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FAST COMMUNICATION

A GENERALIZATION OF THE THREE-DIMENSIONAL
MACPHERSON-SROLOVITZ FORMULA*

THINH LET AND QIANG DU#

Abstract. The MacPherson-Srolovitz formula has been recently established as a generalization
of the two dimensional von Neumann relation for microstructure coarsening. In this paper, we present
an extension of the MacPherson-Srolovitz formula under more general junction conditions.
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1. Introduction

The growth of grains (in metals, ceramics, etc) and bubbles (in froths, foams)
has been a topic of active research for many years. We hereby refer the grain cells
(or bubbles) as domains. Relatively speaking, the two-dimensional growth process
is much better understood. A good example is the von Neumann-Mullins formula
[11, 12] which states that
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Here 2 W is the rate of change of the area of a 2D domain, n is the number of triple

junctions around the domain, M is a mobility constant of the domain wall (interface,
boundary, with co-dimension 1) with « being the surface tension.

In [9], MacPherson and Srolovitz derived some generalizations of (1.1) to any
space dimension. Their formula for the three-dimensional case, in particular, is as
follows
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Here, % is the rate of change of the volume V' of a closed three-dimensional domain
D having piecewise smooth boundary and with any two of its faces meeting along a
triple line (of the grain system) at a fixed dihedral angle of 27 /3, £(D) is the mean
width of D, n is the number of triple lines (edges) of D, ¢;(D) is the length of i-th
triple line and the summation is over all n triple lines.

For an arbitrary domain D, its mean width can be defined as follows: for each
straight line ¢ through the origin of some coordinate system in the three dimensional
space, we define the Euler width of D in the direction ¢ as E,(D fL; EL ND) dp,
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512 THE THREE-DIMENSIONAL-MACPHERSON-SROLOVITZ FORMULA

the integral is over all points p along ¢, X(EZJ;OD) is the Euler characteristic of the
intersection of the domain D with the plane EIJ; perpendicular to the line ¢ at the
point p. The mean width of D, £(D), if it exists, is twice the Euler width averaged
over all lines ¢ through the origin. For more details about the mean width of a domain
we refer to [6, 9, 14].

When D is a closed convex three dimensional domain with a piece-wise smooth
boundary the quantity (1/2)£(D) equals to the so-called mean caliper diameter (for
instance see [14]) which is the mean distance between parallel support planes of D.
In this case if the convex domain D also satisfies the same conditions specified in the
above for the formula (1.2), then the following formula has been given in [3]:

Y onir

& =~

_ 1
D 12L) (1.3)
where D is the caliper diameter of the domain, M is mentioned as an empirical
proportionality constant which we interpret as 2M~ and L is stated as the edge
length which we interpret as the total length of all edges of the domain. Thus, Cahn’s
formula (1.3) can be considered to be the same as the formula (1.2) for a convex
domain.

Cahn’s formula (1.3) and the more general MacPherson-Srolovitz formula (1.2)
provide insight to the important mathematical question on the grain growth in an ideal
setting. As noted in [8], much work remains to be investigated due to the simplify-
ing assumptions used by Neumann-Mullins and MacPherson-Srolovitz. For instance,
factors which are ignored include the inhomogeneities and anisotropy in energy, the
nonuniform mobilities and the drag induced by the junctions. It is interesting to
study if a generalized MacPherson-Srolovitz formula can be obtained by relaxing the
underlying assumptions. In this work, the particular assumption we focus on is the
triple junction condition (a special case of the Herring condition) which is further
elaborated in section 2 of this paper. We show, through simple calculations based on
[9], that the following extension can be obtained

dv 1 &
E:—Qva(ﬁ(D) - 2”;/@@) aidl>7 (1.4)

under more general conditions that allow arbitrary k-junction lines (for k> 3) with a
set of corresponding dihedral exterior angles {«a;}. With the help of some preliminary
discussions given in section 3, the extended formula (1.4) is derived in section 4. The
derivation utilizes a simple but key observation on the mean width computation for
three dimensional domains. We also discuss some consequences of the generalized
formula on the grain growth process at the end of the paper.

2. Junctions, Herring condition, and mean width

We note that in deriving the Neumann-Mullins and MacPherson-Srolovitz formu-
lae, a boundary condition on the junctions (points in two dimensions and curves or
lines in the three dimensions) is used. It is assumed that only three (co-dimension 1)
domain walls meet along a (co-dimension 2) junction (which is the most generic case)
and they meet at the (turning) angle of 7/3. Equivalently, this is also often phrased
as the three domain walls meeting at 120°. Such a junction condition can be seen as
a natural boundary condition for the interface motion (variation), which is implied by
the Herring condition (for the ideal isotropic grain growth) at the triple junction. The
Herring condition in three dimensions assumes the mechanical balance of forces in the
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plane perpendicular to a junction, which means that a junction does not affect grain
boundary motion through an explicit driving force. However, the spatial orientation
of each junction also depends on interface properties and each interface contributes
some torque acting towards the change of the junction direction. It has been shown
that each junction does possess its own mobility as an additional kinetic parameter
and thus it does influence the kinematics of grain microstructure evolution. For a
triple junction, if its mobility is relatively low, the angle between two interfaces may
tend to 0, in contrast with the Herring Condition, and the influence of triple junctions
results in a drag or reduced rate of microstructure evolution during grain growth. We
refer to [5] and [10] for more details.

The main contribution of this work is to provide an extension of (1.2) when
the triple junction condition is omitted. We focus on the three dimensional case
as this is most relevant to the study of grain growth and microstructure coarsening
in a practical sense. In deriving the formula, some geometric consideration similar
to that in [9] needs to be taken into account. In particular, we make a simple but
key observation that the mean width of a polyhedron D with flat faces and n edges
satisfies

1 n
E(D)Zgzeioﬁ, (2.1)
=1

where e; is the length of edge ¢ and «; is the exterior (turning) angle of D at edge
i. The above formula holds for both convex and non-convex polyhedra and is proved
later. If D is concave along an edge 4, then the turning angle o is negative. In fact,
the dihedral exterior angle can be defined as the difference of m with the dihedral
interior angle, so that any exterior angle belongs to the interval (—m,7).

On the other hand, since all faces of D are flat, we have

1 n
8DICds =0= 27T<£(D) o ;elaz).
Here, we use K to denote the mean curvature (the average of the two principal cur-
vatures) of a surface with ds being the area element.

Drawing the similarity with the terms used in the MacPherson-Srolovitz formula,
this suggests that in general, for any given domain D with a set of edges {e;(D)}",
and corresponding exterior dihedral angles {a;}7 ;, the following identity could be
true:

1 n
Kds = 27r<£(D)— %;/&(D)aidz).

When all exterior angles are /3, this reduces to the result of MacPherson-Srolovitz
[9]. The more general case is proved later in the paper.

oD

3. Preliminary

We now present some necessary technical background to our discussion, mostly
following the work of [9]. We begin with some basic assumptions. Let D be a closed
three-dimensional domain with a piece-wise smooth boundary dD. A smooth com-
ponent of JD is referred as a wall and the number of walls remains finite. Each
(co-dimension 2) edge of the domain is the intersection of two walls, but note that the
edge we consider here does not have to be limited to the triple lines. At each point on



514 THE THREE-DIMENSIONAL-MACPHERSON-SROLOVITZ FORMULA

<
Py .
S Py
w>
P
[ 8 }V

F1G. 3.1. The dihedral exterior angle a of D and the exterior angle a(0,$) in the plane P. The
corresponding interior angles are B=m—a and B3(6,¢) =7 —a(6,9)

an edge, there are two half tangent planes corresponding to two walls of the domain
so that the dihedral interior angle 3 is defined uniquely in the plane perpendicular to
the edge at such a point. The dihedral exterior angle can then be defined as a=n — (.

Given a coordinate system in three dimensional space, we can consider the cor-
responding spherical coordinates (r,6,¢), where r runs from —oo to oo, 6 runs from
0 to 27 and ¢ runs from 0 to 7/2. Each pair (6,¢) gives a direction in the three
dimensional space and we denote P = P(6,¢) a plane perpendicular to that direction
(note that we only need the direction of this plane since we will only work with an-
gles). Moreover given a pair of half planes (P;,P,) with the dihedral angle 3, for
any plane P=P(6,¢), we have a corresponding exterior angle «(f,¢) and interior
angle 3(0,¢) =m—a(0,¢) (see figure 3.1 for an illustration). We know that the rate of
change of the volume of a domain is given by a physical constant times the integral of
the mean curvature IC over the walls of the domain. The main point in the proof of the
MacPherson-Srolovitz formula is following: for a planar domain D in two dimensions
which may have several disconnected components, each of which may have holes we
have

/aDHdl =271 x(D) —Zaj [0D]. (3.1)

Here D is bounded by a curve dD which consists of smooth sections meeting at
points where the exterior angles are o;[0D], k is the curvature of 0D, x(D) is the
Euler characteristic of D, dl is the length element of 0D.

Now, in three dimensional space, we consider the set of all planes {P}, which
is again a three dimensional space with a natural volume element dQ2 (independent
of the coordinate system chosen). Integrating, over the set {P}, both sides of the
formula (3.1) restricted to the intersection of P and the three dimensional domain D
and multiplying both sides by 2, we obtain

2/ (/ mzz) dQ:2~27r/ X(DﬂP)dQ—Q/ 3o, [0(DNP)]dq.
Py \oonp) (P} 5

Then, the following relations were established [9]:

2/ (/ ndl)dQ:/ Kds,
(p} NomnP) oD
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2-27r/ x(DNP)dQ =27 L(D),
{r}

and

2/{ > a;[0(DNP)dQ = Zn: Wi dl

P} j i—17ei(D)

with
1 2m m/2
Wi:,/ / a;(0,¢) singcospdf de
™ Jo=0Jp=0

being the average of the exterior angles a;(6,¢) at a point on the edge e; (D).

In [9], it was further proven that W;==/3 if the triple junction condition men-
tioned above is satisfied. Here we claim that this quantity can be explicitly computed
in general.

For the lemma below, we assume that without loss of generality the pair of half
planes (P;, Py) has the z-axis as the common edge and we fix a direction of rotation
to be along the z-axis. In this way, if the half plane P; is chosen as {Oyz:y >0},
then for any 8 €[0,27) there is a unique half plane P; such that the dihedral angle
between P; and Ps is (3.

LEMMA 3.1. For each pair (Py,P2) with the dihedral angle 3, consider the average
angle

R 1 2n  pm/2
W=-— B(0,¢) singcospdfde.
T Jo=0J ¢p=0

Then W is the identity function of the dihedral angle 3 on [0,27).

Proof. First we claim that W is invariant under any rotation around the z-axis
(which is the chosen direction specified above). In fact if we rotate the pair (P, Ps)
with an angle §, then 8(0,¢)+— B(0+6,¢). This is because when we rotate around the
z-axis, the z-direction is fixed and, at the same time, a rotation with angle ¢ is done
in the Ozy plane (or any plane which is parallel to Ozy). So W is indeed a function
of the variable (.

Since W is invariant under any rotation around the z-axis, we see that W(Bl +
B2) =W (B1)+W (Bs) for any B1, 32 € [0,27) satisfying 31+ 82 € [0,27). In fact, let us
choose P; as above, then there is a unique P> such that the dihedral angle between
P, and P is f; and a unique P3 such that the dihedral angle between P, and Pj5 is
B2. Thus By + B2 corresponds to the pair (Py, P3) and it is clear that the angle 5(6,¢)
corresponding to this pair is the sum of the ones corresponding to the pairs (Py,Ps)
and (PQ,Pg).

Moreover, it is obvious that W is an increasing function of its argument, and 1474
is continuous. Indeed, a direct calculation leads to

cos 3+ cot? ¢ sinf sin(3+0)
\/(1 +cot? psin? @) (14 cot? psin? (3 +6))

cos((0,¢)) =

It is also clear that W (r)=m. R
These above conditions force W to be the identity function on [0,27) and the
lemma is proved. ]
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Next, as defined above, for an edge e;(D) of the domain D we consider

1 2 m/2
W, = f/ / a;(0,¢) singcospdfdo
T Jo=0J¢p=0
at a point on that edge with the exterior angle ;. Then we have

LEMMA 3.2. For a point on the edge e;(D) of the domain D, the quantity W; is
exactly the value of the exterior angle «;.

Proof. Here, without loss of generality, we choose a spherical coordinate system
so that the z-axis is tangent to the curve e;(D) at the point, and one of the half
tangent planes of D, P;, is the half plane {Oyz |y >0} (two half tangent planes of
the domain D give the dihedral interior angle (7 —q;) of the domain).

From now on we suppress the index i for simplicity. Let §=m—a, or more
precisely, let 5(6,¢) =7 —«a(6,¢) denote the interior angle. We have

1 27 pm/2 .
W:ﬂ'—*/ B(0,¢)dbsinpcospdp =1 —W ().
T Jo=0Jp=0

By Lemma 3.1 on [0,27), the function

~ 1 2n  pm/2
W(g) =1 / 5(0,6) B sindcos pdg
T Jo=0Jp=0

is an identity map. Thus, W is exactly the dihedral exterior angle a. 0

4. Main results
We now state the main results of this paper. The first one is on the characteriza-
tion of the mean width presented in section 2.

n

THEOREM 4.1. Under the above assumptions on the domain D with edges {e;(D)}"_,
and the set of corresponding dihedral exterior angles {a;}_,, we have

/ lCd8+Z/ a;dl = 2 L(D). (4.1)
oD =1/ ei(D)

Proof. Based on the work by MacPherson and Srolovitz in [9], we know that,
as briefly outlined in the discussion before Lemma 3.1,

n

Kds + W;dl =27 L(D).
oD ; e; (D) D)

By Lemma 3.2, for any point on the edge ¢;(D) we have

1 27 pm/2
Wi:f/ / a;(0,¢)dl singcospdd
T Jo=0J¢p=0

is exactly the value of the exterior angle «;. Replacing W; by «;, we immediately
obtain (4.1). O

In deriving the Neumann-Mullins and MacPherson-Srolovitz formulas, it has been
assumed that all edges are triple lines and a force balance is maintained along edges
so that three domain walls meet along an edge with turning angles all having the



THINH LE AND QIANG DU 517

same value 7/3. With the help of the formula (4.1) in the above theorem, we can
derive a more general formula by omitting these restrictions so that an edge can be
any k-junction line for some k>3, and furthermore, there is no need to enforce the
force balance at these edges so that the exterior angles may vary between different
values.

THEOREM 4.2. (The extension to the three dimensional MacPherson-Srolovitz for-
mula for more general junction conditions).

Suppose that we have a system of evolving grains governed by the Mullins equa-
tion such that all grains have the same interfacial mobility constant M and interface
surface tension . Then the rate of change of the volume V of an individual grain D
with the set of edges {e;(D)}_, (edges are k-junction lines for some k>3) and the
set of corresponding dihedral exterior angles {a;}"_, is given by:

dv 1 o
- :—27TM7<£(D) - %;/ei(D)aidl). (4.2)

Proof. The Mullins equation states that the normal velocity of the domain walls
satisfies

v, =My,
with K being the surface mean curvature. We thus have

1%
—:—/ vpds=—Mr~y Kds.
dt oD oD

Using the identity (4.1), the formula (4.2) then readily follows from the above. O

Consequently, the three-dimensional MacPherson-Srolovitz formula is a special
case of the formula (4.2).

COROLLARY 4.3. With the same assumptions as in the above theorem, if we assume
additionally that along any k-junction line ez(-k)(D) the exterior angle is (m — 2% ) (thus
the force balance is maintained along all edges of grains), then we obtain

<1 - 2) ef.’“)(D)>. (4.3)

dV 1
g :727TM’)/(,C(D) — 522

k>3 i=1

Here the first sum is taken over all possible k such that a k-junction line is present,
n(k) is the number of k-junction lines and > n(k)=n (the total number of edges of the
domain). In particular, if all junctions are triple-junctions, we have the MacPherson-
Srolovitz formula

% =27 My (L(D) - %Zef’)(D)).

5. Discussions
The formula (4.2), which is the same as (1.4), is one of the possible generaliza-
tions of the work in [9] which relaxes the Herring condition. The latter is often a
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key ingredient to ensure the energy dissipation in the grain growth process. Indeed,
consider an evolving family of interfacial networks

{S:(x,t) —u(z,t) eER® x€Q,t>0}

where  is a domain in R2.

Any surface S in this network has the normal velocity v, =n-0u/dt (n is the
unit normal of S) satisfying the governing equation of motion given by the Mullins
law v, = M~vK with M being a constant mobility, and IC being the corresponding
surface mean curvature. The constant 7 is taken to be the interfacial energy density
(or surface tension) of all surfaces so that the total interfacial energy E is given by
times the interfacial area. Then, a direct computation leads to

dE 1 r
E:—Z/gﬂvids+vz/v(r)-Z(T(F) xn") dl.
{5} J

(ry’t

Here {I'} is the set of all k-junction lines of the network (k = 3, 4,...), v() is the
velocity of the junction line I':

ou
r _~“~
T e

w=ul) = =y along T,

T@ is a unit tangent vector field along T, ngr) is the unit normal of a surface con-

taining I', and the index j runs over all surfaces which have the common edge I.
In order for the system to be dissipative, that is, dE/dt <0, it is sufficient to have
r
o) ~Z(T(F) X ng )) <0.
J
The above inequality, in fact, takes an equal sign for a triple junction when the Herring
condition

(TXIlj) :0,

3
=1

J
or equivalently

is enforced along a triple line I'. That is to say, three interfaces meet along the triple
junction with the angle 27/3. For more discussion on the Herring condition, we refer
to [1, 7, 13] and [15]. On the other hand, other conditions for junction lines may also
be postulated to ensure that the system is dissipative. One possible example is to
enforce:

an =X oD
J

with some relaxation parameter A >0 which may be inversely associated with a junc-
tion mobility. In this case, > ;1 is aligned along the same direction as v, Note

that since (3, n;)-TT) =0, we consequently see that for this example, the junction
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line I would move in the direction perpendicular with its tangent direction. One may
also consider another example given by

30 = A 70 0

with a positive constant A > 0; the energy dissipation again holds in this case. We note
that in our formula (4.2), there is no restriction on the exterior angles «;. Thus, the
formula (4.2) is compatible with any of the above discussed conditions that enforce
some conditions on the angles «; while maintaining the energy dissipation. As a
matter of fact, the generality of the angles {«; } makes formula (4.2) equally applicable
to junction lines with possibly negative line tensions [15, 16]. Another applicable
situation is studied in [5], where it is argued that triple junctions possess their own
mobilities, and the angles along triple junctions depend on such mobilities. Triple
junctions can have a low mobility, especially at a relatively low temperature, and thus
the angle along a triple junction can markably deviate from the standard natural
value.

In addition, while the main result of this work is an extension of the MacPherson-
Srolovitz formula for three dimensional grain growth, we note that the observation
made on (4.1) may be of other general interests. From (4.1), we directly obtain
the formula of the mean width of a polyhedron with flat faces as discussed earlier.
We may also use this formula to compute the mean width of some other common
shapes in three dimensional space. For any two-dimensional domain D, using the
same idea in [9] by considering a three dimensional prism with a cross-section D, we
can deduce a generalized two dimensional von Neumann relation corresponding to
arbitrary junction points as a special case:

/aDndl —l—Zai[@D] =27 x(D),

i=1

which is the formula (3.1) given earlier.

Finally, to put our work in perspective, while the finding in this paper demon-
strates that the equilibrium Herring conditions can be relaxed, as stipulated in [8],
many other complications such as inhomogeneities and anisotropies are important for
the study of grain growth in real systems. In this regard, formula (4.1) may well
be useful when applying the mean width concept to a more general situation with
an anisotropic energy. Meanwhile, it may also be interesting to study the stochastic
variations [2]. Yet, the generalizations of (1.4) in such cases still remain elusive to us
at the moment.
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