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STABILITY OF SOLITARY WAVES IN HIGHER-ORDER SOBOLEV
SPACES∗

JERRY L. BONA † , YUE LIU ‡ , AND NGHIEM V. NGUYEN §

Abstract. The orbital stability of solitary waves has generally been established in Sobolev
classes of relatively low order, such as H1. It is shown here that at least for solitary-wave solutions
of certain model equations, a sharp form of orbital stability is valid in L2-based Sobolev classes of
arbitrarily high order. Our theory includes the classical Korteweg-de Vries equation, the Benjamin-
Ono equation and the cubic, nonlinear Schrödinger equation.

1. Introduction
Many equations for the description of wave motion that feature both nonlinearity

and dispersion possess particular traveling-wave solutions called solitary waves. It has
turned out that these special solutions often play a fundamental role in the long time
behavior of quite general disturbances. In consequence of this, and because the issue
is interesting in its own right, the stability of solitary waves to small perturbations
has attracted considerable attention in the last three decades.

The mathematically exact theory for the stability of solitary waves began with
Benjamin’s theory [8] for the Korteweg-de Vries equation (see also [11]). In subsequent
works, Benjamin’s original conception was refined and extended in many ways. The
existing theory is satisfactory both as regards its general conclusions about solitary
waves and the range of its applicability, though it must be acknowledged that signifi-
cant and difficult issues remain open (e.g. issues of asymptotic stability investigated
by Pego and Weinstein [25] in particular cases and stability of solitary-wave solutions
of complex systems like the Boussinesq systems or the full Euler equations for the
propagation of surface water waves).

It is our purpose here to extend the existing theory in a direction not previ-
ously considered, and which we now explain in the context of Korteweg-de Vries-type
equations. The evolution equations we have in mind take the form

ut + f(u)x − Lux = 0 (1.1)

where u(x, t) is a real-valued function of two real variables, f : R −→ R is a smooth
function (usually a polynomial), L is a Fourier-multiplier operator defined by

L̂v(ζ) = α(ζ)v̂(ζ) (1.2)

for a non-negative, even dispersion symbol α, subscripts connote partial differentiation
and the circumflex denotes the Fourier transform with respect to the spatial variable
x. When an equation in the class depicted in (1.1) is interpreted as a model of physical
phenomena, x is typically proportional to distance in the direction of propagation, t
is proportional to time and u is often a displacement or a velocity. In the context of
(1.1), a solitary wave is a traveling-wave solution of the form φ(x − ct) where c is a
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36 STABILITY OF SOLITARY WAVES

fixed positive constant and φ is usually an even function tending to zero at ±∞. (For
Schrödinger-type equations, the definition is slightly different as we will see later.)

Stability here is referred to the initial-value problem. Thus, in the context of
(1.1), one imagines being provided with an initial wave profile, say at t = 0,

u(x, 0) = ψ(x), (1.3)

for x ∈ R, and then inquiring into the subsequent evolution using (1.1). This presumes
that the initial-value problem (1.1)-(1.2) is a well-posed problem so that a unique
solution u(x, t) departs from ψ under the influence of (1.1).

The solitary wave φ = φc is said to be orbitally stable in a Banach space X with
norm ‖.‖X if whenever ε > 0 is specified, there is a corresponding δ > 0 such that

‖φ− u(·, 0)‖X ≤ δ (1.4)

implies

inf
y∈R

‖u(· + y, t) − φ‖X ≤ ε, (1.5)

for all t ≥ 0. This result is interpreted to say that, if at some time, say t = 0, a
solution of (1.1) is close to φ relative to X , then it remains close in shape for all
subsequent (and previous) time. Of course, it is possible that in some contexts the
stipulation (1.3) might need strengthening, say to

‖φ− u(·, 0)‖Y ≤ δ, (1.6)

where Y ⊂ X is a smaller space with a stronger norm, though one would generally
prefer that stability in X subsist on the data lying close to φ in X and nothing more.
These general ruminations about orbital stability can be found in [13], and as shown
in this reference, it is the case that in many circumstances where stability is obtained
as just outlined, there is in fact a smooth function γ : R −→ R such that

‖u(·, t) − φ(· + γ(t))‖X ≤ ε (1.7)

for all t ∈ R and

|γ′(t) + c| ≤ ε (1.8)

for all t, where c is the phase speed of the solitary wave whose stability is in question.
This latter result may be interpreted as saying that the bulk of the wave motion
emanating from the perturbed solitary wave propagates at a speed very near to the
original phase velocity c. This is consistent with, but not necessarily equivalent to,
asymptotic stability.

As just outlined, the theory accords well with what is observed in real situations,
and with the outcome of numerical stimulations of equations of the form depicted in
(1.1). One aspect does not fit well with what is observed in computer approximations
and comprises a limitation of the theory. This point is explained next.

The space X for which the conclusion (1.4) holds is usually dictated by the Hamil-
tonian for the equation. In the case of (1.1), the functional

H(u) =
∫ ∞

−∞

(
1
2
uLu+ F (u)

)
dx
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is a Hamiltonian for (1.1), where F ′ = f and F (0) = 0, say. That is, (1.1) is formally
equivalent to

∂u

∂t
= J∇H(u),

where the skew-adjoint operator J is simply −∂x and ∇H is the gradient of the
functional H . (That is to say, ∇H(u) is the Gateaux derivative of H at u in the
direction v,

H ′(u)v = (∇H(u), v)

where the inner product is that of L2(R) in this case.) Stability in the sense defined
by (1.4)-(1.5) or (1.6)-(1.5) is naturally referred by the existing theory to the so-called
energy space

‖g‖X =
{∫ ∞

−∞
(1 + α(k))|ĝ(u)|2dk

} 1
2

.

It is our purpose here to establish orbital stability as indicated above for smaller
spaces X whose norms are much stronger. What this means practically is that not
only does the bulk of what emanates from the perturbed solitary wave stay close
in shape and propagation speed to the original solitary wave, but emerging residual
oscillations must also be very small and not only in the energy norm. An example
of what our theory denies is easily displayed. (In general, for s ≥ 0, Hs(R) is the
subspace of square integrable functions whose sth generalized derivative is also square
integrable.) Suppose initial data ψ lies near to a solitary-wave solution φc in the
strong sense of a small space like Hk(R) for k large, say in the context of the KdV-
equation itself ((1.1) with f(u) = u2/2 and Lu = −∂2

xu). The energy space in this
case is H1(R). The currently existing theory would not preclude, for some positive
time t, that the solution u corresponding to initial data ψ might have the form

u(x, t) = φc(x− θ) + ρ(x)

for some θ ∈ R, where ρ has the form

ρ(x) = εµ(x) cos(εαx)

with α < 0, say α = −1/k. For ε << 1, ρ is indeed small in H1(R), but features very
significant high frequency oscillations that, for example, never appear in numerical
simulations when ψ is as described above. In particular, the Hk(R)-norm is not
generally small, no matter how small is ε. The present theory precludes such behavior
if ψ does not initially feature these sort of oscillations.

It is worth remarking that at least in the case of the Benjamin-Ono equation, the
issue has extra interest for the following reason. The existing stability theory for the
Benjamin-Ono solitary waves (see [10]) adduces stability in the sense of (1.4)-(1.5)
where X = H

1
2 (R). However, it must additionally be assumed that ψ ∈ Hs(R) where

s ≥ 3/2. (Well-posedness for the case s = 3/2 follows from the subsequent work of
Ponce [24] whilst well-posedness for s > 3/2 was in the original paper [10] based on
Kato’s theory; see Kato [19] and Tom [26].) Because of the recent results of Molinet,
Tzvetkov and Saut [23], it appears that a well-posedness theory for the Benjamin-Ono
equation in very weak spaces is troublesome, and so having a stability theory in higher
order Sobolev classes allows one to match it to the well-posedness results.
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2. Notation and Well-Posedness Results
For 1 ≤ p < +∞, Lp = Lp(R) is the usual Banach space of classes of real-valued,

Lebesgue measurable functions f : R −→ R that are pth-power integrable whereas
L∞ = L∞(R) is the measurable, essentially bounded functions. The case p = 2
already appeared in the Introduction. The norm of f ∈ Lp is denoted |f |p. For s ≥ 0,
the Sobolev space Hs is the subspace of functions f ∈ L2 such that

‖f‖2
s =

∫ ∞

∞
(1 + ζ2)s|f̂(ζ)|2dζ < +∞.

The space Hs is a Hilbert space with this norm. The cases s = 1 and s = k were
featured in our previous commentary.

Logically, prior to a discussion of stability as formulated above in terms of per-
tubations of the initial data should be a theory for the initial-valued problem itself.
This is a subject that has attracted considerable attention and it is not our purpose
to provide a survey of the theory. The results outlined below suffice for the stability
theory developed here. More subtle results are available in some cases but these do
not concern us here.

For the initial-value problems for the KdV-equation{
ut + uux + uxxx = 0, for x ∈ R and t ≥ 0,
u(x, 0) = ψ(x), (2.1)

and the mKdV-equation{
ut + u2ux + uxxx = 0, for x ∈ R and t ≥ 0,
u(x, 0) = ψ(x), (2.2)

the following theory suffices (see [19]).

Theorem 2.1. Let s > 3/2. For each ψ ∈ Hs, there exist a T > 0 depending
only on ‖ψ‖Hs and a unique solution u to the KdV-equation (respectively, the mKdV-
equation) such that u ∈ C([0, T ];Hs). Moreover, for any fixed T > 0, if UT is the
mapping which associates to ψ the solution u on the interval [0, T ], then UT is locally
Lipschitz continuous from Hs into C([0, T ];Hs).

For the Benjamin-Ono equation{
ut + uux +H(uxx) = 0, for x ∈ R and t ≥ 0,
u(x, 0) = ψ(x), (2.3)

where H denotes the Hilbert transform defined by the principle value integral

H(u(x)) =
1
π
P.V.

∫
u(y)
x− y

dy,

the following theory suffices (see [2]).

Theorem 2.2. Let s > 3/2. For each ψ ∈ Hs, there exist a T > 0 depending only
on ‖ψ‖Hs , and a unique solution u of (2.3) such that u ∈ Ck([0, T ];Hs−2k(R)) for
all k ∈ N with s − 2k ≥ −1. For any fixed T > 0, let UT be the mapping which
associcates to ψ the solution u on the interval [0, T ]. Then UT is continuous from Hs

into Ck([0, T ];Hs−2k(R)), for the same range of k.
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Virtually identical theory holds for the Intermediate Long Wave equation{
ut + uux + 1

δux + Tδ(uxx) = 0, for x ∈ R and t ≥ 0,
u(x, 0) = ψ(x), (2.4)

where the symbol αδ of L = Tδ∂x (see (1.1)-(1.2)) has the form

αδ(ζ) = 2πcoth(2πδζ) − 1
δ

(2.5)

(see, again, [2]).
For the cubic, nonlinear Schrödinger equation{

iut + uxx − 2σ|u|2u = 0, for x, t ∈ R,
u(x, 0) = ψ(x), (2.6)

where σ = ±1, we only need the following result (see [20]). Here, the spaces feature
complex-valued functions.

Theorem 2.3. Let s ≥ 1. For each ψ ∈ Hs, there exist a T > 0, depending only on
‖ψ‖Hs and a unique solution u to the NLS equation (2.4) such that u ∈ C([0, T ];Hs).
For any fixed T > 0, let UT be the mapping which associates to ψ the solution u on
the interval [0, T ]. Then UT is continous from Hs into C([0, T ];Hs).

3. Korteweg-de Vries Equation
Considered here are the classical Korteweg-de Vries equation (KdV)

ut + uxxx + uux = 0

and the modified Korteweg-de Vries equation (mKdV)

ut + uxxx + u2ux = 0.

These equations possess infinitely many integral invariants Ii (i = 1, 2, ...) [22].
Reproduced below are the first six invariants for the KdV and the mKdV equations:

I1(u) =
∫
udx,

I2(u) =
∫
u2dx,

and for the KdV-equation

I3(u) =
∫ (

u2
x − 1

3
u3

)
dx,

I4(u) =
∫ (

9
5
u2

xx − 3uu2
x +

1
4
u4

)
dx,

I5(u) =
∫ (

1
5
u5 − 6u2u2

x +
36
5
uu2

xx − 108
35

u2
xxx

)
dx,

I6(u) =
∫ (

1
6
u6 − 10u3u2

x +18u2u2
xx − 5u4

x −
108
7
uu2

xxx +
120
7
u3

xx +
36
7
u2

xxxx

)
dx,
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whereas for the mKdV-equation,

I3(u) =
∫ (

3
2
u2

x − 1
4
u4

)
dx,

I4(u) =
∫ (

1
6
u6 − 5u2u2

x + 3u2
xx

)
dx,

I5(u) =
∫ (

1
8
u8 − 21

2
u4u2

x +
63
5
u2u2

xx − 63
10
u4

x − 27
5
u2

xxx

)
dx,

I6(u) =
∫ (

1
10
u10 − 18u6u2

x +
162
5
u4u2

xx − 342
5
u2u4

x − 972
35

u2u2
xxx +

432
7
uu3

xx+

5508
35

u2
xu

2
xx +

324
35

u2
xxxx

)
dx.

These integral invariants play a central role in our stability argument.

For the KdV-equation, the general result in this direction may be expressed as
follows (see [22]). There is a pair of sequences of polynomials {Pj}j≥2 and {Qj}j≥2,

Pj = Pj(y0, · · ·, yj−2),

Qj = Qj(z0, · · ·, zj+2),

such that if u = u(x, t) is a Ck+2-solution of KdV, then

∂

∂t

{
Pj(u, ux, · · ·, ∂j−2

x u)
}

=
∂

∂x

{
Qj(u, ux, · · ·, ∂j+2

x u)
}
. (3.1)

Moreover, Pj(y0, · · ·, ym) is exactly a linear combination of monomials yr0
0 · · · yrm

m for
which

m∑
i=0

(
1 +

i

2

)
ri = j. (3.2)

Similarly, Qj is comprised of monomials zs0
0 · · · zsk

k such that

k∑
i=0

(
1 +

i

2

)
si = j + 2. (3.3)

There is likewise a pair of sequences of polynomials ¯{Pj} and ¯{Qj}, (see again [22]),
such that P̄j(y0, · · · , ym) is a linear combination of monomials yr0

0 · · · yrm
m for which

1 +
1
2

m∑
i=0

(
1 + i

)
ri = j (3.4)

whereas Q̄j is comprised of monomials zs0
0 · · · zsk

k such that

1 +
1
2

k∑
i=0

(
1 + i

)
si = j + 2 (3.5)
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and P̄j and Q̄j satisfy

∂

∂t

{
P̄j(u, ux, · · ·, ∂j−2

x u)
}

=
∂

∂x

{
Q̄j(u, ux, · · ·, ∂j+2

x u)
}

(3.6)

whenever u = u(x, t) is a Cj+2-solution of the m-KdV equation.

If the solution u of the KdV-equation (mKdV respectively) is not only sufficiently
smooth, but also, along with its first few derivatives, decays to zero at ±∞ rapidly
enough, then (3.1) ((3.6), respectively) implies the integral

Ij(u) =
∫
Pj(u, ux, · · · , ∂j−2

x u)dx

is time invariant. Indeed, because of the continuous dependence of u on its initial value
ψ in Hj−2, the density of Hj+3 in Hj−2 and the fact that Qj(f, fx, · · ·, ∂j+2

x f) −→ 0
as x −→ ±∞ for f ∈ Hj+3, it follows that Ij(u) is time independent for solutions
u ∈ C([0, T ), Hj−2) of the KdV-equation (mKdV-equation respectively).

For j ≥ 2, the invariant functional Ij for the KdV (and mKdV) has the form

Ij(u) =
∫
cj(∂j−2

x u)2 + · · ·dx (3.7)

where the signs are organized so that cj > 0.

As is well known (see [12]), these invariants imply global bounds on solutions.
Thus if u ∈ C([0,∞), Hj−2) solves the KdV-equation (mKdV-equation), then

sup
t≥0

‖u(·, t)‖j−2 ≤ Kj , (3.8)

where Kj = Kj(ψ) depends only on the Hj−2-norm of the initial data ψ.

Another point which follows immediately upon consideration of the individual
monomials making up Pj , is that if u, v are both Hj−2-solutions of the KdV-equation
(mKdV-equation) with initial data ψ and ψ̃ respectively, then

|Ij(u) − Ij(v)| ≤ Lj‖u− v‖j−2, (3.9)

where Lj is a constant depending on ‖ψ‖j−2 and ‖ψ̃‖j−2. Indeed, (3.9) holds for any
functions u, v in C([0, T ];Hj−2) where the constant Lj depends on ‖u‖C([0,T ];Hj−2)

and ‖v‖C([0,T ];Hj−2). However, if u, v solve the KdV-equation (mKdV-equation) then
Lj depends only on ‖ψ‖j−2 and ‖ψ̃‖j−2 on account of (3.8), and so may be taken to
be time-independent. Of course, ‖u− v‖j−2 need not be time-independent!

Theorem 3.1. Let n ≥ 1 be an integer. The solitary-wave solutions φc, c > 0 of the
KdV-equation and the mKdV-equation are stable in Hn.

Remark 1. The solitary-wave solution of the generalized KdV-equation

ut + uxxx + upux = 0
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has the form φc(x− ct) where φc satisfies the ordinary differential equation

∂2
ζζφc + cφc − 1

p+ 1
φp+1

c = 0. (3.10)

Up to translation of the independent variable, there is only one solution of (3.10) that
decays to zero as ζ −→ ±∞ for p = 1 and only two (φc and −φc) when p = 2. These
have the exact form

φc(ζ) = αsech
2
p (βζ)

where α = 1
2c(p+ 1)(p+ 2) 1

p and β = 1
2p

√
c. Indeed, these solutions define travelling-

waves of the generalized KdV-equation for all integers p.
Remark 2. For the KdV-equation, nonlinear stability of φc in H1 was proved by
Benjamin [8] and Bona [11], and for the mKdV-equation, the stability result in H1 is
a consequence of the work in [3], [14], and [27].

Proof. The argument precedes by an induction wherein stability is shown sequen-
tially to hold in X = Hn for integer values n = 1, 2, · · · .

According to the theory developed in [13] or [25], given a speed c > 0 and ε1 > 0,
there is a δ1 = δ1(ε1, c) such that if ‖ψ − φc‖1 ≤ δ1, then there is a C1-mapping
γ : R −→ R (γ depends on c and ψ) such that

i) γ(0) = 0,
ii) if u is the solution of the KdV-equation with initial value ψ, then

inf
y∈R

‖u(·, t) − φc(· + y)‖1 ≤ ‖u(·, t) − φc(· + γ(t))‖1 < ε1

for all t ≥ 0, and
iii) |γ′(t) + c| ≤ c1ε1, for all t ≥ 0, when c1 is a constant that depends only
on c. In particular, orbital stability in the sense specified in the Introduction
is known in H1.

Attention is now given to stability in H2. Let c > 0 be fixed and let h(x, t) =
u(x, t) − φc(x+ γ(t)). Stability in H2 follows if we can show that given ε2 > 0, there
is a δ2 > 0 such that ‖h(·, t)‖2 ≤ ε2 for all t, provided ‖h(·, 0)‖2 ≤ δ2. Write φ for φc

for ease of reading. The difference

∆I4(u) = I4(u(·, t)) − I4(φ(· + γ(t)))

is central to our argument in favor of H2-stability. A little calculation and an inte-
gration by parts show that

∆I4(u) =
∫ {

9
5
h2

xx +
18
5
hφxxxx−6φφxhx−3φh2

x−3hφ2
x−6hhxφx−3hh2

x+
1
4
h4 +h3φ

+
3
2
h2φ2 + hφ3

}
dx. (3.11)

Since I4(u(·, t)) is time independent, it follows that ∆I4(u) = ∆I4(ψ) depends
only on the initial data ψ. Evaluating (3.11) at t = 0 and making straightforward
estimates, it is determined that

∆I4(u) ≤ c0δ2 + c1δ
4
2 , (3.12)
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where δ2 is any upper bound for ‖ψ− φ‖2 and c0, c1 are constants depending only on
φ, and hence only on c.

Because of the H1-stability result enunciated above, for any ε1 > 0, there is a
δ1 > 0 such that if ‖ψ − φ‖1 ≤ δ1, then there is a C1-function γ such that

‖u(·, t) − φ(· + γ(t))‖1 = ‖h(·, t)‖1 ≤ ε1 (3.13)

for all t.

Suppose now that ‖ψ − φ‖2 ≤ δ1 which certainly implies ‖ψ − φ‖1 ≤ δ1. Using
(3.11) and (3.13), the quantity ∆I4(u) may be bounded below as follows;

∆I4(u) ≥ 9
5
|hxx|22 − ε1D0 − ε41D1 (3.14)

where D0, D1 are constants depending only on c.

Combining (3.12) and (3.14), there obtains the inequality

9
5
|hxx(., t)|22 ≤ ε1D0 + ε41D1 + δ2c0 + δ42c1

holding for all t. In consequence, it is deduced that

‖h(·, t)‖2
2 ≤ ε1M0 + δ2M1

where M0,M1 are smooth functions of ε1, δ2, and c, and in particular are bounded on
bounded sets.

It remains simply to choose ε1 so that ε1M0 < ε22/4. This implies the existence of
a δ1 > 0 as in (3.13). Then choose δ2 ≤ δ1 small enough that δ2M1 ≤ ε22/4 also. The
stability conclusion then follows.

Notice that we proved something a little stronger than just orbital stability in
H2. It was deduced in fact that if ‖ψ − φ‖2 < δ2, then for all t,

‖h(·, t)‖2 = ‖u(·, t) − φ(· + γ(t))‖2 ≤ ε2

where γ(t) is the same smooth function appearing in the H1-stability result of [13].

Proceed inductively, supposing that for all j < k, stability holds in Hj in the
stronger sense that, given an εj > 0, there is a δj > 0 such that if ‖ψ−φ‖j ≤ δj , then
‖h(·, t)‖j ≤ εj for all t. Presuming that ψ ∈ Hk, the stability in Hk is established by
using the invariant functional Ik+2.

Fix an εk > 0. As in the case k = 2, define

∆Ik+2(u) = Ik+2(u(·, t)) − Ik+2(φ(· + γ(t))). (3.15)

This quantity is time independent if u is the solution of the KdV-equation with initial
value ψ, and thus depends only upon ψ. An upper bound for ∆Ik+2(u) is easily
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determined in terms of an upper bound δk for ‖ψ−φ‖k by evaluating (3.15) at t = 0,
viz.

∆Ik+2(u) ≤ ck+2δ
2
k + c′k+2δ

k+2
k . (3.16)

For any positive value εk−1, there is a δk−1 > 0 for which ‖ψ − φ‖k−1 ≤ δk−1

implies

‖h(·, t)‖k−1 = ‖u(·, t) − φ(· + γ(t))‖k−1 ≤ εk−1. (3.17)

for all t. A direct calculation of ∆Ik+2(u) in terms of h and φ reveals that

∆Ik+2(u) = ck+2

∫
(∂k

xh)2 + lower-order terms, (3.18)

where ck+2 > 0. Because of (3.17), it is straightforward, using the general form of Ij
described in (3.1)-(3.3), to ascertain that

|lower-order terms| ≤ Nkε
2
k−1 +N ′

kε
k+2
k−1 (3.19)

where Nk and N ′
k are constants depending only on φ and so only on c. Combining

(3.16), (3.18) and (3.19), there appears the inequality

|∂k
xh|22 ≤ ckδ

2
k + c′kδ

k+2
k +Nkε

2
k−1 +N ′

kε
k+2
k−1. (3.20)

The desired result now follows by first choosing εk−1 small enough and then choosing
δk accordingly.

An argument for the higher-order stability of solitary-wave solutions of the mKdV-
equation follows the same pattern, though making use of (3.4)-(3.7) rather than (3.1)-
(3.3).

4. Benjamin-Ono and Intermediate Long-Wave Equations
We turn now to consideration of the Benjamin-Ono equation

ut + uux +H(uxx) = 0,

x, t ∈ R, whereH denotes the Hilbert transform defined by the principle-value integral

H(u(x)) =
1
π
P.V.

∫
u(y)
x− y

dy.

This equation is in the form (1.1) where f(u) = u2/2 and the dispersion symbol
α(ζ) = 2π|ζ|. Solitary-wave solutions of the Benjamin-Ono equation satisfy the equa-
tion

−cφ′c + φcφ
′
c +Hφ′′c = 0. (4.1)

For any wave speed c > 0, (4.1) has an exact solution of the form

φc(y) =
4c

1 + c2y2
, (4.2)

which was found by Benjamin [9]. Up to translations in the independent variable,
these solutions are unique, as shown by Amick and Toland (see [6], [7], and also [5]).
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It is known that these solitary waves are stable in H
1
2 (see [10]). Like the KdV-

and mKdV-equations, the Benjamin-Ono-equation possesses infinitely many integral
invariants (see [15] and [21]). The following are the first six invariants in the form
given in [15]:

I−1(u) =
∫
udx,

I0(u) =
∫

1
2
u2dx,

I1(u) = −
∫ {

1
3
u3 + uH(ux)

}
dx,

I2(u) =
∫ {

1
4
u4 +

3
2
u2H(ux) + 2u2

x

}
dx,

I3(u) =
∫ {

−1
5
u5 −

(
4
3
u3H(ux) + u2H(uux)

)
−

(
2uH(ux)2 + 6uu2

x

)

+4uH(uxxx)
}
dx,

I4(u) =
∫ {

1
6
u6 +

(
5
4
u4H(ux) +

5
3
u3H(uux)

)
+

5
2

(
5u2u2

x + u2H(ux)2

+2uH(ux)H(uux)
)
− 10

(
u2

xH(ux) + 2uuxxH(ux)
)

+ 8u2
xx

}
dx.

In general, the integral invariants In(u), n = 0, 1, · · · , of the Benjamin-Ono-
equation can be written in the form (see [2])

In(u) =
∫

(−1)n u
n+2

n+ 2
dx+

n−1∑
m=1

∫
Pn+2−m,m(u)dx + i(n)cn

∫
u
∂n

∂xn
An(u)dx

where cn is a positive constant,

An(u) =
{
u if n is even,
H(u) if n is odd (4.3)

and

i(n) =
{

(−1)p if n = 2p,
(−1)p+1 if n = 2p+ 1. (4.4)

The polynomial Pj,k(u) denotes the sum of all terms which are homogenenous of de-
gree j in u and which involve exactly k derivatives in x.

Using these invariants, one can demonstrate stability of solitary waves in higher-
order Sobolev spaces. Here is a result analogous to Theorem 3.1.

Theorem 4.1. The solitary-wave solutions φc, c > 0, of the Benjamin-Ono equation
are stable in H

n
2 for any positive integer n.
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Remark. For n = 1 and n = 2, it must be additionally assumed that the perturbed
solitary wave ψ lies in Hs for some s ≥ 3/2 in order that a continuous dependence
theory be available. Of course, it is only presumed that φ−ψ is small in H

n
2 despite

the stronger regularity presumption on φ.
Proof. We first give a direct proof for H1, which is the case n = 2. As before,

define

h(x, t) = u(x, t) − φc(x + γ(t)),

where u is the solution of the Benjamin-Ono equation and γ is the C1-function guar-
anteed by [13]. Consider the difference

I2(u(·, t)) − I2(φ(· + γ(t))) = I2(h(·, t) + φ(· + γ(t))) − I2(φ(· + γ(t)))

=
∫ {

1
4
(h+ φ)4 +

3
2
(h+ φ)2H(hx + φx) + 2(hx + φx)2

}
dx

−
∫ {

1
4
φ4 +

3
2
φ2H(φx) + 2(φx)2

}
dx

=
∫ {

1
4
h4 + h3φ

3
2
h2φ2 + hφ3 3

2
h2H(hx) +

3
2
h2H(φx) + 3hφH(hx) + 3hφH(φx)

+
3
2
φ2H(hx) + 2h2

x + 4hxφx

}
dx

≥ 2‖h‖2
1 − 2|h|22 − 4|h|2‖φ‖2 − c0|h|2‖φ‖2

1 − c0|φ|∞‖φ‖1|h|2 − c0|φ|∞|h|2‖h‖1 −
c0‖φ‖1|h|∞|h|2−c0|h|

1
2∞‖h‖ 3

2
1
2
‖h‖1−|φ|36|h|2−c0|φ|24|h|∞|h|2−c0|φ|∞|h|∞|h|22−|h|∞‖h‖3

1
2

≥ c1‖h‖2
1 − c2‖h‖ 1

2
− c3‖h‖2

1
2
− c4‖h‖4

1
2
− c5‖h‖6

1
2

= c1‖h‖2
1 − c(‖h‖ 1

2
)‖h‖ 1

2

where ci (i = 1, 2, 3, 4, 5) depend only on ‖φ‖1 and hence only on c. In the above
estimates, use was made of the Sobolev embeddings H1 −→ L∞ and H

1
2 −→ L3.

Combining a similarly derived upper bound for I2(u(0)) − I2(φ), it follows that

c1‖u(·, t)‖2
1 ≤ I2(u(·, 0)) − I2(φ) + c2‖h‖ 1

2
+ c3‖h‖2

1
2

+ c4‖h‖4
1
2

+ c5‖h‖6
1
2

≤ c1‖h(·, 0)‖2
1 + c(δ1)δ1 + c(ε1)ε1,

because ‖h(·, 0)‖ 1
2
≤ δ1 and ‖h(·, t)‖ 1

2
≤ ε1 for all t.

For any ε2 > 0, choose ε1 > 0 such that c(ε1)ε1 < ε22/8 and ε1 < ε2/2, where
c(ε1)ε1 = c2ε1+c3ε21+c4ε41+c5ε61. Choose δ2 > 0 such that δ2 < δ1 and c1δ22+c(δ2)δ2 <
ε22/8. With these choices, if ‖h(·, 0)‖1 < δ2, then

‖h(·, t)‖2
1 ≤ c(ε1)ε1 + c(δ1)δ1 + c1δ

2
1 ≤ 1

4
ε22,

and thus ‖h(·, t)‖1 < ε2 for all t ≥ 0.
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For n ≥ 3 we proceed inductively as in Section 3, using the explicit form for
invariants spelled out in (4.3) and (4.4). We pass over the details. This completes the
proof of Theorem 4.1.

The intermediate long-wave-equation

ut + uux +
1
δ
ux + T (uxx) = 0 (4.5)

where

Tu(x) = − 1
2δ
P.V.

∫ ∞

−∞
coth(

π(x − y)
2δ

)u(y)dx (4.6)

also possesses an infinite sequence of invariants which are in involution (see [2]). The
first few of these invariants are

I−1(u) =
∫
udx,

I0(u) =
∫

1
2
u2dx,

I1(u) = −
∫ {

1
3
u3 − uT (ux) +

1
δ
u2

}
dx,

I2(u) =
∫ {

1
4
u4 +

3
2
u2T (ux)+

1
2
u2

x +
3
2
[T (u)x]2 +

1
δ
[
3
2
u3+

9
2
uT (ux)]+

3
2δ2

u2

}
dx.

As the intermediate long-wave-equation (4.5) enjoys properties similar to those
of the Benjamin-Ono equation, one obtains for the Cauchy problem exactly the same
results (see [2]). The stability of solitary-wave solutions of (4.5) in H

1
2 was already

established in [1]. Consequently, the stability of solitary-wave solutions of (4.5) in
higher-order Sobolev spaces is similarly derived. The proofs parallel those given for
the Benjamin-Ono-equation and hence are omitted. Here is the precise statement.

Theorem 4.2. The solitary-wave solutions φc, c > 0, of the intermediate long-wave
equation are stable in H

n
2 for any positive integer n.

5. Cubic Nonlinear Schrödinger Equation
Attention is now given to the cubic nonlinear Schrödinger equation (NLS from

now on), namely

iut + uxx − 2σ|u|2u = 0 (5.1)

for x, t ∈ R, where σ = ±1. Naturally, u = u(x, t) is complex-valued in this case. The
case σ = −1 is the so-called focussing NLS equation and it supports travelling-wave
solutions u of the form

u(x, t) = eiωtφω,θ(x− θt) (5.2)

where (ω, θ) ∈ S1 × R. An important special case arises when θ = 0 and ω = Ω > 0.
These are standing-wave solutions u(x, t) = eiΩtφΩ(x), often referred to as “bound
states”. Of special interest in many physical situations governed approximately by the
cubic nonlinear Schrödinger equation are the so-called “ground states” that minimize
energy subject to fixed charge. These wave forms φΩ, which are the analog of the
solitary waves for the KdV- and BBM-equations, are positive, real-valued, radially
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symmetric, and rapidly decreasing to zero at infinity. The ground states were shown
by Cazenave and Lions (see [16] and [18]) to be orbitally stable in the following sense.
For any ε > 0, there is a δ = δ(ε) > 0 such that if ψ ∈ H1(R) and ‖ψ − φΩ‖H1 ≤ δ,
then there are maps µ, γ: R −→ R such that if u is the solution of (5.1) with initial
data ψ, then

‖u(·, t) − eiµ(t)φΩ(x− γ(t))‖H1 ≤ ε

for all t. Bona and Soyeur [13] later broadened the results to include traveling waves
and provided a more detailed view of the functions µ and γ. One key to their calcu-
lation is the operator Tθ: H1(R) −→ H1(R) defined by

(Tθu)(x) = exp

(
i
θx

2

)
u(x)

for u ∈ H1(R) and θ ∈ R. We here paraphrase their results and refer the readers to
[13] for detailed analysis.

Lemma 5.1. Let (ω, θ) ∈ S1 × R be such that Ω = ω + 1
4 |θ|2 > 0. If φΩ is a bound

state of (5.1), then Φω,θ = TθφΩ is a traveling-wave solution of (5.1).

Theorem 5.2. For any (ω, θ) ∈ S1 × R such that ω + 1
4 |θ|2 = Ω > 0, define the

traveling wave Φω,θ = TθφΩ. The traveling-wave solution v(x, t) = eiωtΦω,θ(x − θt)
is orbitally stable in the sense that for any ε > 0 there exists a δ = δ(ε) > 0 such
that when ‖ψ(·) − Φω,θ(·, 0)‖H1 ≤ δ, then there are C1 mappings p : R −→ R and
q : R −→ R for which the solution u of (5.1) emanating from the initial data ψ
satisfies

‖u(·, t) − eip(t)Φω,θ(· − q(t))‖H1 ≤ ε (5.3)

for all t. Moreover, p and q are close to ω and θ in the sense that

p′(t) = ω +O(ε),

q′(t) = θ +O(ε) (5.4)

as ε −→ 0, uniformly in t.
Just like the evolution equations studied in the earlier sections, the cubic NLS-

equation possesses infinitely many integral invariants Ii, i = 1, 2 · · · . Reproduced here
are the first six invariants for this equation:

I1 =
∫

|u|dx,

I2 =
∫

|u|2dx,

I3 =
∫ {

uūx − ūux

}
dx,

I4 =
∫ {

|ux|2 − σ|u|4
}
dx,

I5 =
∫ {

σuxūxx − σūxuxx +
3
2
u2(ū2)x − 3

2
ū2(u2)x

}
dx,
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I6 =
∫ {

|uxx|2 + 4σ|u|2|ux|2 − σ|u|2ūuxx − σ|u|2uūxx + 2|u|6
}
dx.

The general form for calculating the infinitely many conservation laws for the
NLS-equation can be found in [4]. As appears immediately from an examination
of the generating function for these conservation laws given in formula (1.6.12) of
[4], the even numbered ones are potentially useful as regards stability of solitary
waves. Indeed, just as for the equations appearing in the preceding sections, there is
a sequence {P2j}j≥1 of polynomials with P2j a function of j variables, viz.

P2j = P2j(y0, · · · , yj−1),

such that if u is a solution of (5.1) that lies at least in C(0, T ;Hj−1(R)), then

I2j =
∫ ∞

−∞
P2j(u, ux, · · · ∂j−1

x u)dx = constant. (5.5)

(This result relies upon the well-posedness theory for (5.1) in the Sobolev spaces
Hs(R), see, for example, [17].)

As follows from an analysis of the structure of these polynomials, P2j(y0, · · · , yj−1)
is exactly a linear combination of monomials zr0

0 · · · zrm
m where zk is yk or ȳk and

m∑
i=0

(1 + i)ri = 2j. (5.6)

Thus, for j ≥ 1, the invariant I2j has the form

I2j(u) =
∫
c2j |∂j−1

x u|2dx+
∫
d2j |u|2j +

2j−1∑
m=1

∫
P2j−m,m(u)dx (5.7)

where c2j , d2j are constants and Pj,k(u) denotes the sum of all terms which are homo-
geneous of degree j in u and which involve exactly k derivatives in x. In particular,
it is known that c2j 
= 0, and hence we may take it to be positive.

Theorem 5.3. The solitary-wave solutions v(x, t) = eiωtΦω,θ(x − θt) of the cubic
nonlinear Schrödinger equation are stable in Hn, for any positive integer n.

Proof. Orbital stability in the sense specified in Theorem 5.2 for H1 is already
known (see [16], [18] and [13]). Attention is first given to stability in H2.

As before, let h(x, t) = u(x, t)−eip(t)Φω,θ(x−q(t)) where p and q are C1-functions
that provide stability in H1, as outlined above and established in [13]. Stability in H2

follows if we can show that, given ε2 > 0, there is a δ2 > 0 such that ‖h(·, t)‖2 ≤ ε2
for all t provided ‖h(·, 0)‖2 ≤ δ2. Write φ for eip(t)Φω,θ for ease of reading. Because
of the H1-stability result, for any ε1 > 0 there is a δ1 > 0 such that if ‖h(·, 0)‖1 ≤ δ1,
then ‖h(·, t)‖1 ≤ ε1, for all t.

Define ∆I6(u) = I6(u(·, t)) − I6(φ(· + q(t))). A calculation reveals that

∆I6(u) =
∫

(φxx +hxx)(φ̄xx + h̄xx)−4
∫

(φ+h)(φ̄+ h̄)(φx +hx)(φ̄x + h̄x)−
∫

|φxx|2 +
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4
∫

|φ|2|φx|2 +
∫

(φ+h)(φ̄2 +2φ̄h̄+ h̄2)(φxx +hxx)−
∫

|φ|2φ̄φxx −
∫

|φ|2φφ̄xx −

2
∫

|φ|6 +
∫

(φ2 + 2φh+ h2)(φ̄ + h̄)(φ̄xx + h̄xx) + 2
∫

(φ+ h)3(φ̄+ h̄)3. (5.8)

The following inequalities come to our aid in analysing ∆I6:

(a)
∫

(φxx + hxx)(φ̄xx + h̄xx) −
∫

|φxx|2 ≤
∫

|hxx|2 + a1

∫
|hx|2.

(b)
∣∣∣∣−4

∫
(φ+ h)(φ̄ + h̄)(φx + hx)(φ̄x + h̄x) + 4

∫
|φ|2|φx|2

∣∣∣∣ ≤ b1‖h‖L2

+b2‖hx‖L2 + b3‖h‖2
L2 + b4‖hx‖2

L2 + b5‖hx‖3
L2 + b6‖hx‖4

L2.

(c)
∣∣∣∣
∫

(φ+ h)(φ̄2 + 2φ̄h̄+ h̄2)(φxx + hxx) −
∫

|φ|2φ̄φxx

∣∣∣∣ ≤ c1‖h‖L2 + c2‖hx‖L2

+c3‖h‖2
L2 + c4‖hx‖2

L2 + c5‖hx‖3
L2 + c6‖h‖4

L2 + c7‖hx‖4
L2.

(d)
∣∣∣∣2

∫
(φ + h)3(φ̄+ h̄)3 − 2

∫
|φ|6

∣∣∣∣ ≤ d1‖h‖L2 + d2‖h‖2
L2 + d3‖hx‖2

L2

+d4‖h‖4
L2 + d5‖hx‖4

L2 + d6‖hx‖6
L2 .

(Here ai, bi, ci, di denote various constants that depend only on φ.) Combining
(a)-(d) with (5.9), there obtains

∆I6(u) ≤ C0δ2 + C1δ
6
2 (5.8)

where δ2 is any upper bound for ‖ψ − φ‖2 and C0, C1 are constants depending only
on norms of φ, and hence only on ω and θ.

Attention is now turned to an effective lower bound for ∆I6(u). To this end,
notice that∫

(φxx +hxx)(φ̄xx + h̄xx)−
∫

|φxx|2 ≥
∫

|hxx|2 − c1

∫
|hx|2 ≥

∫
|hxx|2 − c1ε

2
1 (5.9)

according to (5.7). Combining (5.8), (5.10) and (b)-(d), there obtains the lower bound

∆I6(u) ≥ |hxx|22 − ε1D0 − ε61D1 (5.10)

where D0 and D1 are constants depending only on ω and θ. Using (5.9) and (5.11),
there obtains the inequality

|hxx(·, t)|22 ≤ ε1D0 + ε61D1 + δ2C0 + δ62C1

holding for all t. In consequence, it is deduced that

‖h(·, t)‖2
2 ≤ ε1M0 + δ2M1

where M0,M1 are smooth functions of ε1, δ2, ω, θ, and in particular are bounded on
bounded sets.
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It remains simply to choose ε1 so that ε1M0 < ε22/2. This implies the existence of
a δ1 > 0 for which ‖u(·, t) − φ(· + q(t))‖1 = ‖h(·, t)‖1 ≤ ε1, provided ‖φ− ψ‖1 ≤ δ1.
Then choose δ2 ≤ δ1 small enough that δ2M1 ≤ ε22/2 also. The stability conclusion
then follows.

We proceed inductively, supposing that for all j < k, stability holds in Hj in the
stronger sense that, given an εj > 0, there is a δj > 0 such that if ‖ψ− φ‖j ≤ δj then
‖h(·, t)‖j ≤ εj for all t. Presuming that ψ ∈ Hk, the stability in Hk is established by
using the invariant functional I2k+2.

Fix an εk > 0. As in the case k = 2, define

∆I2k+2(u) = I2k+2(u(·, t)) − I2k+2(φ(· + q(t))) (5.11)

where q(t) is as before, a C1-function that provides stability in H1.

The upper bound for ∆I2k+2(u) is calculated in term of an upper bound δk for
‖ψ − φ‖k by evaluating (5.12) at t = 0, viz.

∆I2k+2(u) = ∆I2k+2(ψ) ≤ ckδ
2
k + c′kδ

2k+2
k . (5.12)

For any positive value εk−1, there is a δk−1 > 0 for which ‖ψ − φ‖k−1 ≤ δk−1

implies

‖u(·, t) − φ(· + q(t))‖k−1 ≤ εk−1 (5.13)

for all t. Using (5.14), a direct calculation of ∆I2k+2(u) in terms of h and φ yields a
lower bound of the form

∆I2k+2(u) ≥ ck|∂k
xh|22 − εk−1Nk − εk+2

k−1N
′
k (5.14)

where ck > 0, and Nk, N
′
k depend only on ω and θ.

Stability in Hk follows from (5.13) and (5.15) just as in the H2 case.
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