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A VARIANCE REDUCTION METHOD FOR PARAMETRIZED
STOCHASTIC DIFFERENTIAL EQUATIONS USING THE

REDUCED BASIS PARADIGM∗

SÉBASTIEN BOYAVAL† AND TONY LELIÈVRE‡

Abstract. In this work, we develop a reduced-basis approach for the efficient computation
of parametrized expected values, for a large number of parameter values, using the control variate
method to reduce the variance. Two algorithms are proposed to compute online, through a cheap
reduced-basis approximation, the control variates for the computation of a large number of expecta-
tions of a functional of a parametrized Itô stochastic process (solution to a parametrized stochastic
differential equation). For each algorithm, a reduced basis of control variates is pre-computed offline,
following a so-called greedy procedure, which minimizes the variance among a trial sample of the
output parametrized expectations. Numerical results in situations relevant to practical applications
(calibration of volatility in option pricing, and parameter-driven evolution of a vector field following
a Langevin equation from kinetic theory) illustrate the efficiency of the method.
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1. Introduction
This article develops a general variance reduction method for the many-query

context where a large number of Monte-Carlo estimations of the expectation E
(
Zλ
)

of a functional

Zλ=gλ(Xλ
T )−

∫ T

0

fλ(s,Xλ
s )ds (1.1)

of the solutions
(
Xλ
t ,t∈ [0,T ]

)
to the stochastic differential equations (SDEs):

Xλ
t =x+

∫ t

0

bλ(s,Xλ
s )ds+

∫ t

0

σλ(s,Xλ
s )dBs (1.2)

parametrized by λ∈Λ have to be computed for many values of the parameter λ.
Such many-query contexts are encountered in finance for instance, where pricing

options often necessitate computing the price E
(
Zλ
)

of an option with spot price
Xλ
t at time t in order to calibrate the local volatility σλ as a function of a (multi-

dimensional) parameter λ (that is minimize over λ, after many iterations of some op-
timization algorithm, the difference between observed statistical data with the model
prediction). Another context for application is molecular simulation, for instance
micro-macro models in rheology, where the mechanical properties of a flowing vis-
coelastic fluid are determined from the coupled evolution of a non-Newtonian stress
tensor field E

(
Zλ
)

due to the presence of many polymers with configuration Xλ
t in
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the fluid with instantaneous velocity gradient field λ. Typically, segregated numer-
ical schemes are used: compute Xλ

t for a fixed field λ, and then compute λ for a
fixed field E

(
Zλ
)
. Such tasks are known to be computationally demanding and the

use of different variance reduction techniques to alleviate the cost of Monte-Carlo
computations in those fields is very common (see [2, 19, 22, 3] for instance).

In the following, we focus on one particular variance reduction strategy termed
the control variate method [10, 21, 20]. More precisely, we propose new approaches
to a practical use of control variates in the context of the computation of E

(
Zλ
)

for a large number of parameter values. In these approaches, the control variates
are computed through a reduced-basis method which is related to the reduced-
basis method [17, 18, 23, 4, 5] previously developed to efficiently solve parametrized
partial differential equations (PDEs). Following the reduced-basis paradigm, a low-
dimensional vector basis is first built offline to span a good linear approximation
space for a large trial sample of the λ-parametrized control variates, and then used
online to compute control variates at any parameter value. The offline computations
are typically expensive, but are only done once. Consequently, it is expected that the
online computations (namely, approximations of E

(
Zλ
)

for many values of λ) are very
cheap, using the low-dimensional vector basis built offline for efficiently computing
control variates online. Of course, such reduced-basis approaches can only be efficient
insofar as:

1. online computations (of one output E
(
Zλ
)

for one parameter value λ) are
significantly cheaper using the reduced-basis approach than without, and

2. the amount of outputs E
(
Zλ
)

to be computed online (for many different
parameter values λ) is sufficient to compensate for the (expensive) offline
computations (needed to build the reduced basis).

In this work, we will numerically study how the variance is reduced in two exam-
ples using control variates built with two different approaches.

The usual reduced-basis approach for parametrized PDEs also traditionally fo-
cuses on the certification of the reduction (in the parametrized solution manifold)
by estimating a posteriori the error between approximations obtained before/after
reduction for some output which is a functional of the PDE solution. Our reduced-
basis approach for the parametrized control variate method can also be cast into a
goal-oriented framework similar to the traditional reduced basis method. One can
take the expectation E

(
Zλ
)

as the reduced-basis output, while the empirically esti-
mated variance VarM

(
Zλ
)

serves as a computable (statistical) error indicator for the
Monte-Carlo approximations EM

(
Zλ
)

of E
(
Zλ
)

in the limit of large M through the
Central Limit Theorem (see error bound (2.4) in section 2.1).

In section 2, the variance reduction issue and the control variate method are intro-
duced, as well as the principles of our reduced-basis approaches for the computation of
parametrized control variates. Section 3 exposes details about the algorithms which
are numerically applied to test problems in section 4.

The numerical simulations show good performance of the method for the two test
problems corresponding to the applications mentionned above: a scalar SDE with
(multi-dimensional) parametrized diffusion (corresponding to the calibration of a local
volatility in option pricing), and a vector SDE with (multi-dimensional) parametrized
drift (for the parameter-driven evolution of a vector field following a Langevin equation
from kinetic theory). Using the control variate method with a 20-dimensional reduced
basis of (precomputed) control variates, the variance is approximatively divided by
a factor of 104 in the mean for large test samples of parameter in the applications
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we experiment here. As a consequence, our reduced-basis approaches allow us to ap-
proximately divide the online computation time by a factor of 102, while maintaining
the confidence intervals for the output expectation at the same value as computation
without a reduced basis.

This work intends to present a new numerical method and to demonstrate its
interest on some relevant test cases. We do not have, for the moment, a theoretical
understanding of the method. This is the subject of future work.

2. The variance reduction issue and the control variate method

2.1. Mathematical preliminaries and the variance reduction issue.
Let

(
Bt∈Rd,t∈ [0,T ]

)
be a d-dimensional standard Brownian motion (where d is a

positive integer) on a complete probability space (Ω,F ,P), endowed with a filtration
(Ft,t∈ [0,T ]). For any square-integrable random variables X,Y on that probability
space (Ω,F ,P), we respectively denote E(X) and Var(X) to be the expected value
and the variance of X with respect to the probability measure P, and Cov(X;Y ) to
be the covariance between X and Y .

For every λ∈Λ (Λ being the set of parameter values), the Itô processes(
Xλ
t ∈Rd,t∈ [0,T ]

)
with deterministic initial condition x∈Rd are well defined as the

solutions to the SDEs (1.2) under suitable assumptions on bλ and σλ, for instance pro-
vided bλ and σλ satisfy Lipschitz and growth conditions [13]. Let (Xλ

t ) be solutions to
the SDEs and fλ, gλ be measurable functions such that Zλ is a well-defined integrable
random variable (Zλ∈L1

P(Ω)). Then, Kolmogorov’s strong law of large numbers holds
and, denoting Zλm (m= 1,. ..,M) to be M independent copies of the random variables
Zλ (for all positive integer M), the output expectation E

(
Zλ
)

=
∫

Ω
ZλdP can be ap-

proximated (almost surely) by Monte-Carlo estimations of the form

EM
(
Zλ
)

:=
1
M

M∑
m=1

Zλm
P−a.s.−−−−→
M→∞

E
(
Zλ
)
. (2.1)

Furthermore, assume that the random variable Zλ is square integrable (Zλ∈L2
P(Ω))

with variance Var
(
Zλ
)
. Then an asymptotic error bound for the convergence occuring

in (2.1) is given in probabilistic terms by the Central Limit Theorem as confidence
intervals: for all a>0,

P

(∣∣EM (Zλ)−E
(
Zλ
)∣∣≤a√Var(Zλ)

M

)
−→
M→∞

∫ a

−a

e−x
2/2

√
2π

dx. (2.2)

In terms of the error bound (2.2), an approximation EM
(
Zλ
)

of the output E
(
Zλ
)

is thus all the better, for a given M , as the variance Var
(
Zλ
)

is small. In a many-
query framework, the computation of approximations (2.1) for many outputs E

(
Zλ
)

(corresponding to many queried values of the parameter λ∈Λ) would then be all the
faster as the variance Var

(
Zλ
)

for some λ∈Λ could be decreased from some knowledge
acquired from the λ∈Λ computed beforehand. This typically defines a many-query
setting with parametrized output suitable for a reduced-basis approach similar to the
reduced-basis method developed in a deterministic setting for parametrized PDEs.

In addition, the convergence (2.1) controlled by the confidence intervals (2.2) can
be easily observed using computable a posteriori estimators. Indeed, remember that
since the random variable Zλ has a finite second moment, then the strong law of large
numbers also implies the following convergence:

VarM
(
Zλ
)

:= EM
((
Zλ−EM (Zλ)

)2) P−a.s.−−−−→
M→∞

Var
(
Zλ
)
. (2.3)
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Combining the Central Limit Theorem with Slutsky theorem for the couple of Monte-
Carlo estimators

(
EM

(
Zλ
)
,VarM

(
Zλ
))

(see for instance [9], exercise 7.2.(26)), we
obtain a fully computable probabilistic (asymptotic) error bound for the Monte-Carlo
approximation (2.1) of the output expectation: for all a>0,

P

(∣∣E(Zλ)−EM
(
Zλ
)∣∣≤a√VarM (Zλ)

M

)
M→∞−→

∫ a

−a

e−x
2/2

√
2π

dx. (2.4)

It is exactly the purpose of variance reduction techniques to reduce the so-called
statistical error appearing in the Monte-Carlo estimation of the output expectation
E
(
Zλ
)

through the error bound (2.2). This is usually achieved in practice by using
the (a posteriori) estimation (2.4).

Remark 2.1 (SDE discretization and bias error in the output expectation). In
practice, there is of course another source of error coming from the time-discretizations
of the SDE (1.2) and of the integral involved in the expression for Zλ.

In the following (for the numerical applications), we use the Euler-Maruyama
numerical scheme with discretizations 0 = t0<t1< ·· ·<tN =T (N ∈N) of the time
interval [0,T ] to approximate the Itô process (Xλ

t ):{
Xλ
n=Xλ

n−1 + |tn− tn−1| bλ(tn−1,X
λ
n−1)+

√
|tn− tn−1|σλ(tn−1,X

λ
n−1)Gn−1,

Xλ
0 =x,

where {Gn, n= 0,. ..,N−1} is a collection of N independent d-dimensional normal
centered Gaussian vectors. It is well-known that such a scheme is of weak order one, so
that we have a bound for the bias due to the approximation of the output expectation
E
(
Zλ
)

by E
(
Zλ
)

(where Zλ is a time-discrete approximation for Zλ computed from
(Xλ

n) with an appropriate discretization of the integral
∫ T

0
fλ(s,Xλ

s )ds):∣∣E(Zλ)−E
(
Zλ
)∣∣ =
N→∞

O

(
max

1≤n≤N
(|tn− tn−1|)

)
.

The approximation of the output E
(
Zλ
)

by EM(Zλ) thus contains two types of errors:

• first, a bias E
(
Zλ−Zλ

)
due to discretization errors in the numerical integra-

tion of the SDE (1.2) and of the integral involved in Zλ,

• second, a statistical error of order
√

Var
(
Zλ
)
/M in the empirical Monte-

Carlo estimation EM(Zλ) of the expectation E
(
Zλ
)
.

We focus here on the statistical error.

2.2. Variance reduction with the control variate method. The idea of
control variate methods for the Monte-Carlo evaluation of E

(
Zλ
)

is to find a so-called
control variate Y λ (with Y λ∈L2

P(Ω)), and then to write:

E
(
Zλ
)

=E
(
Zλ−Y λ

)
+E

(
Y λ
)
,

where E
(
Y λ
)

can be easily evaluated, while the expectation E
(
Zλ−Y λ

)
is approx-

imated by Monte-Carlo estimations that have a smaller statistical error than direct
Monte-Carlo estimations of E

(
Zλ
)
. In the following, we will consider control variates

Y λ such that E
(
Zλ
)

=E
(
Zλ−Y λ

)
, equivalently,

E
(
Y λ
)

= 0.
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The control variate method will indeed be interesting if the statistical error of the
Monte-Carlo estimations EM (Zλ−Y λ) is significantly smaller than the statistical
error of the Monte-Carlo estimations EM (Zλ). That is, considering the following
error bound given by the Central Limit Theorem: for all a>0,

P

(∣∣EM (Zλ−Y λ)−E
(
Zλ
)∣∣≤a√Var(Zλ−Y λ)

M

)
M→∞−→

∫ a

−a

e−x
2/2

√
2π

dx, (2.5)

the Monte-Carlo estimations EM (Zλ−Y λ) will indeed be more accurate approxima-
tions of the expectations E

(
Zλ
)

than the Monte-Carlo estimations EM (Zλ) provided

Var
(
Zλ
)
≥Var

(
Zλ−Y λ

)
.

Clearly, the best possible control variate (in the sense of minimal variance) for a
fixed parameter λ∈Λ is

Y λ=Zλ−E
(
Zλ
)
, (2.6)

since we then have Var
(
Zλ−Y λ

)
= 0. Unfortunately, the result E

(
Zλ
)

itself is nec-
essary to compute Y λ as Zλ−E

(
Zλ
)
.

In the following, we will need another representation of the best possible con-
trol variate Zλ−E

(
Zλ
)
. Under suitable assumptions on the coefficients bλ and σλ

(for well-posedness of the SDE), plus continuity and polynomial growth conditions
on fλ and gλ, let us define uλ(t,y), for (t,y)∈ [0,T ]×Rd, as the unique solution
uλ(t,y)∈C1

(
[0,T ],C2(Rd)

)
to the backward Kolmogorov equation (2.7) satisfying

the same polynomial growth assumptions at infinity than fλ and gλ (for instance, see
Theorem 5.3 in [7]):{

∂tu
λ+bλ(t,y) ·∇uλ+

1
2
σλ(t,y)σλ(t,y)T :∇2uλ=fλ(t,y) ,

uλ(T,y) =gλ(y),
(2.7)

where the notation ∇uλ means ∇yuλ(t,y) and σλ(t,y)σλ(t,y)T :∇2uλ means∑d
i,j,k=1σ

λ
ik(t,y)σλjk(t,y)∂2

yi,yju
λ(t,y). Using the Itô formula for

(
uλ(t,Xλ

t ),t∈ [0,T ]
)

with uλ solution to (2.7), we get the following integral representation of Zλ (see also
Appendix A for another link between the SDE (1.2) and the PDE (2.7), potentially
useful to numerics):

gλ(Xλ
T )−

∫ T

0

fλ(s,Xλ
s )ds=uλ(0,x)+

∫ T

0

∇uλ(s,Xλ
s ) ·σλ(s,Xλ

s )dBs. (2.8)

Note that the left-hand side of (2.8) is Zλ, and the right-hand side is the sum of a
stochatic integral (with zero mean) plus a scalar uλ(0,x) (thus equal to the expected
value E

(
Zλ
)

of the left-hand side). Hence, the optimal control variate also becomes

Y λ=Zλ−E
(
Zλ
)

=
∫ T

0

∇uλ(s,Xλ
s ) ·σλ(s,Xλ

s )dBs. (2.9)

Of course, the formula (2.9) is again idealistic because, generally, numerically
solving the PDE (2.7) is a very difficult task (especially in large dimensions d≥4).
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2.3. Outline of the algorithms. Considering either (2.6) or (2.9), we pro-
pose two algorithms for the efficient online computation of the family of parametrized
outputs {E

(
Zλ
)
,λ∈Λ} when the parameter λ can take any value in a given range

Λ, using (for each λ∈Λ) a control variate built as a linear combination of objects
precomputed offline.

More precisely, in Algorithm 1, we do the following:
• Compute offline an accurate approximation Ỹ λ of Y λ using (2.6) for a small

set of selected parameters λ∈{λ1,. ..,λI}⊂Λ (where I ∈N>0).
• For any λ∈Λ, compute online a control variate for the Monte-Carlo estima-

tion of E
(
Zλ
)

as a linear combination of {Ỹ λi ,i= 1,. ..,I}:

Ỹ λI =
I∑
i=1

µλi Ỹ
λi .

And in Algorithm 2, we do the following:
• Compute offline an accurate approximation ũλ of the solution uλ to the

Kolmogorov backward equation (2.7) for a small set of selected parameters
λ∈{λ1,. ..,λI}⊂Λ.

• For any λ∈Λ, compute online a control variate for the Monte-Carlo compu-
tation of E

(
Zλ
)
, in view of (2.9), as a linear combination of

∫ T
0
∇ũλi(s,Xλ

s ) ·
σλ(s,Xλ

s )dBs (where i= 1,. ..,I):

Ỹ λI =
I∑
i=1

µλi

∫ T

0

∇ũλi(s,Xλ
s ) ·σλ(s,Xλ

s )dBs. (2.10)

For a fixed size I of the reduced-basis, being given a parameter λ, both algorithms
compute the coefficients µλi , i= 1,. ..,I, with a view to minimizing the variance of the
random variable Zλ− Ỹ λI (in practice, the empirical variance VarM(Zλ− Ỹ λI )).

For the moment, we do not make more precise how we choose the set of parameters
{λ1,. ..,λI} offline. This will be done by the same greedy procedure for both algorithms,
and will be the subject of the next section. Nevertheless, we would now like to make
more precise how we build offline:

- in Algorithm 1, approximations {Ỹ λi ,i= 1,. ..,I} for {Y λi ,i= 1,. ..,I}, and
- in Algorithm 2, approximations {∇ũλi ,i= 1,. ..,I} for {∇uλi ,i= 1,. ..,I},

assuming the parameters {λi,i= 1,. ..,I} have been selected.
For Algorithm 1, Ỹ λi is built using the fact that it is possible to compute offline

accurate Monte-Carlo approximations EM (Zλi) of E
(
Zλi

)
using a very large number

M =Mlarge of copies of Zλi , mutually independent and also independant of the copies
of Zλ used for the online Monte-Carlo estimation of E

(
Zλ
)
, λ 6=λi (remember that the

amount of offline computations is not meaningful in the case of a very large number
of outputs to be computed online). The quantities EMlarge(Zλi) are just real numbers
that can be easily stored in memory at the end of the offline stage for re-use online
to approximate the control variate Y λi =Zλi−E

(
Zλi

)
through

Ỹ λi =Zλi−EMlarge(Zλi). (2.11)

For Algorithm 2, we compute approximations ũλi as numerical solutions to the
Kolmogorov backward equation (2.7). For example, in the numerical results of sec-
tion 4, the PDE (2.7) is solved numerically with classical deterministic discretization
methods (like finite differences in the calibration problem for instance).
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Remark 2.2 (Algorithm 2 for stochastic processes with large dimension d). Most
deterministic methods to solve a PDE (such as finite difference or finite element
methods) remain suitable only for d≤3. Beyond this, one can for example resort
to probabilistic discretizations: namely, a Feynman-Kac representation of the PDE
solution, whose efficiency at effectively reducing the variance has already been shown
in [21]. We present this alternative probabilistic approximation in Appendix A, but
we will not use it in the present numerical investigation.

One crucial remark is that for both algorithms, in the online Monte-Carlo com-
putations the Brownian motions which are used to build the control variate (namely
Zλi in (2.11) for Algorithm 1, and the Brownian motion entering Ỹ λI in (2.10) for
Algorithm 2) are the same as those used for Zλ.

Note last that, neglecting the approximation errors Ỹ λi−Y λi and ũλi−uλi in the
reduced-basis elements computed offline, a comparison between Algorithms 1 and 2
is possible. Indeed, remembering the integral representation:

Y λi =
∫ T

0

∇uλi(s,Xλi
s ) ·σλi(s,Xλi

s )dBs,

we see that the reduced-basis approximation of Algorithm 1 has the form

Y λI =
I∑
i=1

µλi

∫ T

0

∇uλi(s,Xλi
s ) ·σλi(s,Xλi

s )dBs,

while the reduced-basis approximation of Algorithm 2 has the form

Y λI =
I∑
i=1

µλi

∫ T

0

∇uλi(s,Xλ
s ) ·σλ(s,Xλ

s )dBs.

The residual variances Var
(
Y λ−Y λI

)
for Algorithms 1 and 2 then respectively read

as ∫ T

0

E

∣∣∣∣∣∇uλ ·σλ(s,Xλ
s )−

I∑
i=1

µλi∇uλi ·σλi(s,Xλi
s )

∣∣∣∣∣
2
ds, (2.12)

and ∫ T

0

E

∣∣∣∣∣
(
∇uλ−

I∑
i=1

µλi∇uλi
)
·σλ(s,Xλ

s )

∣∣∣∣∣
2
ds. (2.13)

The formulas (2.12) and (2.13) suggest that Algorithm 2 might be more robust than
Algorithm 1 with respect to variations of λ. This will be illustrated by some numerical
results in section 4.

3. Practical variance reduction with approximate control variates
Let us now detail how to select parameters {λi∈Λ,i= 1,. ..,I} offline inside a large

a priori chosen trial sample Λtrial⊂Λ of finite size, and how to effectively compute
the coefficients (µλi )i=1,...,I in the linear combinations Ỹ λI (see section 3.3.2 for details
about practical choices of Λtrial⊂Λ).
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Offline: select parameters {λi∈Λtrial,i= 1,. ..,I} in Λtrial⊂Λ, a large finite sam-
ple.
Selection under stopping criterion: maximal residual variance ≤ε.

Let λ1∈Λ be already chosen,
Compute accurate approximation EMlarge(Zλ1) of E

(
Zλ1

)
.

Greedy procedure:

For step i= 1,. ..,I−1 (I >1):
For all λ∈Λtrial, compute Ỹ λi as (3.2) and (cheap) estimations:
εi(λ) := VarMsmall

(
Zλ− Ỹ λi

)
for Var

(
Zλ− Ỹ λi

)
.

Select λi+1∈ argmax
λ∈Λtrial\{λj ,j=1,...,i}

{εi(λ)}.

If stopping criterion εi(λi+1)≤ε, Then Exit Offline.
Compute accurate approximation EMlarge(Zλi+1) of E

(
Zλi+1

)
.

Fig. 3.1. Offline stage for Algorithm 1: greedy procedure in metalanguage

3.1. Algorithm 1. Recall that some control variates Y λ are approximated
offline with a computationally expensive Monte-Carlo estimator using Mlarge�1 in-
dependent copies of Zλ:

Ỹ λ=Zλ−EMlarge(Zλ)≈Y λ, (3.1)

for only a few parameters {λi,i= 1,. ..,I}⊂Λtrial to be selected. The approximations
Ỹ λi are then used online to span a linear approximation space for the set of all
control variates {Y λ,λ∈Λ}, next linearly combined as Ỹ λI . For any i= 1,. ..,I, we
denote Ỹ λi (for any λ∈Λ) to be the reduced-basis approximation of Y λ built as a
linear combination of the first i selected random variables {Ỹ λj ,j= 1,. ..,i}:

Ỹ λi =
i∑

j=1

µλj Ỹ
λj ≈Y λ , (3.2)

where (µλj )j=1,...,i∈Ri is a vector of coefficients to be computed for each λ (and
each step i, but we omit this to explicitly denote the dependence of each entry µλj ,
j= 1,. ..,i, on i). The computation of the coefficients (µλj )j=1,...,i follows the same
procedure offline (for each step i= 1,. ..,I−1) during the reduced-basis construction
as online (when i= I): it is based on a variance minimization principle (see details in
section 3.1.2).

With a view to computing E
(
Zλ
)

online through computationally cheap Monte-
Carlo estimations EMsmall(Z

λ− Ỹ λI ) using only a few Msmall realizations for all λ∈Λ,
we now explain how to select offline a subset {λi, i= 1,. ..,I}⊂Λtrial in order to min-
imize Var

(
Zλ− Ỹ λI

)
(or at least estimators for the corresponding statistical error).

3.1.1. Offline stage : parameter selection. The parameters {λi, i=
1,. ..,I} are selected incrementally inside the trial sample Λtrial following a greedy
procedure (see figure 3.1). The incremental search between steps i and i+1 reads as
follows. Assume that control variates {Ỹ λj , j= 1,. ..,i} have already been selected at
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step i of the reduced basis construction (see Remark 3.4 for the choice of Ỹ λ1). Then,
Ỹ λi+1 is chosen following the principle of controlling the maximal residual variance
inside the trial sample after the variance reduction using the first i selected random
variables

λi+1∈ argmax
λ∈Λtrial\{λj ,j=1,...,i}

Var
(
Zλ− Ỹ λi

)
, (3.3)

where the coefficients (µλj )j=1,...,i entering the linear combinations Ỹ λi in (3.2) are
computed, at each step i, like for Ỹ λI in the online stage (see section 3.1.2).

In practice, the variance in (3.3) is estimated by an empirical variance

Var
(
Zλ− Ỹ λi

)
'VarMsmall(Z

λ− Ỹ λi ).

In our numerical experiments, we use the same number Msmall of realizations for the
offline computations (for all λ∈Λtrial) as for the online computations, even though
this is not necessary. Note that choosing a small number Msmall of realizations for the
offline computations is advantageous because the computational cost of the Monte-
Carlo estimations in the greedy procedure is then cheap. This is useful since Λtrial is
very large, and at each step i, VarMsmall(Z

λ− Ỹ λi ) has to be computed for all λ∈Λtrial.
Remarkably, after each (offline) step i of the greedy procedure and for the next

online stage when i= I, only a few real numbers should be stored in memory, namely
the collection {EMlarge(Zλj ), j= 1,. ..,i} along with the corresponding parameters
{λj , j= 1,. ..,i} for the computation of the approximations (3.1).

Remark 3.1. Another natural criterion for the parameter selection in the greedy
procedure could be the maximal residual variance relatively to the output expecta-
tion

max
λ∈Λtrial

Var
(
Zλ− Ỹ λi

)
|E(Zλ) |2

' max
λ∈Λtrial

VarMsmall(Z
λ− Ỹ λi )

|EMsmall(Zλ)|2
. (3.4)

This is particularly relevant if the magnitude of the output E
(
Zλ
)

is much more
sensitive than that of Var

(
Zλ
)

to the variations on λ. It has also proved to be useful
for comparison and discrimination between Algorithms 1 and 2 in the calibration of
a local parametrized volatility for the Black-Scholes equation (see figure 4.5).

3.1.2. Online stage: reduced-basis approximation. To compute the
coefficients (µλj )j=1,...,i in the linear combinations (3.2), both online for any λ∈Λ
when i= I and offline for each λ∈Λtrial and each step i (see greedy procedure above),
we solve a small-dimensional least squares problem corresponding to the minimization
of (estimators for) the variance of the random variable Zλ− Ỹ λi .

More precisely, in the case i= I (online stage) for instance, the I-dimensional
vector µλ= (µλi )1≤i≤I is defined, for any λ∈Λ, as the unique global minimizer of the
following strictly convex problem of variance minimization:

µλ= argmin
µ=(µi)1≤i≤I∈RI

Var

(
Zλ−

I∑
i=1

µiỸ
λi

)
, (3.5)

or equivalently as the unique solution to the following linear system:

I∑
j=1

Cov
(
Ỹ λi ;Ỹ λj

)
µλj =Cov

(
Ỹ λi ;Zλ

)
,∀i= 1,. ..,I. (3.6)
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Of course, in practice, we use the estimator (for X,Y ∈L2
P(Ω) and M ∈N>0)

CovM(X;Y ) :=
1
M

M∑
m=1

XmYm−

(
1
M

M∑
m=1

Xm

)(
1
M

M∑
m=1

Ym

)

to evaluate the statistical quantities above. That is, defining a matrix CMsmall with
entries the following empirical Monte-Carlo estimators (i,j∈{1,. ..,I})

CMsmall
i,j = CovMsmall

(
Ỹ λi ;Ỹ λj

)
,

and a vector bMsmall with entries (i∈{1,. ..,I}) bMsmall
i = CovMsmall

(
Ỹ λi ;Zλ

)
, the lin-

ear combinations (3.2) are computed using as coefficients the Monte-Carlo estimators
which are entries of the following vector of RI :

µMsmall =
[
CMsmall

]−1
bMsmall . (3.7)

The cost of one online computation for one parameter λ ranges as the computation
of Msmall (independent) realizations of the random variables (Zλ,Y λ1 ,. ..,Y λI ), plus
the Monte-Carlo estimators EMsmall ,CovMsmall ,VarMsmall and the computation of the
solution µMsmall to the (small I-dimensional, but full) linear system (3.7).

In practice, one should be careful when computing (3.7), because the likely quasi-
colinearity of some reduced-basis elements often induces ill-conditioning of the matrix
CMsmall . Thus the QR or SVD algorithms [8] should be preferred to a direct inversion
of (3.6) with Gaussian elimination or the Cholevsky decomposition. One important
remark is that, once the reduced basis is built, the same (small I-dimensional) covari-
ance matrix CMsmall has to be inverted for all λ∈Λ, as soon as the same Brownian
paths are used for each online evaluation. The latter condition is easily satisfied in
practice, simply by resetting the seed of the random number generator to the same
value for each new online evaluation (that is for each new λ∈Λ).

Remark 3.2 (Final output approximations and bounds). It is a classical result that,
taking first the limit Mlarge→∞ then Msmall→∞, µMsmall

P−a.s.−→
Msmall,Mlarge→∞

µλ. So, the

variance is indeed (asymptotically) reduced to the minimum Var
(
Zλ−Y λI

)
in (3.5),

obtained with the optimal linear combination Y λI of selected control variates Y λi
(without approximation). In addition, using the Slutsky theorem twice successively for
Monte-Carlo estimators of the coefficient vector µλ and of the variance Var

(
Zλ−Y λI

)
,

a computable version of the Central Limit Theorem also holds, which is similar to (2.4)
except that it uses Monte-Carlo estimations of Zλ− Ỹ λI instead of Zλ to compute the
confidence intervals (and with successive limits Mlarge→∞, Msmall→∞). So our
output approximations now read for all λ∈Λ:

E
(
Zλ
)
'EMsmall

(
Zλ−

I∑
i=1

µMsmall
i Ỹ λi

)
,

and asymptotic probabilistic error bounds are given by the confidence intervals (2.4).

3.2. Algorithm 2. In Algorithm 2, approximations ∇ũλi of the gradients
∇uλi of the solutions uλi to the backward Kolmogorov equation (2.7) are computed
offline for only a few parameters {λi,i= 1,. ..,I}⊂Λtrial to be selected. In comparison
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Offline: select parameters {λi∈Λtrial,i= 1,. ..,I} in Λtrial⊂Λ a large finite sample.
Selection under stopping criterion: maximal residual variance ≤ε.

Let λ1∈Λ be already chosen,
Compute approximation ∇ũλ1 of ∇uλ1 .

Greedy procedure:

For step i= 1,. ..,I−1 (I >1):
For all λ∈Λtrial, compute Ỹ λi as (3.8) and estimations:
εi(λ) := VarMsmall

(
Zλ− Ỹ λi

)
for Var

(
Zλ− Ỹ λi

)
.

Select λi+1∈ argmax
λ∈Λtrial\{λj ,j=1,...,i}

{εi(λ)}.

If stopping criterion εi(λi+1)≤ε, Then Exit Offline.
Compute approximation ∇ũλi+1 of ∇uλi+1 .

Fig. 3.2. Offline stage for Algorithm 2: greedy procedure in metalanguage

with Algorithm 1, approximations (∇ũλi)i=1,...,I are now used online to span a linear
approximation space for {∇uλ, λ∈Λ}. At step i of the greedy procedure (i= 1,. ..,I),
the reduced-basis approximations Ỹ λi for the control variates Y λ are (for all λ∈Λ)

Ỹ λi =
i∑

j=1

µλj Ỹ
λj
λ ≈Y

λ, (3.8)

Ỹ
λj
λ =

∫ T

0

∇ũλj (s,Xλ
s ) ·σλ(s,Xλ

s )dBs, (3.9)

where (µλj )j=1,...,i are coefficients to be computed for each λ (again, the dependence
of µλj on the step i is implicit). Again, the point is to explain, first, how to select pa-
rameters {λi, i= 1,. ..,I}⊂Λtrial in the offline stage, and second, how to compute the
coefficients (µλj )j=1,...,i in each of the i-dimensional linear combinations Ỹ λi . Similar
to Algorithm 1, the parameters {λi, i= 1,. ..,I}⊂Λtrial are selected offline following
the greedy procedure, and, for any i= 1,. ..,I, the coefficients (µλj )j=1,...,i in the lin-
ear combinations offline and online are computed, following the same principle of
minimizing the variance, by solving a least squares problem.

3.2.1. Offline stage: parameter selection. The selection of parameters
{λj , j= 1,. ..,i} from a trial sample Λtrial follows a greedy procedure like in Algo-
rithm 1 (see figure 3.2). In comparison with Algorithm 1, after i (offline) steps of the
greedy procedure (1≤ i≤ I−1) and online (i= I), note that discretizations of func-
tions (t,y)→∇ũλj (t,y), j= 1,. ..,i+1, are stored in memory to compute the stochastic
integrals (3.8), which is possibly a huge amount of data.

3.2.2. Online stage: reduced-basis approximation. Like in Algorithm 1,
the coefficients (µλj )j=1,...,i in the linear combination (3.8) are computed similarly
online (and then i= I) for any λ∈Λ and offline (when 1≤ i≤ I−1) for each λ∈Λtrial

as minimizers of (a Monte Carlo discretization of) the least squares problem:

min
µ∈RI

Var

(
Zλ−

I∑
i=1

µiỸ
λi
λ

)
, (3.10)
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where we recall that Ỹ λiλ are defined by (3.9). Note that contrary to the reduced-basis
elements Ỹ λi in Algorithm 1, the elements Ỹ λiλ in Algorithm 2 have to be recomputed
for each queried parameter value λ∈Λ.

Again, in practice, the unique solution (µλj )j=1,...,i to the variational prob-
lem (3.10) is equivalently the unique solution to the following linear system:

I∑
j=1

Cov
(
Ỹ λiλ ;Ỹ λjλ

)
µλj =Cov

(
Ỹ λiλ ;Zλ

)
,∀i= 1,. ..,I, (3.11)

and is in fact computed as the unique solution to the discrete minimization problem:

µMsmall =
[
CMsmall

]−1
bMsmall , (3.12)

with CMsmall
i,j = CovMsmall

(
Ỹ λiλ ;Ỹ λjλ

)
and bMsmall

i = CovMsmall

(
Ỹ λiλ ;Zλ

)
.

The cost of one computation online for one parameter λ is more expensive than
that in Algorithm 1, and ranges as the computation of Msmall independent realiza-
tions of Zλ, plus the computation of I (discrete approximations of) the stochastic
integrals (3.9), plus the Monte-Carlo estimators and the solution µMsmall to the (small
I-dimensional, but full) linear system (3.12). In comparison to Algorithm 1, notice
that the (discrete) covariance matrix CMsmall to be inverted depends on λ, and thus
cannot be treated offline once for all; it has to be recomputed for each λ∈Λ.

3.3. General remarks about reduced-basis approaches. The success of
our two reduced-basis approaches clearly depends on the variations of Zλ with λ∈Λ.
Unfortunately, we do not yet have a precise understanding of this, similarly to the
PDE case [23]. Our reduced-basis approaches have only been investigated numerically
in relevant cases for application (see section 4). So we now provide some theoretical
ground only for the a priori existence of a reduced basis, like in the PDE case [18],
with tips for a practical use of the greedy selection procedure based on our numerical
experience. Of course, it remains to show that the greedy procedure actually selects
a good reduced basis.

3.3.1. A priori existence of a reduced basis. Following the analyses [18, 23]
for parametrized PDEs, we can prove the a priori existence of a reduced basis for
some particular collections of parametrized control variates, under very restrictive
assumptions on the structure of the parametrization.

Proposition 3.3. Assume there exist collections of uncorrelated (parameter-
independent) random variables with zero mean Yj ∈L2

P(Ω), 1≤ j≤J , and of positive
C∞(R) functions gj, 1≤ j≤J , such that

Y λ=
J∑
j=1

gj(λ)Yj , ∀λ∈Λ, (3.13)

and there exists a constant C>0 such that, for all parameter ranges Λ = [λmin,λmax]⊂
R, there exists a C∞ diffeomorphism τΛ defined on Λ satisfying

sup
1≤j≤J

sup
λ̃∈τΛ(Λ)

(gj ◦τ−1
Λ )(M)(λ̃)≤M !CM , for all M -derivatives of gj ◦τ−1

Λ . (3.14)

Then, for all parameter ranges Λ = [λmin,λmax]⊂R, there exist constants c1,c2>0 in-
dependent of Λ and J such that, for all N ∈N,N ≥N0 := 1+c1 (τΛ(λmax)−τΛ(λmin)),
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there exist N distinct parameter values λNn ∈Λ, n= 1,. ..,N, (with λNn ≤
λNn+1 when 1≤n≤N−1), sastisfying, with YN =Span

(
Y λ

N
n ,n= 1,. ..,N

)
,

inf
Y λN∈YN

Var
(
Zλ−Y λN

)
≤e−

c2
N0−1 (N−1) Var

(
Zλ
)
, ∀λ∈Λ. (3.15)

One can always write Y λ like (3.13) with uncorrelated random variables (using a
Gram-Schmidt procedure) and with positive coefficients (at least on a range Λ where
they do not vanish). But the assumption (3.14) is much more restrictive. The mapping
τΛ for the parameter, which depends on the functions gj , j= 1,. ..,J , indeed tells us
how the convergence depends on variations in the size of the parameter range Λ.
See [18, 23] for an example of such functions gj and τΛ, and Appendix B for a short
proof inspired from [18, 23].

Proposition 3.3 may cover a few interesting cases of application for the a priori
existence theory. One example where the assumption (3.13) holds is the following.
Consider an output Zλ=g(Xλ

T ) with g a polynomial function, and

Xλ
t =x+

∫ t

0

bλ(s)Xλ
s ds+

∫ t

0

σλ(s)dBs. (3.16)

The optimal control variate Y λ in such a case is written in the form (3.13) (to see
this, one can first explicitly compute the reiterated (or multiple) Itô integrals in the
polynomial expression of g(Xλ

T ) with Hermite polynomials [12]). Then, (3.14) may
hold provided bλ and σλ are smooth functions of λ∈Λ (again, see [18, 23] for functions
gj satisfying (3.14)). But quite often, the reduced bases selected in practice by the
greedy procedure are much better than YN (see [23] for comparisons when λ is scalar).

3.3.2. Requirements for efficient practical greedy selections. A compre-
hensive study would clearly need hypotheses about the regularity of Y λ as a function
of λ and about the discretization Λtrial of Λ to show that the greedy procedure ac-
tually selects good reduced bases. We do not have precise results yet, but we would
nevertheless like to provide the reader with conjectured requirements for the greedy
procedure to work and help him as a potential user of our method.

Ideally, one would use the greedy selection procedure directly on {Y λ,λ∈Λ} for
Algorithm 1 and on {∇uλ,λ∈Λ} for Algorithm 2. But in pratice, one has to resort to
approximations only, {Ỹ λ,λ∈Λ} for Algorithm 1 and {∇ũλ,λ∈Λ} for Algorithm 2.
So, following requirements on discretizations of parametrized PDEs in the classical
reduced-basis method [23], the stability of the reduced basis selected by the greedy
procedure for parametrized control variates intuitively requires

(H1) For any required accuracy ε>0, we assume the existence of approximations,
Ỹ λ for Y λ in Algorithm 1 (resp. ũλ for uλ in Algorithm 2), such that the
L2-approximation error is uniformly bounded on Λ:

∀λ∈Λ,E
(
|Ỹ λ−Y λ|2

)
≤ε,(

resp.
∫ T

0

E
(
|∇ũλ−∇uλ|2(Xλ

t )
)
dt≤ε or ‖∇ũλ−∇uλ‖2L2 ≤ε

)
.

Moreover, in practice, one can only manipulate finite nested samples of parameter
Λtrial instead of the full range Λ. So some representativity assumption about Λtrial is
also intuitively required for the greedy selection procedure to work on Λ:
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(H2) For any required accuracy ε>0, we assume the existence of a sufficiently
representative finite discrete subset Λtrial⊂Λ of parameters such that reduced
bases built from Λtrial are still good enough for Λ.

Referring to section 3.3.1, good enough reduced bases should satisfy exponential con-
vergence like (3.15), with slowly deteriorating capabilities in terms of approximation
when the size of the parameter range grows. Now, in absence of a more precise result,
intuition has been necessary so far to choose good discretizations. The numerical
results of section 4 have been obtained with Mlarge = 100Msmall in Algorithm 1, and
with a trial sample Λtrial of 100 parameter values randomly chosen (with uniform
distribution) in Λ.

In absence of theory for the greedy procedure, one could also think of using an-
other parameter selection procedure in the offline stage. The interest of the greedy
procedure is that it is cheap while effective in practice. In comparison, another natural
reduced basis would be defined by the first I leading eigenvectors from the Princi-
pal Components Analysis (PCA) of the very large covariance matrix with entries
Cov

(
Y λi ;Y λj

)
(λi,λj)∈Λtrial×Λtrial

. The latter (known as the Proper Orthogonal De-
composition method) may yield similar variance reduction for most parameter values
λ∈Λ [23], but would certainly require more computations during the offline stage.

Remark 3.4. The choice of the first selected parameter λ1 has not been made
precise yet. It is observed that generally this choice does not impact the quality of
the variance reduction. But to be more precise, we choose λ1∈Λsmall trial such that
Zλ1 has maximal variance in a small initial sample Λsmall trial⊂Λ, for instance.

4. Worked examples and numerical tests
The efficiency of our reduced-basis strategies for parametrized problems is now

investigated numerically for two problems relevant to some applications.

Remark 4.1 (High-dimensional parameter). Although the maximal dimension in
the parameter treated here is two, one can reasonably hope for our reduced-basis
approach to remain feasible with moderately high-dimensions in the parameter range
Λ, say twenty. Indeed, a careful mapping of a multi-dimensional parameter range may
allow for an efficient sampling Λtrial that makes a greedy procedure tractable and next
yields a good reduced basis for Λ, as was shown for the classical reduced-basis method
with parametrized PDEs [25, 5].

4.1. Scalar process with constant drift and parametrized diffusion.

4.1.1. Calibration of the Black–Scholes model with local volatility.
One typical computational problem in finance is the valuation of an option depending
on a risky asset with value St at time t∈ [0,T ]. In the following we consider Vanilla
European Call options with payoff φ(ST ;K) = max(ST −K,0), K being the exercise
price (or strike) of the option at time t=T . By the no arbitrage principle for a
portfolio mixing the risky asset of value St with a riskless asset of interest rate r(t),
the price (as a function of time) is a martingale given by a conditional expectation:

e−
R T
t
r(s)dsE(φ(ST )|Ft) (4.1)

where, in the Black-Scholes model with local volatility, St=Sλt is a stochastic process
solving the Black-Scholes equation:

dSλt =Sλt
(
r(t)dt+σλ(t,Sλt )dBt

)
Sλt=0 =S0, (4.2)
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and (Ft) is the natural filtration for the standard Brownian motion (Bt). For this
model to be predictive the parameter λ in the (local) volatility σλ needs to be cali-
brated against observed data.

Calibration, like many numerical optimization procedures, defines a typical many-
query context where one has to compute the price (4.1) of the option many times
for a large number of parameter values until, for some optimal parameter value λ,
a test of adequation with statistical data P(K,t̄l) observed on the market at times
t̄l∈ [0,T ], l= 0,. ..,L̄ is satisfied. For instance, a common way to proceed is to minimize
in λ the quadratic quantity

J (λ) =
L̄∑
l=0

∣∣∣e−R T
t̄l
r(s)dsE

(
φ(SλT ;K)|Ft̄l

)
−P(K,t̄l)

∣∣∣2 ,
most often regularized with some Tychonoff functional, using optimization algorithms
like descent methods which indeed require many evaluations of the functional J (λ)
for various λ. One could even consider the couple (K,T ) as additional parameters to
optimize the contract, but we do not consider such an extension here.

Note that the reduced-basis method for parameterized PDEs [17, 18, 23] has
recently proved very efficient at treating a similar calibration problem [24]. Our
approach is different since we consider a probabilistic pricing numerical method.

In the following numerical results, we solve (4.1) for many parameter values as-
suming that the interest rate r is a fixed given constant and the local volatility σλ

has “hyperbolic” parametrization (4.3) (used by practitionners in finance)

σλ(t,S) = (Γ+1)
(

1
C(0,S0)

+
Γ

C(t,S)

)−1

, (4.3)

where C(t,S) = 1
2

(√
CA(t,S)2 +C2

min +CA(t,S)
)

with

CA(t,S) =a+
1
2

√
(b−c)2 log2

(
S

αS0ert

)
+4a2d2 +

1
2

(b+c)log
(

S

αS0ert

)
.

The local volatility σλ is thus parametrized with a 7-dimensional parameter λ=
(a,b,c,d,α,Γ,Cmin).

Our reduced-basis approach aims at building a vector space in order to approxi-
mate the family of random variables{

Y λ :=e−rT max(SλT −K,0)−e−rTE
(
max(SλT −K,0)

)
,λ∈Λ

}
,

which are optimal control variates for the computation of the expectation of
e−rT max(SλT −K,0). In Algorithm 2, we also use the fact that

Y λ=
∫ T

0

∂Su
λ(t,Sλt )σλ(t,Sλt )Sλt dBt, (4.4)

where the function uλ(t,S) solves, for (t,S)∈ [0,T )×(0,∞)

∂tu
λ(t,S)+rS∂Su

λ(t,S)+
σλ(t,S)2S2

2
∂SSu

λ(t,S) = 0, (4.5)
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with final condition uλ(T,S) =e−rT max(S−K,0). Note the absence of boundary
condition at S= 0 because the advection and diffusion terms are zero at S= 0. The
backward Kolmogorov equation (4.5) is numerically solved using finite differences [1].
More precisely, after a change of variable uλ(t,S) =e−rtCλ(t,S), equation (4.4) is
rewritten as

Y λ=
∫ T

0

e−rt∂SC
λ(t,Sλt )σλ(t,Sλt )Sλt dBt, (4.6)

where Cλ(t,S) solves the classical Black-Scholes PDE

∂tC
λ(t,S)−rCλ(t,S)+rS∂SC

λ(t,S)+
σλ(t,S)2S2

2
∂SSC

λ(t,S) = 0, (4.7)

with the final condition Cλ(T,S) = max(S−K,0). In the case of a low-dimensional
variable St (like one-dimensional here), one can use a finite differences method
of order 2 (with Crank-Nicholson discretization in time) to compute approxima-
tions C̃λl,j'Cλ(tl,xj), l= 0,. ..,L, j= 0,. ..,J on a grid for the truncated domain
[0,T ]× [0,3K]⊂ [0,T ]× [0,∞), with L= 100 steps in time and J = 300 steps in space of
constant sizes (and with Dirichlet boundary condition C̃λl,J+1 = (3−e−r(T−tl))K,∀l=
0,. ..,N at the truncated boundary). An approximation C̃λ(t,S) of Cλ(t,S) at
any (t,S)∈ [0,T ]× [0,3K] is readily reconstructed as a linear interpolation on tiles
(t,S)∈ [tl,tl+1]× [Sj ,Sj+1].

4.1.2. Numerical results. The Euler-Maruyama scheme with N = 102

time steps of constant size ∆t= T
N = 10−2 is used to compute one realization of a

pay-off max(S̃λN −K,0), for a strike K= 100 at final time tN =T = 1 when the ini-
tial price is S̃λ0 = 90 and the interest rate r= 0.04. Then, (a large number of) ex-
pectations E

(
max(S̃λN −K,0)

)
are approximated through Monte-Carlo evaluations

EMsmall

(
max(S̃λN −K,0)

)
with Msmall = 103 realizations, when the local volatility pa-

rameter λ= (a,b,c,d,α,Γ,Cmin) assumes many values in the two-dimensional range
Λ = [−.05,.15]×{b= c∈ [.5,1.5]}×{1.}×{1.1}×{5}×{.05} (variations of the func-
tion σλ(t,S) with λ are shown in figure 4.1). We build reduced bases of different
sizes I= 1,. ..,20 from the same sample Λtrial of size |Λtrial|= 100, either with Al-
gorithm 1 (figures 4.2 and 4.4) using approximate control variates computed with
Mlarge = 100Msmall evaluations:

Ỹ λI =
I∑
i=1

µMsmall
i Ỹ λi =

I∑
i=1

µMsmall
i

(
max(S̃λiN −K,0)−EMlarge

(
max(S̃λiN −K,0)

))
,

or with Algorithm 2 (figure 4.3 and 4.4) using approximate control variates

Ỹ λI =
I∑
i=1

µMsmall
i

(
N−1∑
n=0

e−rtn∂SC̃
λi(tn,S̃λn)σλ(tn,S̃λn)

√
|tn+1− tn|Gn

)

computed as first-order discretizations of the Itô stochastic integral (4.6) using the
finite-difference approximation of the solution to the backward Kolmogorov equation.
We always start the greedy selection procedure by choosing λ1 such that Ỹ λ1 has
the maximal correlation with other members in Λsmall trial, a small prior sample of 10
parameter values chosen randomly with uniform law in Λ; see Remark 3.4.
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Fig. 4.1. Variations of the “hyperbolic” local volatility function σλ(t,S) with re-
spect to S∈ [50,150]. Six families of curves are shown (as time t evolves in [0,1])
for extremal and mid- values of the parameter (a,b= c) in [−.05, .15]×{b= c∈ [.5,1.5]}:
(min(a),min(b= c)), (min(a),max(b= c)), (med(a) := .5min(a)+ .5max(a),min(b= c)), (med(a) :=
.5min(a)+ .5max(a),max(b= c)), (max(a),min(b= c)), (max(a),max(b= c)). Each family of curves
shows the time variations of S→σλ(t,S) for t∈{.1×k|k= 0, .. .,10}).

We show in figures 4.2 and 4.3 the absolute variance after variance reduction

VarMsmall

(
max(S̃λN −K,0)− Ỹ λI

)
, (4.8)

and in figure 4.4 the relative variance after variance reduction

VarMsmall

(
max(S̃λN −K,0)− Ỹ λI

)
EMsmall

(
max(S̃λN −K,0)− Ỹ λI

)2 . (4.9)

In each figure, the maximum, the minimum and the mean of one of the two residual
variances above are shown, either within the offline sample deprived of the selected
parameter values Λtrial \{λi, i= 1,. ..,I}, or within an online uniformly distributed
sample test Λtest⊂Λ of size |Λtest|= 10|Λtrial|.

It seems that Algorithm 1 slightly outperfoms Algorithm 2 with a sufficiently large
reduced basis, comparing the (online) decrease rates for either the relative variance or
the absolute variance. Yet, one should also notice that, with very small-dimensional
reduced basis, Algorithm 2 yields good variance reduction very rapidly. Comparing
the decrease rates of the variance in offline and online samples tells us how good
the (randomly uniformly distributed here) choice of Λtrial was. Algorithm 2 seems
more robust than Algorithm 1 for reproducing (“extrapolating”) offline results from
a sample Λtrial in the whole range Λ. So, comparing the first results for Algorithms 1
and 2, it is not clear which algorithm performs the best variance reduction for a given
size of the reduced basis.

Now, in figures 4.5 and 4.6, we show the online (absolute and relative) variance
for a new sample test of parameters Λtestwide uniformly distributed in
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Fig. 4.2. Algorithm 1 for Black–Scholes model with local “hyperbolic” volatility: Minimum +,
mean × and maximum ◦ of the absolute variance (4.8) in samples of parameters (left: offline sample
Λtrial \{λi,i= 1, .. .,I}; right: online sample Λtest) with respect to the size I of the reduced basis.
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Fig. 4.3. Algorithm 2 for Black–Scholes model with local “hyperbolic” volatility: Minimum +,
mean × and maximum ◦ of the absolute variance (4.8) in samples of parameters (left: offline sample
Λtrial \{λi,i= 1, .. .,I}; right: online sample Λtest) with respect to the size I of the reduced basis.
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Fig. 4.4. Algorithm 1 (left) and 2 (right) for Black–Scholes model with local “hyperbolic”
volatility: Minimum +, mean × and maximum ◦ of the relative variance (4.9) in a sample test
(online) Λtest of parameters with respect to the size I of the reduced basis.
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Λwide = [−.15,.25]×{b= c∈]0,2[}×{1.}×{1.1}×{5}×{.05}, which is twice as large
as Λ = [−.05,.15]×{b= c∈ [.5,1.5]}×{1.}×{1.1}×{5}×{.05}, where the training
sample Λtrial of the offline stage is nested. The quality of the variance reduction
compared to that for a narrower sample test Λtest seems to decrease faster for Algo-
rithm 1 than for Algorithm 2. Algorithm 2 definitely seems more robust with respect
to the variations in λ than Algorithm 1. This observation is even further increased if
we use the relative variance (4.9) instead of the absolute variance (4.8), as shown by
the results in figures 4.5 and 4.6.
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Fig. 4.5. Algorithm 1 (left) and 2 (right) for Black–Scholes model with local “hyperbolic”
volatility: Minimum +, mean × and maximum ◦ of the (online) absolute variance (4.8) in a sample
test Λtestwide of parameters with respect to the size I of the reduced basis. Greedy selection with
absolute variance (4.8) (top) and relative variance (4.9) (bottom).

4.2. Vector processes with constant diffusion and parametrized drift.

4.2.1. Molecular simulation of dumbbells in polymeric fluids. In rhe-
ology of polymeric viscoelastic fluids, the long polymer molecules responsible for the
viscoelastic behaviour can be modelled through kinetic theories of statistical physics
as Rouse chains, that is as chains of Brownian beads connected by springs. We concen-
trate on the most simple of those models, namely “dumbbells” (two beads connected
by one spring) diluted in a Newtonian fluid.

Kinetic models consist in adding to the usual velocity and pressure fields (u,p)
describing the (macroscopic) state of the Newtonian solvent, a field of dumbbells
represented by their end-to-end vector Xt(x) at time t and position x in the fluid.
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Fig. 4.6. Algorithm 1 (left) and 2 (right) for Black–Scholes model with local “hyperbolic”
volatility: Minimum +, mean × and maximum ◦ of the (online) relative variance (4.9) in a sample
test Λtestwide of parameters with respect to the size I of the reduced basis. Greedy selection with
absolute variance (4.8) (top) and relative variance (4.9) (bottom).

Vector stochastic processes (Xt(x)) encode the time evolution of the orientation and
the stretch of the dumbbells (the idealized configuration of a polymer molecule) for
each position x∈D in a macroscopic domain D where the fluid flows. To compute
the flow of a viscoelastic fluid with such multiscale dumbbell models [15], segregated
algorithms are used that iteratively, on successive time steps with duration T :

• first evolve the velocity and pressure fields (u,p) of the Newtonian solvent
under a fixed extra (polymeric) stress tensor field τ (typically following Navier-
Stokes equations), and

• then evolve the (probability distribution of the) polymer configurations vector
field (Xt(x)) surrounded by the newly computed fixed velocity field u.

The physics of kinetic models is based on a scale separation between the polymer
molecules and the surrounding Newtonian fluid solvent. On the one side, the polymer
configurations are directly influenced by the (local) velocity and pressure of the New-
tonian solvent in which they are diluted. Reciprocally, on the other side, one needs
to compute at every x∈D the extra (polymeric) stress, given the Kramers formula:

τ (T,x) =E(XT (x)⊗F (XT (x))) ,

after one evolution step t∈ [0,T ] over which the polymer configurations have evolved
(remember that here [0,T ] should be understood as a timestep). The vector valued
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process Xt(x) in Rd (d= 2 or 3) solves a Langevin equation at every physical point
x∈D (Eulerian description):

dXt+u ·∇xXtdt=
(
(∇xu)Xt−F (Xt)

)
dt+dBt.

This Langevin equation describes the evolution of polymers at each x∈D, under an
advection u ·∇xXt, a hydrodynamic force (∇xu)Xt, Brownian collisions (Bt) with
the solvent molecules, and an entropic force F (Xt) specific to the polymer molecules.
Typically, this entropic force reads either F (X) =X (for Hookean dumbbells), or
F (X) = X

1−|X|2/b (for Finitely-Extensible Nonlinear Elastic or FENE dumbells, to

model the finite extensibility of polymers: |X|<
√
b).

In the following, we do not consider the advection term u ·∇xXt (which can be
handled through integration of the characteristics in a semi-Lagrangian framework,
for instance), and we concentrate on solving the parametrized SDE

dXt=
(
λXt−F (Xt)

)
dt+dBt, (4.10)

on a time slab [0,T ], with a fixed matrix λ(x) =∇xu(x). We also assume, as usual for

viscoelastic fluids, that the velocity field is incompressible (that is tr(λ) = 0), hence

the parameter λ is only (d2−1)-dimensional.

This is a typical many-query context where the Langevin equation (4.10) has to be
computed many times at each (discretized) position x∈D, for each value of the d×d-
dimensional parameter λ (since ∇xu(x) depends on the position x). Furthermore,
the computation of the time-evolution of the flow defines a very demanding many-
query context where the latter has to be done iteratively over numerous time steps
of duration T between which the tensor field λ(x) is evolved through a macroscopic
equation for the velocity field u.

Remark 4.2 (Initial Condition of the SDE as additional parameter). Let T0 = 0
and Tn+1 = (n+1)T . Segregated numerical schemes for kinetic models of polymeric
fluids as described above simulate (4.10) on successive time slabs [Tn,Tn+1], for n∈N.
More precisely, on each time slab [Tn,Tn+1], one has to compute

τ (Tn+1) =E
(
XTn+1⊗F (XTn+1)

)
=E

(
E
(
XTn+1⊗F (XTn+1)|XTn

))
(4.11)

at a fixed position x∈D. In practice, (4.11) can be approximated through

τ (Tn+1)' 1
R

R∑
r=1

1
M

M∑
m=1

Xr,m
Tn+1
⊗F (Xr,m

Tn+1
), (4.12)

after simulating MR processes (Xr,m
t )t∈[Tn,Tn+1] driven by MR independent Brown-

ian motions for a given set of R different initial conditions, typically:

Xr,m

T+
n

=Xr,1

T−n
, r= 1,. ..,R, m= 1,. ..,M,

or any Xr,m0

T−n
(with 1≤m0≤M) given by the computation at final time of the pre-

vious time slab [Tn−1,Tn]. In view of (4.12), for a fixed r, the computation of
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1
M

∑M
m=1X

r,m
Tn+1
⊗F (Xr,m

Tn+1
) using the algorithms presented above requires a mod-

ification of the methods to the case when the initial condition of the SDE assumes
many values.

To adapt Algorithm 1 to the context of SDEs with many different initial con-
ditions, one should consider reduced bases for control variates which depend on the
joint-parameter (λ,x), where x is the initial condition of the SDE. And variations
on the joint-parameter (λ,x) can be simply recast into the framework of SDEs with
fixed initial condition used for presentation of Algorithm 1 after the change of variable
X̂λ,x
t =Xλ

t −x, that is using the family of SDEs with fixed initial condition X̂λ,x
0 = 0

dX̂λ,x
t = b̂λ,x(t,X̂λ,x

t )dt+ σ̂λ,x(t,X̂λ,x
t )dBt, (4.13)

where b̂λ,x(t,X) = bλ(t,X+x), σ̂λ,x(t,X) =σλ(t,X+x), for all t, X, and x. Then,
with ĝλ,x(X) =gλ(X+x) and f̂λ,x(t,X) =fλ(t,X+x), the output is the expectation
of

Ẑλ,x= ĝλ,x(X̂λ,x
T )−

∫ T

0

f̂λ,x(s,X̂λ,x
s )ds.

The corresponding “ideal” control variate reads Ŷ λ,x= Ẑλ,x−E
(
Ẑλ,x

)
.

In Algorithm 2, note that uλ, the solution to (2.7), does not depend on the initial
condition used for the SDE. So, once parameters λi (i= 1,. ..,I) have been selected
offline, Algorithm 2 applies similarly for SDEs with one fixed, or many different, initial
conditions. Though, the offline selection of parameters λi using SDEs with many
different initial conditions should consider a larger trial sample than for one fixed
initial condition. Indeed, the selection criterion in the greedy algorithm does depend
on the initial condition of the SDE. So, defining a trial sample of initial conditions
ΛIC, the following selection should be performed at step i in figure 3.2:

Select λi+1∈ argmax
λ∈Λtrial\{λj ,j=1,...,i}

max
x∈ΛIC

VarMsmall(Z
λ,x− Ỹ λ,xi ),

where Zλ,x and Ỹ λ,xi , defined like Zλ and Ỹ λi , depend on x because the stochastic
process (Xλ

t ) depends on Xλ
0 =x.

It might be useful to build different reduced bases, one for each cell of a partition
of the set of the initial condition. In summary, both algorithms can be extended to
SDEs with variable initial condition, at the price of increasing the dimension of the
parameter (see also Remark 4.1).

Remark 4.3 (Multi-dimensional output). Clearly, the full output τ in the problem
described above is three-dimensional (it is a symmetric matrix). So our reduced-basis
approach such as presented so far would need three different reduced bases, one for
each scalar output. Though, one could alternatively consider the construction of only
one reduced basis for the three outputs, which may be advantageous, see [4] for one
example of such a construction.

Note that it is difficult to compute accurate approximations of the solution to
the backward Kolmogorov equation (2.7) in the FENE case, because of the nonlinear
explosive term. It is tractable in some situations, see [16, 6] for instance, though at
the price of computational difficulties we did not want to deal with in this first work
on our new variance reduction approach. On the contrary, the backward Kolmogorov
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equation (2.7) can be solved exactly in the case of Hookean dumbells. Hence we have
approximated here uλ in Algorithm 2 by the numerical solution ũλ to the backward
Kolmogorov equation (2.7) for Hookean dumbells, whatever the type of dumbbells
used for the molecular simulation (Hookean or FENE).

We would like to mention the recent work [14] where the classical reduced-basis
method for parameterized PDEs has been used in the FENE case (solving the FENE
Fokker-Planck by dedicated deterministic methods). Our approach is different since
we consider a stochastic discretization.

4.2.2. Numerical results. The SDE (1.2) for FENE dumbbells (when d=
2) is discretized with the Euler-Maruyama scheme using N = 100 iterations with a
constant time step of ∆t= 10−2 starting from a (deterministic) initial condition X0 =
(1,1), with reflecting boundary conditions at the boundary of the ball with radius

√
b.

The number of realizations used for the Monte-Carlo evaluations, and the sizes of
the (offline) trial sample Λtrial and (online) test sample Λtest for the three-dimensional
matrix parameter λ with entries (λ11 =−λ22,λ12,λ21), are kept similar to the previous
section 4.1. Samples Λtrial and Λtest for the parameter λ are uniformly distributed in

a cubic range Λ = [−1,1]3. We will also make use of an enlarged (online) test sample
Λtestwide, uniformly distributed in the range [−2,2]3.

When b= 9, the variance reduction online with Algorithm 1 is again very interest-
ing, of about 4 orders of magnitude with I= 20 basis functions, whatever the criterion
used for the selection (we only show the absolute variance, in figure 4.7). But when
b= 4, the reflecting boundary conditions are more often active, and the maximum
online variance reduction slightly degrades (see figure 4.8).

We first tested our variance reduction with Algorithm 2 for Hookean dumbells
and it appeared to work well; but such a model is considered too simple generally.
Then using the solution to the Kolmogorov backward equation for Hookean dumbells
as ũλ in Algorithm 2 for FENE dumbbells still yields good variance reduction while
the boundary is not touched (see figure 4.9); when b= 4 and many reflections at
the boundary occur, the variance is hardly reduced. Again Algorithm 2 seems to
be slightly more robust than Algorithm 1 in terms of extrapolation, that is when
the (online) test sample is “enlarged” (see figure4.10 with b= 16 and a sample test
(online) Λtestwide).

5. Conclusion and perspectives
We have demonstrated the feasibility of a reduced-basis approach to compute

control variates for the expectation of functionals of a parameterized Itô stochastic
process. We have also tested the efficiency of such an approach with two possible
algorithms, in two simple test cases where either the drift or the diffusion of scalar
(d= 1), and vector (d= 2), Itô processes are parametrized, using 2- or 3-dimensional
parameters.

Algorithm 2 is less generic than Algorithm 1; it is basically restricted to low-
dimensional stochastic processes (Xt) since:

• one needs to solve (possibly high-dimensional) PDEs (offline), and

• discrete approximations of the PDEs solutions on a grid have to be kept in
memory (which is possibly a huge amount of data).

Yet, Algorithm 2 seems more robust to variations in the parameter.
From a theoretical viewpoint, it remains to better understand the convergence

of reduced-basis approximations for parametrized control variates depending on the
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Fig. 4.7. Algorithm 1 for FENE model with b= 9: Minimum +, mean × and maximum ◦ of the
absolute variance (4.8) in samples of parameters (left: offline sample Λtrial \{λi,i= 1, .. .,I}; right:
online sample Λtest) with respect to the size I of the reduced basis.
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Fig. 4.8. Algorithm 1 for FENE model with b= 4: Minimum +, mean × and maximum ◦ of the
absolute variance (4.8) in samples of parameters (left: offline sample Λtrial \{λi,i= 1, .. .,I}; right:
online sample Λtest) with respect to the size I of the reduced basis.
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Fig. 4.9. Algorithm 2 for FENE model with b= 9: Minimum +, mean × and maximum ◦ of the
absolute variance (4.8) in samples of parameters (left: offline sample Λtrial \{λi,i= 1, .. .,I}; right:
online sample Λtest) with respect to the size I of the reduced basis.
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Fig. 4.10. Algorithm 1 (left) and 2 (right) for FENE model with b= 16: Minimum +, mean ×
and maximum ◦ of the relative variance (4.9) in online test for samples Λtest (top) and Λtestwide

(bottom) of parameters, with respect to the size I of the reduced basis.

parametrization (and on the dimension of the parameter in particular), on the
reduced-basis construction (following a greedy procedure) and on an adequate dis-
cretization choice (including the computation of approximate control variates and the
choice of a trial sample Λtrial).
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Appendix A. Algorithm 2 in a higher-dimensional setting (d≥4). The
solution uλ(t,y) to (2.7) can be computed at any (t,y)∈ [0,T ]×Rd by the martingale
representation theorem [12]

gλ(Xλ
T )−

∫ T

t

fλ(s,Xλ
s )ds=uλ(t,Xλ

t )+
∫ T

t

∇uλ(s,Xλ
s ) ·σλ(s,Xλ

s )dBs, (A.1)

obtained by an Itô formula similar to (2.8). This gives the following Feynman-Kac
formula for uλ(t,x), which can consequently be computed at any (t,y)∈ [0,T ]×Rd
through Monte-Carlo evaluations

uλ(t,y) =E

(
gλ(Xλ,t,y

T )−
∫ T

t

fλ(s,Xλ,t,y
s )ds

)
, (A.2)
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where (Xλ,t0,y
t )t0≤t≤T is the solution to (1.2) with initial condition Xλ,t0,y

t0 =y. Dif-
ferentiating (A.2) (provided fλ and gλ are differentiable), we even directly get a
Feynman-Kac formula for ∇uλ(t,y),

∇uλ(t,y) =E

(
Φλ,t,yT ·∇gλ(Xλ,t,y

T )−
∫ T

t

Φλ,t,ys ·∇fλ(s,Xλ,t,y
s )ds

)
, (A.3)

where the stochastic processes
(
Φλ,t,ys ,s∈ [t,T ]

)
in Rd×d satisfy the first-order varia-

tion of the SDE (1.2) with respect to the initial condition, that is Φλ,t,ys =∇yXλ,t,y
s

for any s∈ [t,T ]:

Φλ,t,ys = Idd+
∫ s

t

Φλ,t,ys′ ·∇bλ(s′,Xλ,t,y
s′ )ds′+

∫ s

t

Φλ,t,ys′ ·∇σλ(s′,Xλ,t,y
s′ )dBs′ , (A.4)

where Idd denotes the d×d identity matrix (see [21] for a more general and rigorous
presentation of this Feynman-Kac formula in terms of the Malliavin gradient). The
stochastic integral (2.9) can then be computed for each realization of (Bt), after
discretizing

(
Φλ,t,ys ,s∈ [t,T ]

)
.

Discrete approximations of the Feynman-Kac formula (A.3) have already been
used succesfully in the context of computing control variates for the reduction of vari-
ance, in [21] for instance. Note that this numerical strategy to compute ∇uλfrom a
Feynman-Kac formula requires a lot of computations. Yet, most often, the computa-
tion time of the functions (t,y)→∇uλ(t,y) would not be a major issue in a reduced-
basis approach, since this would be done offline (that is, in a pre-computation step,
once for all) for only a few selected values of the parameter λ. What is nevertheless
necessary for the reduced-basis approach to work is the possibility to store the big
amount of data corresponding to a discretization of ∇uλ(t,y) on a grid for the variable
(t,y)∈ [0,T ]×Rd (the parameter λ then assuming only a few values in Λ — of order
10 in our numerical experiments), and to have rapid access to those data in the online
stage (where control variates are computed for any λ∈Λ using those precomputed
data).

Appendix B. Proof of Proposition 3.3.
Proof. First note that, since E

(
Y λ
)

= 0, then Var
(
Zλ
)

=Var
(
Y λ
)
.

So, for all λ∈Λ and for every linear combination of Y λ
N
n , n= 1,. ..,N

Y λN =
N∑
n=1

an(λ)
J∑
j=1

gj(λNn )Yj

(with any choice an(λ)∈R, λNn ∈Λ, n= 1,. ..,N), there holds (recall that the Yj ,
j= 1,. ..,J , are uncorrelated)

Var
(
Zλ−Y λN

)
=Var

(
Y λ−Y λN

)
=
∫

Ω

∣∣∣∣∣∣
J∑
j=1

(
gj(λ)−

N∑
n=1

an(λ)gj(λNn )

)
Yj

∣∣∣∣∣∣
2

dP

≤

 J∑
j=1

|gj(λ)|2 Var(Yj)

 sup
1≤j≤J

∣∣∣gj(λ)−
∑N
n=1an(λ)gj(λNn )

∣∣∣2
|gj(λ)|2

. (B.1)
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To get (3.15), we now explain how to choose the N coefficients an(λ), 1≤n≤N ,
for each λ∈Λ when λNn ∈Λ, n= 1,. ..,N is given, and then how to choose those N
parameter values λNn ∈Λ, n= 1,. ..,N .

Assume the N parameter values λNn ∈Λ, n= 1,. ..,N , are given, with λN1 =λmin,
λNN =λmax and λNn ≤λNn+1, n= 1,. ..,N−1. Then, for a given M ∈{2,. ..,N} (to be
determined later on) and for all λ∈Λ, it is possible to choose 1≤M0(λ)≤N+1−M
such that λNM0(λ)≤λ≤λ

N
M0(λ)+M−1. Only the M coefficients corresponding to the M

contiguous parameter values above are taken non zero, such that ∀λ∈Λ:

am(λ) 6= 0⇔M0(λ)≤m≤M0(λ)+M−1,

and are more specifically chosen as am(λ) =Pλm(τΛ(λ)) where Pλm are polynomi-
als of degree M−1, such that, for all M0(λ)≤m,k≤M0(λ)+M−1, Pλm(τΛ(λk)) =
δmk. The polynomial function Pλm is the Lagrange interpolant defined on
[τΛ(λM0(λ)),τΛ(λM0(λ)+M−1)], taking value 1 at τΛ(λm) and 0 at τΛ(λk), k 6=m.
We will also need a function d(λ) = |τ(λM0(λ))−τ(λM0(λ)+M−1)|. Using a Taylor-
Lagrange formula for gj ◦τ−1 we have (for some 0≤η≤1):

gj(λ)−
N∑
n=1

an(λ)gj(λn) =
d(λ)M

M !
(gj ◦τ−1)(M)

(
ητ(λNM0(λ))+(1−η)τ(λNM0(λ)+M−1)

)
.

Then, using (3.14) and the fact that Var
(
Zλ
)

=
∑J
j=1 |gj(λ)|2 Var(Yj), there exists a

constant C>0 (independent of Λ and J) such that

Var
(
Zλ−Y λN

)
≤Var

(
Zλ
)

(Cd(λ))2M
, ∀λ∈Λ. (B.2)

Finally, to get the result, we now choose a τΛ-equidistributed parameter sample:

τΛ(λNn ) = τΛ(λmin)+
n−1
N−1

(τΛ(λmax)−τΛ(λmin)), n= 1,. ..,N.

Then, d(λ) = M−1
N−1 (τΛ(λmax)−τΛ(λmin)) does not depend on λ. Minimizing

(Cd)d as a function of d∈ (0, 1
C ), we choose d(λ) = 1

eC , and the choice M = 1+
b 1
eC

N−1
τΛ(λmax)−τΛ(λmin)c (where bxc denotes the integer part of a real number x∈R)

finishes the proof provided N ≥N0≡1+bC e (τΛ(λmax)−τΛ(λmin))c. �
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[19] M. Melchior and H.C. Öttinger, Variance reduced simulations of stochastic differential equa-
tions, J. Chem. Phys., 103, 9506–9509, 1995.

[20] G.N. Milstein and M.V. Tretyakov, Practical variance reduction via regression for simulating
diffusions, School of Mathematics and Computer Science, University of Leicester,Technical
Report MA-06-19, 2006.

[21] N.J. Newton, Variance reduction for simulated diffusions, SIAM J. Appl. Math., 54(6), 1780–
1805, 1994.
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