

E|X̂ε
s −X̄ε

s |2≤CE
∫ t

0

ds
(

sup
0≤τ≤s

∣

∣

∣
X̂ε

τ −X̄ε
τ

∣

∣

∣

2

+∆+ε
)

, (4.28)

which gives (4.22).

Now we can finish the proof for the O(ε1/2) strong convergence rate for the fully
coupled system.

Proof. [Proof of Theorem 4.1.] In Proposition 4.4 and 4.5, taking ∆= ε we have

E
∣

∣Xε
t −X̄ε

t

∣

∣

2≤2E
∣

∣Xε
t −X̂ε

t

∣

∣

2
+2E

∣

∣X̂ε
t −X̄ε

t

∣

∣

2≤Cε. (4.29)

Conclusion. We proved the strong convergence for the Principle of Averaging
for stochastic differential equations with two well separated time scales. The optimal
rate of convergence was provided. The effective dynamics for fully coupled system was
investigated. The analytical results will shed light on efficient and accurate numerical
schemes for systems of this type.

Acknowledgment. We want to thank Weinan E and Eric Vanden-Eijnden for
stimulating discussions.

Appendix A. Limiting properties of the fast processes. Here we want to
provide some properties for the fast process Zε

x,t defined in (3.7) on the infinite time
horizon. The ergodicity and uniqueness of invariant measures of Zε

x,t for each fixed
(x,ε) under Assumptions 3.1–3.3 have been established in [6]. We want to provide
some sharper estimates for the purpose of proving our theorems. First, we give an
energy estimate for Zε

x,t and its invariant measure.

Lemma A.1. There exists a constant C such that for all t≥0, we have

E
∣

∣Zε
x,t

∣

∣

2≤ e−
β
ε
t|z|2+C

(

|x|2+ε2+1
)

, (A.1)

and the invariant measure µε
x has a finite second order moment

∫

z2µε
x(dz)≤C

(

|x|2+ε2+1
)

, (A.2)

where C is the same constant as in (A.1).
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Proof. By (3.20) and Ito formula, we have

dE
∣

∣Zε
x,t

∣

∣

2
=

2

ε
E
〈

Zε
x,t,B

(

x,Zε
x,t

)〉

dt+
1

ε
E
∥

∥C
(

x,Zε
x,t,ε

)∥

∥

2
dt

≤− β

ε
E
∣

∣Zε
x,t

∣

∣

2
+C
(

|x|2+ε2+1
)

.

(A.3)

The Gronwall inequality then suggests

Ez

∣

∣Zε
x,t

∣

∣

2≤ e−
β
ε
t|z|2+C

(

|x|2+ε2+1
)

. (A.4)

Taking t→∞, ergodicity gives (A.2).

Based on ergodicity and Lemma A.1, we can prove existence of a stationary
solution for Equation (3.7) satisfied by Zε

x,t.

Lemma A.2. For each fixed (x,ε), there exists a process ξεx,t defined over the whole

time domain t∈ (−∞,∞) such that it satisfies (3.7) with a stationary probability dis-

tribution that agrees with the invariant measure of (3.7), i.e.,

ξ̇εx,t=
1

ε
B
(

x,ξεx,t,ε
)

+
1√
ε
C(x,ξεx,t,ε)Ẇt, L(ξεx,t)=µε

x. (A.5)

Moreover, we have

E
∣

∣Zε
x,t−ξεx,t

∣

∣

2≤C
(

|z|2+ |x|2+ε2+1
)

e−2 β
ε
t. (A.6)

Proof. Define the process Zε
x,τ,t to be the solution of the following equation on

the time domain (τ,∞):

Żε
x,τ,t=

1

ε
B
(

x,Zε
x,τ,t,ε

)

+
1√
ε
C(x,Zε

x,τ,t,ε)Ẇt, Zε
x,τ,τ = z. (A.7)

For τ2<τ1≤0, by the Ito formula and Assumption 3.3 we have

dE
∣

∣Zε
x,τ1,t−Zε

x,τ2,t

∣

∣

2
=

2

ε
E

〈

Zε
x,τ1,t−Zε

x,τ2,t, B
(

x,Zε
x,τ1,t,ε

)

−B
(

x,Zε
x,τ2,t,ε

)

〉

dt

+
1√
ε
E

∥

∥

∥
C
(

x,Zε
x,τ1,t,ε

)

−C
(

x,Zε
x,τ2,t,ε

)

∥

∥

∥

2

dt

≤−2
β

ε

∣

∣Zε
x,τ1,t−Zε

x,τ2,t

∣

∣

2
. (A.8)

Using Lemma A.1 we have

E
∣

∣Zε
x,τ1,t−Zε

x,τ2,t

∣

∣

2≤E
∣

∣Zε
x,τ2,τ1 −z

∣

∣

2
e−2β

(t−τ1)
ε

≤C
(

x2+z2+ε2+1
)

e−2β
(t−τ1)

ε . (A.9)

Therefore for any sequence {τn} such that τn+1≤ τn−1, we have

P

{

∣

∣Zε
x,τn+1,t−Zε

x,τn,t

∣

∣>
1

|τn|2
}

≤|τn|2E
∣

∣Zε
x,τn+1,t−Zε

x,τn,t

∣

∣

2

≤C
(

x2+z2+ε2+1
)

|τn|2e−β
(t−τn)

ε , (A.10)
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which implies that

∑

n

|τn|2e
β
ε
τn ≤

∑

n

|τn|2|τn−τn−1|e
β
ε
τn ≤C

∫ 0

−∞

x2e
β
ε
tdt<∞, (A.11)

where we have assumed τ0=0. By the Borel-Cantelli Lemma, we know that with
probability one, Zε

x,τn,t satisfies

∣

∣Zε
x,τn+1,t−Zε

x,τn,t

∣

∣≤ 1

|τn|2
, (A.12)

when n≥N(ω). Since τn≤−n by the way {τn} is chosen, we know that {Zε
x,τn,t}

is a converging sequence when n→∞. By the arbitrariness of {τn} we know that
with probability one Zε

x,τ,t is converging when τ →−∞. Otherwise with a nontrivial
probability, we have for some δ(ω)>0 such that for each τn we can find τa<τn−1,
τb<τn−1 and

∣

∣Zε
x,τa,t−Zε

x,τb,t

∣

∣>δ. Picking up τn+1 such that
∣

∣Zε
x,τn,t−Zε

x,τn+1,t

∣

∣>
δ/2, we can construct a sequence Zε

x,τn,t that contradicts (A.12). So we can define

ξεx,t= lim
τ→−∞

Zε
x,τ,t. (A.13)

Notice that for any s<t, Zε
x,τ,t satisfies the integral equation

Zε
x,τ,t=Zε

x,τ,s+
1

ε

∫ t

s

B
(

x,Zε
x,τ,ω,ε

)

dω+
1

ε

∫ t

s

C
(

x,Zε
x,τ,ω,ε

)

dWω. (A.14)

Taking τ →−∞ in the above equation implies that ξεx,t really satisfies (3.7). By
ergodicty, we have

lim
t→∞

L
(

ξεx,t
)

=µε
x. (A.15)

Meanwhile, the translation invariance of (A.13) suggests that ξεx,t has a stationary
distribution. Therefore we have L=µε

x. Finally, taking τ1=0 and τ2→−∞ in (A.9),
by (A.2), we have

E
∣

∣Zε
x,t−ξεx,t

∣

∣

2≤E
∣

∣ξεx,0−z
∣

∣

2
e−2 β

ε
t≤C

(

|z|2+ |x|2+ε2+1
)

e−2 β
ε
t. (A.16)

Now we want to give the strong rate of convergence to the equilibrium for the
process Zε

x,t.

Lemma A.3. There exists a constant C such that for any function f with bounded

derivatives,

∣

∣

∣
Ef
(

Zε
x,t

)

−
∫

f(z)µε
x(dz)

∣

∣

∣
≤C sup|f ′|

(

|x|+ |z|+ε+1
)

e−
β
ε
t. (A.17)

Proof. Let ξεx,t be given by Lemma A.2. Suppose f is a smooth function with
bounded derivatives; we have

∣

∣Ef
(

Zε
x,t

)

−
∫

f(z)µε
x(dz)

∣

∣=
∣

∣Ef
(

Zε
x,t

)

−Ef(ξεx,t)
∣

∣

≤ sup|f ′| E
∣

∣Zε
x,t−ξεx,t

∣

∣, (A.18)
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which, together with (A.6), gives (A.17).

The following Lemma describes the behavior of the solution Zε
x,z,t of (3.7) at

equilibrium under the perturbation in x.

Lemma A.4. Functions â(x,z,t,ε) and ā(x,ε) defined by (3.8) and (3.12) are smooth

functions with bounded derivatives. In addition, for any multi-index I=(I1, · · · ,In),
we have

∣

∣

∣
∇I

x

(

â
(

x,z,t,ε)− ā(x,ε)
)∣

∣

∣
≤CIe−

β
ε
t, (A.19)

and for any multi-indices J =(J1, · · · ,Jm), we have

∣

∣

∣
∇J

z∇I
x

(

â
(

x,z,t,ε)
)
∣

∣

∣
≤CI,Je−

β
ε
t. (A.20)

Proof. Let us first focus on the first order derivatives ∇xâ(·), ∇z â(·) and ∇xā(·).
The differentiability of the solution of (3.7) with respect to the initial condition and
parameters under Assumption 3.1 is established in [8]. Therefore we have the smooth-
ness of â(·). Here we want to prove the boundedness of the derivatives. Letting
y1=y+θz and y2=y in Assumption 3.3, we have

〈

z,
1

θ

(

B(x,y+θz,ε)−B(x,y,ε)
)〉

+
1

θ2
∥

∥C(x,y+θz,ε)−C(x,y,ε)
∥

∥

2

≤−β|z|2. (A.21)

Taking θ→0 in the above inequality, we obtain

〈

z, ∇yB(x,y,ε)z
〉

+
∥

∥∇yC(x,y,ε)z
∥

∥

2≤−β|z|2. (A.22)

Note that Zε
x,z,t denotes the solution of Equation (3.7) with initial condition z and

parameter (x,ε). Define

Ut=∇xZ
ε
x,z,t, (A.23)

then we have

dUt=∇yB
(

x,Zε
x,z,t,ε

)

Utdt+∇xB
(

x,Zε
x,z,t,ε

)

dt

+∇yC
(

x,Zε
x,z,t,ε

)

UtdWt+∇xC
(

x,Zε
x,z,t,ε

)

dWt.
(A.24)

Applying the Ito formula and Assumption 3.1, we have

dE
∣

∣Ut

∣

∣

2
=2E

〈

Ut,∇yB
(

x,Zε
x,z,t,ε

)

Ut

〉

dt+2E
〈

Ut,∇xB
(

x,Zε
x,z,t,ε

)

〉

dt

+E

∥

∥

∥
∇yC

(

x,Zε
x,z,t,ε

)

Ut+∇xC
(

x,Zε
x,z,t,ε

)

∥

∥

∥

2

dt

≤−2β
∣

∣Ut

∣

∣

2
+2E

〈

Ut,∇xB
(

x,Zε
x,z,t,ε

)

〉

dt+2E
∥

∥

∥
∇xC

(

x,Zε
x,z,t,ε

)

Ut

∥

∥

∥

2

dt

≤−β
∣

∣Ut

∣

∣

2
+C, (A.25)

where C is a constant that only depends on the Lipschitz coefficients of B and C. The
Gronwall inequality and the initial condition U0=0 imply that

E
∣

∣Ut

∣

∣

2≤C. (A.26)
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The boundedness of ∇xâ(·) follows from (A.26) and Assumption 3.1 since

∇xEa(x,z,t,ε)=E∇xa
(

x,Zε
x,z,t,ε

)

+E∇ya
(

x,Zε
x,z,t,ε

)

Ut. (A.27)

Letting

Vt=∇zZ
ε
x,z,t, (A.28)

the boundedness of ∇z â(·) can be obtained by repeating the above argument for Vt.
To prove (A.19), we notice that by the exponential mixing (A.17), the convergence

to the invariant measure is uniform for x in any compact set of Rn. Therefore we can
interchange the following limits:

∇xā(x,ε)=∇x lim
t→∞

Ea
(

x,Zε
x,z,t,ε)

= lim
t→∞

∇xa
(

x,Zε
x,z,t,ε)+∇ya

(

x,Zε
x,z,t,ε)Ut.

(A.29)

Let ξεx,t be the process defined in (4.14) and define

ηεx,t=∇xξ
ε
x,t. (A.30)

Using (A.22) and (A.6), we can easily show that

E
∣

∣ηεx,t
∣

∣

2≤C (A.31)

and

E
∣

∣Ut−ηεx,t
∣

∣

2≤Ce− β
ε
t. (A.32)

At the same time, we have

∇xā(x,ε)= lim
t→∞

∇xE

(

a
(

x,ξεx,t,ε)
)

= lim
t→∞

E

(

∇xa
(

x,ξεx,t,ε)+∇ya
(

x,ξεx,t,ε)η
ε
x,t

)

.
(A.33)

Using (A.6) and (A.32), we have (A.19) for ∇xā(·). (A.20) for ∇z â(·) can be proved
similarly as above by replacing Ut with Vt defined in (A.28).

Reiterating the same argument as above, we have have boundedness for higher
order derivatives of â(x,z,t,ε) and ā(x,ε), and prove (A.19) and (A.20) for arbitrary
I and J .
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