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EXTRAPOLATION OF VECTOR FIELDS USING THE INFINITY

LAPLACIAN AND WITH APPLICATIONS TO IMAGE

SEGMENTATION∗

CAROLE LE GUYADER† AND LAURENCE GUILLOT‡

Abstract. In this paper, we investigate a new Gradient-Vector-Flow (GVF)-inspired static
external force field for active contour models, deriving from the edge map of a given image and
allowing to increase the capture range. Contrary to prior related works, we reduce the number of
unknowns to a single one v by assuming that the expected vector field is the gradient field of a scalar
function. The model is phrased in terms of a functional minimization problem comprising a data
fidelity term and a regularizer based on the supremum norm of Dv.

The minimization is achieved by solving a second order singular degenerate parabolic equation.
A comparison principle as well as the existence/uniqueness of a viscosity solution together with
regularity results are established. Experimental results for image segmentation with details of the
algorithm are also presented.
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1. Introduction

1.1. Motivations. Segmentation is the process which consists of detecting
and visualizing the boundaries of the objects contained in an image. Many of the
well-known variational segmentation methods require a careful choice of the initial
condition. One of the most famous variational methods to process this partition of the
image is the active contour model introduced by Kass, Witkin, and Terzopoulos [51].
It consists of evolving a parameterized curve so that it matches the object boundary.
The shape taken by the curve through the process is related to an energy minimization,
where this energy is comprised of a data fitting term and a regularizer, and is non-
convex. Therefore, we can only expect local minimizers, which, in practice, means
that the contour to be deformed must be initialized near the object boundary. Cohen
[30] has proposed a way to alleviate this constraint by adding an inflating/deflating
force in the modelling, defined by k~n, ~n denoting the unit inward normal to the curve
and k, a constant. According to the sign of the constant k, the curve inflates or
deflates. Thereby, in practice, the contour to be deformed is either initialized inside
the object, or it encloses the object of interest.

In [65], Xu and Prince address both the problems of initialization and slow/poor
convergence near boundaries with strong concavities by introducing a new static exter-
nal force called Gradient Vector Flow (GVF). The initialization constraint is removed,
that is, initialization can be made inside, outside or across the object boundaries, and
the front evolution is easily handled even in boundary concavities.
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The main idea behind this model is to increase the capture range of the exter-
nal edge-map-related force field and to make the contour evolve toward the desired
boundaries, where classical methods would fail. Unlike classical active contours, the
introduced external force does not derive from a potential function and cannot be
straightforwardly computed from the image edge map. More precisely, the model
cannot be phrased in terms of a unique functional minimization problem but is de-
fined in two steps. In the first step, the external force (GVF) w=(u,v) is obtained
by minimizing an energy functional in a variational framework. Denoting by Df

the gradient field of an edge map, Xu and Prince propose to minimize the following
functional:

E(w)=µ

∫

Ω

(

u2
x +u2

y +v2
x +v2

y

)

dxdy+

∫

Ω

||Df ||2||w−Df ||2dxdy,

with µ, a tuning parameter, Ω, a bounded open subset of R
2, || · || denoting the

euclidean norm in R
2, and with the notation ux = ∂u

∂x . The energy E is thus designed
such that when ||Df || is large, it is minimized by setting w=Df , and when ||Df || is
small, the resulting w is smooth and slowly varying. The Euler-Lagrange equations
are computed and lead to a decoupled linear partial differential equation system to
be solved. Numerically, these equations are solved by a gradient descent method, and
one obtains the following system:











∂u

∂t
=µ∆u−2||Df ||2(u−fx),

∂v

∂t
=µ∆v−2||Df ||2(v−fy).

The second step then consists in replacing, in the dynamic snake equation, the classical
potential force by the newly computed external force w.

This method motivated the following works: in [58], Paragios et al. proposed
integrating this boundary spatial diffusion technique to the geodesic active contours
[28]. In [42], a proof of existence and uniqueness of the viscosity solution of this model
is established using the work by Ishii and Sato [46]. In [50], Jifeng et al. proposed
improving the diffusion properties of the GVF force field. They obtained a new force
by replacing the Laplacian operator used in the GVF model by its diffusion term
in the normal direction, that is, the ‘normalized’ infinity Laplacian operator (more
details are given on the infinity Laplacian in the following). Numerically, the authors
thus solved the following decoupled partial differential equation system:











∂u

∂t
=µ uNN −2||Df ||2(u−fx),

∂v

∂t
=µ vNN −2||Df ||2(v−fy),

where uNN =
u2

xuxx+2uxuyuxy+u2

yuyy

||Du||2 .

Unlike the GVF model, their new field (called NGVF) is anisotropic. Further-
more, the NGVF is stable for larger time steps, slightly improves segmentation results,
and allows faster detection of long and thin concavities.

Our work is highly motivated by [64, 65] and [50]. We wanted to provide, in a
rigorous mathematical framework, a new method to generate this external force field.
Contrary to these prior works, we propose to reduce the number of unknowns to a
single one, by assuming that the sought vector field is the gradient field of a scalar
function. Also, the minimization problem introduced by this procedure contains a
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data-fitting term related to the original GVF model and a regularizer that penalizes
the supremum norm of the unknown gradient. Thus the problem becomes related to
the absolutely minimizing Lipschitz extensions and the infinity Laplacian.

The absolute minimal Lipschitz extension model was introduced by Aronsson in
[5] (see also [4, 6, 7]) in the following way. Given Ω⊂R

n a bounded, open, and
connected domain with sufficiently smooth boundary and b∈C(∂Ω), solve

inf
u∈W 1,∞(Ω), u=b on ∂Ω

‖Du‖L∞(Ω) . (1.1)

A minimizer of problem (1.1) is called an absolutely minimizing Lipschitz interpolant
of b|∂Ω inside Ω. Aronsson proved the existence of an absolute minimal Lipschitz ex-
tension and Jensen proved the uniqueness. Aronsson also derived the Euler-Lagrange
equation governing the absolute minimizer in the sense of viscosity solutions :

∆∞u=D2u(Du,Du)=0 in Ω. (1.2)

We refer to [9] and to [17] for more details. The operator ∆∞ is called the infinity
Laplacian and solutions of (1.2) are said to be ∞-harmonic (see Crandall [32] for a
complete review of the infinity Laplacian equation). Jensen proved a comparison prin-
ciple and an existence/uniqueness result of (1.2) for Lipschitz continuous boundary
data. Also, the infinity Laplacian equation was derived as the limiting case p→∞ of
the Euler-Lagrange equation ∆pu=div(|Du|

p−2
Du)=0 related to the homogeneous

Dirichlet problem with 1<p<∞ :

inf
u∈W 1,p(Ω), u=b on ∂Ω

‖Du‖Lp(Ω) . (1.3)

As stressed in [38], this limiting process p→∞ was made rigorous in [6, 49]. Time-
dependent versions of equation 1.2 have been explored for instance in the image in-
terpolation framework [29], the first one naturally derived from (1.2):

∂u

∂t
=D2u(Du,Du)=uxi

uxj
uxixj

in Ω×(0,+∞),

u(x,0)=u0(x) in Ω,

u(x,t)= b(x) for (x,t) ∈∂Ω×(0,+∞),

the second one being its ‘normalized version’:

∂u

∂t
=D2u

(

Du

|Du|
,

Du

|Du|

)

in Ω×(0,+∞),

u(x,0)=u0(x) in Ω,

u(x,t)= b(x) for (x,t) ∈∂Ω×(0,+∞).

The operator D2u
(

Du
|Du| ,

Du
|Du|

)

is the second derivative of u in the normal direction
Du
|Du| .

Before depicting our model, we make a non-exhaustive review of some prior works
related to AMLE and the infinity Laplacian in the field of image processing.
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1.2. Prior related works.

The work of Caselles, Morel, and Sbert. As stressed by Caselles et
al., the equation ∆∞u=D2u(Du,Du)=0 was introduced in the field of computer
vision as an edge detector (see [43, 61, 66]). Earlier, it appeared in the domain of
edge enhancement (see [59]) and served as the basis of Canny edge detection [22]. In
[29], Caselles et al. investigate the AMLE and the infinity Laplacian in the field of
image processing with applications to the restoration of images. Motivated by prior
applications devoted to coding [24, 25, 26], they address the issue of interpolating
data given on a set of points and/or curves in the plane. The set of requirements to
be fulfilled by the interpolation operator (comparison, stability, regularity principles
as well as independency of the interpolation process with respect to the observer’s
standpoint) leads to models in which the operator is given, in the case of continuous
data, as the viscosity solution of a degenerate elliptic partial differential equation. The
authors prove that the AMLE model is the most suitable to interpolate data given
on points and/or curves, providing a result of existence/uniqueness of a Lipschitz
viscosity solution.

The work of Cong, Esser, Parvin and Bebis. Another application,
dedicated to shape metamorphism (the process which consists in evolving a source
shape into a target shape by intermediate steps) is proposed by Cong et al. in [31]
and makes use of the infinity Laplacian. Denoting S(t), t∈ [0,1], to be a collection of
deformable closed curves with known boundary conditions at S(0) and S(1), their goal
is to reconstruct the intermediate curves S(t), 0<t<1 so that the obtained sequence
of curves is smooth and continuous in time. The function Oi is the inside-outside
function of a closed curve Si, i=0,1,

Oi(x,y)=







−1 if (x,y) is inside Si

1 if (x,y) is outside Si

0 if (x,y) is on Si.

The authors restrict the curve evolution domain to the region R defined by R=
R(S0,S1)=

{

(x,y) | O0(x,y)O1(x,y)≤0
}

. Then they use an implicit representation
of the intermediate curves, expressed as the level curves of a function f :

S(t)=
{

(x,y) | f(x,y)= t
}

,

which leads to the following problem:

‘Find f(x,y), (x,y)∈R, such that f(S0)=0, f(S1)=1.’

This underconstrained problem is complemented by a regularization on f which is the
supremum norm of Df , with the aim to control f locally, and is stated as:

‘Find f(x,y), (x,y)∈R, such that f(S0)=0, f(S1)=1 and ∆∞f =0.’

The authors prove that their model is optimal for metamorphism since the interme-
diate solutions are equally distributed along their normal directions.

The work of Mémoli, Sapiro and Thompson. In [54], Mémoli et al.
propose a new framework for brain warping using Minimizing Lipschitz Extensions.
Let B1 and B2 be the two cortical surfaces to be matched, and let Γ1 =∪N

i=1xi ⊂B1,
Γ2 =∪N

i=1yi ⊂B2 be two sets of landmark points for which a correspondence is already
known. The authors aim at finding a sufficiently smooth mapping Φ :B1 7→B2 such
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that Φ(xi)=yi for 1≤ i≤N and such that Φ produces minimal distortion according
to a given functional J .

This extrapolation problem is solved by minimizing J∞(Φ)=
essupx∈B1

||DB1
Φ(x)|| over the space of all Lipschitz continuous mappings Ψ :B1 7→B2

such that Ψ(xi)=yi for 1≤ i≤N .
The work of Elion and Vese. In [55], Meyer introduced the following image

decomposition model in which the image f is broken down into a geometrical part u

and an oscillatory or texture part v:

inf
f=u+v

(u,v)∈(BV ×G)

E(u)=

∫

|Du|+λ‖v‖G, (1.4)

where the space G containing v is the Banach space of distributions v =div
→
g , g1,g2∈

L∞(R2) endowed with the norm

‖v‖G(R2) = inf
→

g =(g1,g2)∈(L∞(R2))2

v=div
→

g

∥

∥

∥

→
g
∥

∥

∥

L∞(R2)
.

The space G allows oscillating functions v, and the oscillations are measured by the
norm ‖v‖G. However, due to the definition of the G-norm the Euler-Lagrange equa-
tions associated with the minimization problem (1.4) cannot be written. Different
approximations have been proposed by Vese and Osher in [62, 63], by Aujol et al. in
[12, 13, 11], and Le and Vese in [52]. In [38], Elion and Vese aim at solving the (BV,G)
decomposition model. In that purpose, they focus on an isotropic decomposition of
the image f ≈u+v with v =∆P =div(DP ) and DP ∈ (L∞(Ω))2. Given f ∈L2(Ω),
their proposed model is

inf
u∈BV (Ω)

DP∈(L∞(Ω))2, ∆P∈L2(Ω)

F (u,P )=

∫

|Du| dx+µ

∫

|f −(u+∆P )|
2
dx+λ‖DP‖L∞(Ω).

(1.5)

The outline of the paper is as follows. Section 2 is devoted to the depiction of the
model and the derivation of the associated evolution problem. Section 3 is dedicated to
the theoretical study of the obtained parabolic problem. We first prove a comparison
principle, then prove existence and uniqueness of a viscosity solution. Regularity
results of this solution are also given. We conclude the paper with experimental
results and integrate this new external force field in a segmentation problem. Details
of the algorithm are also provided.

2. Depiction of the model

Let Ω be a bounded open subset of R
n, its boundary denoted by ∂Ω, and let I be

a given bounded image function defined by I : Ω̄→R. For the purpose of illustration
we consider n=2.

Let g be an edge-detector map. The function g is applied to the norm of the image
gradient, and satisfies the following properties: g : [0,∞[→ [0,∞[, g(0)=1, g strictly
decreasing, and limr→+∞g(r)=0. An example of such a function is g : r 7→ 1

1+r2 .
We denote W =(w1,w2)=−Dg(||DI||) to be the associated gradient vector field. In
homogeneous regions, ||DI||≃0 so g(||DI||) is almost equal to 1. On boundaries,
||DI|| is large so g(||DI||) is almost zero. Also, in homogeneous regions W is almost
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the null vector. Along the boundaries, the vector field W points toward the middle
of the edges (see such an example in figure 4.1).

We plan to extrapolate the vector field on the whole image domain in a variational
framework.

For completeness, we also refer the reader to [2, 18, 19, 20, 36, 37, 53] which
address the issue of vector field approximation, even if they are not directly related to
the main ingredients of the proposed approach, and to [3] for a general introduction
to the Dm-spline theory that is used for instance in [53].

A majority of existing regularization functionals aims at minimizing the global
variation of the unknowns and thus provides little local control. In this work, we
propose to minimize the supremum norm of the unknown gradient. Also, unlike prior
related works, we reduce the number of unknowns to a single one by assuming that
the expected vector field is the gradient vector field of a scalar function. We thus
propose to minimize the following functional:

inf
v∈W 1,∞(Ω)

∫

Ω

||Dv−W ||2||W ||2dx+µ||Dv||L∞(Ω), (2.1)

where µ>0 is a tuning parameter.

Remark 2.1. Functional (2.1) is defined on W 1,∞(Ω). The domain Ω is bounded,
and the inclusion L∞(Ω)⊂L2(Ω) holds so Dv∈L2(Ω).

Remark 2.2. If v is a minimizer of (2.1), then so is v+C where C denotes any real
constant. This is not a problem since we are interested in the associated gradient
vector field. If v∈W 1,∞(Ω), v is Lipschitz continuous and thus, by Rademacher’s
theorem, differentiable almost everywhere.

To minimize the above energy, we make use of the absolutely minimizing Lipschitz
extensions. Following the results on AMLE recalled in section 1, we obtain the Euler-
Lagrange equation satisfied by v if it minimizes (2.1) and solve it by gradient descent.
More precisely, classically, in image processing, the equation is defined on a domain
R of R

2 (e.g. on the square [0,1]× [0,1]). In this case, boundary conditions must be
defined: Neumann boundary conditions on ∂R are well-suited to the image processing
framework since it corresponds to the reflection of the data through the edges. Thus
it is no longer necessary to define boundary values.

Following [10] and [27], we propose to simplify the problem by working with
periodic solutions. The function v, primarily defined on [0,1]× [0,1], is extended to R

2.
First, by symmetry, we extend it to [−1,1]× [−1,1] and then in all of R

2 by periodicity
(see section 3.3.1 from [10]). We thus obtain that ∀h∈Z

2, ∀x∈R
2, v(x+2h)=v(x).

Also, we assume that the initial condition v0 and the functions x 7→wk(x), k =1,2 are
extended to R

2 with the same periodicity.
Given T >0, we then obtain the following problem:































∂v

∂t
=2 ||W ||2∆v+2 〈D ||W ||2,Dv〉−2 div

(

||W ||2W
)

+µD2v

(

Dv

|Dv|
,

Dv

|Dv|

)

on R
2×(0,T ),

= b(x)∆v−〈d(x),Dv〉−h(x)+µD2v

(

Dv

|Dv|
,

Dv

|Dv|

)

,

v(x,t=0)=v0(x) in R
2,

with b :x 7→2||W (x)||2, d :x 7→−2 D||W ||2(x), h :x 7→2 div
(

||W ||2W
)

(x), and with
the assumptions v0∈C(R2)∩W 1,∞(R2), b∈C(R2) and bounded by ξb, d∈C(R2)∩
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W 1,∞(R2), bounded by ξd and with Lipschitz constant κd, h∈C(R2)∩W 1,∞(R2),
bounded by ξh and with Lipschitz constant κh , and with 〈·,·〉 denoting the euclidean

scalar product in R
2. We also assume that the mapping R

2∋x 7→ b
1

2 (x) is Lipschitz
continuous on R

2 with Lipschitz constant κ
b
1
2
.

3. Theoretical results

This problem falls within the framework of the theory of viscosity solutions. In-
deed, we obtain a second order singular degenerate parabolic equation.

The concept of viscosity solutions was introduced in 1981 by Crandall and Lions
[34]. This theory was developed to study first-order partial differential equations
of nondivergence form, typically, Hamilton-Jacobi equations. Later, the study of
viscosity solutions was extended to second-order elliptic and parabolic equations (for
a good introduction to the theory of viscosity solutions, we refer to Barles [15, 14],
the article of Crandall, Ishii and Lions [33], Crandall, Lions [35], Ishii [44], and Ishii,
Lions [45]). We also refer to the related work [16].

In our problem, the evolution equation in (2.2) can be rewritten in the form:

∂v

∂t
+G(x,Dv,D2v)=0,

with G :R2×R
2−{0R2}×S2 (S2 being the set of symmetric 2×2 matrices equipped

with its natural partial order) defined by

G(x,p,X)=〈d(x),p〉+h(x)−b(x)trace(X)−µ
pT

|p|
X

p

|p|
,

=〈d(x),p〉+h(x)−b(x)trace(X)−µtrace
(p

⊗

p

|p|2
X

)

,

=c(x,p)+E(x,X)+F (p,X),

with the following properties.

1. The operators G, E : (x,X) 7→−b(x)trace(X) and F : (p,X) 7→

−µtrace
(p

⊗

p

|p|2
X

)

are independent of v and are elliptic, i.e., ∀X,Y ∈S2,

∀p∈R
2,

if X ≤Y then F (p,X)≥F (p,Y ). (3.1)

The operators G, E, and F are therefore proper.

2. F is locally bounded on R
2×S2, continuous on R

2 \{0R2}×S2, and

F ∗(0,0)=F∗(0,0)=0, (3.2)

where F ∗ (resp. F∗) is the upper semicontinuous (usc) envelope (resp. lower
semicontinuous (lsc) envelope) of F .

3. c :R2×R
2∋ (x,p) 7→ 〈d(x),p〉+h(x) is locally Lipschitz continuous in space

and ∀x,y∈R
2×R

2,

|c(x,p)−c(y,p)|≤
(

κd|p|+κh

)

|x−y|. (3.3)

For the sake of clarity, we recall some definitions that will be used in the following.
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Definition 3.1. We define the following sets:

USC(Rn× [0,T ))={u :Rn× [0,T )→R locally bounded, upper semicontinuous}.

LSC(Rn× [0,T ))={u :Rn× [0,T )→R locally bounded, lower semicontinuous}.

Definition 3.2 (Parabolic sub and superdifferentials of semicontinuous func-
tions.). If u :Rn×(0,T )→R, then P+u is defined as follows:

(a,p,X)∈R×R
n×Sn belongs to P+u(x,t) if (x,t)∈R

n×(0,T ) and

u(y,s)≤u(x,t)+a(s− t)+〈p,y−x〉+
1

2
〈X(y−x),y−x〉+o

(

|s− t |+ |y−x |2
)

,

as R
n×(0,T )∋ (y,s)→ (x,t). Similarly, P−u=−P+(−u). We also define the follow-

ing two sets:

P̄+u(x,t)=















(a,p,X)∈R×R
n×Sn,

∃(xn,tn,an,pn,Xn)∈R
n×R×R×R

n×Sn

such that (an,pn,Xn)∈P+u(xn,tn)
and (xn,tn,u(xn,tn),an,pn,Xn)→ (x,t,u(x,t),a,p,X)















.

We start by proving a comparison principle that will be useful to prove the uniqueness
of the viscosity solution of the considered problem.

Theorem 3.1 (Comparison principle). Let u∈USC(R2× [0,T )), be bounded,
periodic (with the same periodicity as the initial condition of problem (2.2)), and a
subsolution and v∈LSC(R2× [0,T )), be bounded, periodic (with the same periodicity
as the initial condition of problem (2.2)), and a supersolution of (2.2). Assume that
u0(x)=u(x,0)≤v0(x)=v(x,0) in R

2. Then u≤v in R
2× [0,T ).

Proof. This proof is rather classical. For the reader’s convenience, the main steps
of this proof can be found in Appendix A.

We now give an existence result using the classic Perron’s method (see section 4 from
[33]).

We start by constructing a subsolution U−. Let us set U− =inf
R2

(v0)−Ct with

C = ξh. U− is twice differentiable in space, once differentiable in time, bounded,
periodic with the same periodicity as v0 and U− is a subsolution of (2.2).

Similarly, U+ =sup
R2

(v0)+Ct is a supersolution of (2.2). Obviously, U−(x,0)≤

U+(x,0). We can define:

v =sup
{

w; w periodic with the same periodicity as v0, subsolution such that U−≤w≤U+
}

.

In that case, Perron’s method states that v is a periodic discontinuous solution of
(2.2) with the same periodicity as v0. Clearly, the solution is bounded since U+ is
bounded. Also as v is a solution, v∗ is a subsolution and v∗ a supersolution so from
the comparison principle v∗≤v∗. But v∗≤v∗ so v∗ =v∗ =v, which gives that v is
continuous on R

2× [0,T ).

Conclusion 3.1. We have proved the existence and uniqueness of a bounded, peri-
odic, continuous on R

2× [0,T ) viscosity solution of problem (2.2).

We now prove that a solution of problem (2.2) is Lipschitz continuous in space,
and uniformly continuous in time.
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Theorem 3.2 (Regularity results). Let us assume that ||Dv0||L∞(R2)≤B0 with
B0 >0. Then the solution of (2.2) satisfies

||Dv(·,t)||L∞(R2)≤B(t),

with B(t)=κh
eαt−1

α
+B0e

αt, and with α=8κ2

b
1
2

+κd.

Proof. The function v is bounded, continuous on R
2× [0,T ), and periodic with

the same periodicity as v0. We set Φǫ(x,y,t)=B(t)
(

|x−y|2 +ǫ2
)

1

2 and aim at proving
that v(x,t)−v(y,t)≤Φǫ(x,y,t).
Let us set M = sup

(x,y)∈R2×R2, t∈[0,T )

(

v(x,t)−v(y,t)−Φǫ(x,y,t)
)

. Let us assume that

M >0. Then we denote M̄ to be

M̄ = sup
(x,y)∈R2×R2, t∈[0,T )

(

v(x,t)−v(y,t)−Φǫ(x,y,t)−
γ

T − t

)

.

For γ small enough, we have M̄ >0. Let (x̄, ȳ, t̄) be a maximum point with obviously
x̄ 6= ȳ.
Let us prove that t̄>0. Assuming the contrary, we have

v0(x̄)−v0(ȳ)−Φǫ(x̄, ȳ,0)>0,

v0(x̄)−v0(ȳ)>B0

(

|x̄− ȳ|2 +ǫ2
)

1

2 >B0|x̄− ȳ|,

which contradicts the assumptions on v0.
Mere calculus gives

DxΦǫ(x̄, ȳ, t̄)=B(t̄)
(x̄− ȳ)

(

|x̄− ȳ|2 +ǫ2
)

1

2

6=0,DyΦǫ(x̄, ȳ, t̄)=−B(t̄)
(x̄− ȳ)

(

|x̄− ȳ|2 +ǫ2
)

1

2

6=0,

∂tΦ
ǫ(x̄, ȳ, t̄)= τ =B′(t̄)

(

|x̄− ȳ|2 +ǫ2
)

1

2 =eαt̄ (κh +αB0)
(

|x̄− ȳ|2 +ǫ2
)

1

2 ,

and

A=D2Φǫ(x̄, ȳ, t̄)=B(t̄)

(

U −U

−U U

)

,

with U =
(

|x̄− ȳ|2 +ǫ2
)− 1

2 I−
(

|x̄− ȳ|2 +ǫ2
)− 3

2 (x̄− ȳ)
⊗

(x̄− ȳ).

Using Theorem 8.3 from [33] with Φ(x,y,t)=Φǫ(x,y,t)+
γ

T − t
, for all η >0 there exist

τ1,τ2∈R and X,Y ∈S(2) such that

τ = τ1−τ2 =B′(t̄)
(

|x̄− ȳ|2 +ǫ2
)

1

2 +
γ

(T − t̄)2
,

(τ1,p1,X)∈P̄+v(x̄, t̄), (τ2,p2,Y )∈P̄−v(ȳ, t̄),

−

(

1

η
+ ||A||

)

I ≤

(

X 0
0 −Y

)

≤A+ηA2,
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with p1 =DxΦǫ(x̄, ȳ, t̄) and p2 =p1.

We choose η =
1

B(t̄)

(

|x̄− ȳ|2 +ǫ2
)1/2

>0, so A+ηA2 can be written as

A+ηA2 =B(t̄)

(

C −C

−C C

)

with

C =3
(

|x̄− ȳ|2 +ǫ2
)

−1

2 I−5
(

|x̄− ȳ|2 +ǫ2
)

−3

2 (x̄− ȳ)
⊗

(x̄− ȳ)

+2|x̄− ȳ|2
(

|x̄− ȳ|2 +ǫ2
)

−5

2 (x̄− ȳ)
⊗

(x̄− ȳ).

So the following holds

τ1 +c



x̄,
B(t̄)(x̄− ȳ)

(

|x̄− ȳ|2 +ǫ2
)

1

2



+E(x̄,X)+F





B(t̄)(x̄− ȳ)
(

|x̄− ȳ|2 +ǫ2
)

1

2

,X



≤0,

τ2 +c



ȳ,
B(t̄)(x̄− ȳ)

(

|x̄− ȳ|2 +ǫ2
)

1

2



+E(ȳ,Y )+F





B(t̄)(x̄− ȳ)
(

|x̄− ȳ|2 +ǫ2
)

1

2

,Y



≥0.

(3.4)

From the matrix inequality, X ≤Y and using the ellipticity of F , we have

F





B(t̄)(x̄− ȳ)
(

|x̄− ȳ|2 +ǫ2
)

1

2

,X



−F





B(t̄)(x̄− ȳ)
(

|x̄− ȳ|2 +ǫ2
)

1

2

,Y



≥0

and

c



x̄,
B(t̄)(x̄− ȳ)

(

|x̄− ȳ|2 +ǫ2
)

1

2



−c



ȳ,
B(t̄)(x̄− ȳ)

(

|x̄− ȳ|2 +ǫ2
)

1

2



≥−(κdB(t̄)+κh)|x̄− ȳ|.

We finally obtain by substracting the two relations from (3.4)

τ1−τ2 +b(ȳ)trace(Y )−b(x̄)trace(X)−(κdB(t̄)+κh)|x̄− ȳ|≤0, (3.5)

that is,

B′(t̄)
(

|x̄− ȳ|2 +ǫ2
)

1

2 +
γ

(T − t̄)2
+b(ȳ)trace(Y )−b(x̄)trace(X)

−(κdB(t̄)+κh)|x̄− ȳ|≤0.

But,

b(x̄)trace(X)−b(ȳ)trace(Y )=trace

((

b(x̄)
√

b(x̄)b(ȳ)
√

b(x̄)b(ȳ) b(ȳ)

)(

X 0
0 −Y

))

,

≤B(t̄)
(

√

b(x̄)−
√

b(ȳ)
)2

trace(C),

≤B(t̄)κ2

b
1
2

|x̄− ȳ|2trace(C), (3.6)

with

trace(C)=6
(

|x̄− ȳ|2 +ǫ2
)

−1

2 −5|x̄− ȳ|2
(

|x̄− ȳ|2 +ǫ2
)

−3

2 +2|x̄− ȳ|4
(

|x̄− ȳ|2 +ǫ2
)

−5

2 .
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So it yields

b(x̄)trace(X)−b(ȳ)trace(Y )

≤B(t̄)κ2

b
1
2

(

6|x̄− ȳ|2
(

|x̄− ȳ|2 +ǫ2
)

−1

2 −5|x̄− ȳ|4
(

|x̄− ȳ|2 +ǫ2
)

−3

2

+2|x̄− ȳ|6
(

|x̄− ȳ|2 +ǫ2
)

−5

2

)

,

and

b(ȳ)trace(Y )−b(x̄)trace(X)

≥−6B(t̄)κ2

b
1
2

|x̄− ȳ|2
(

|x̄− ȳ|2 +ǫ2
)

−1

2 −2B(t̄)κ2

b
1
2

|x̄− ȳ|6
(

|x̄− ȳ|2 +ǫ2
)

−5

2 .

So

B′(t̄)
(

|x̄− ȳ|2 +ǫ2
)

1

2 +
γ

(T − t̄)2
−6B(t̄)κ2

b
1
2

|x̄− ȳ|2
(

|x̄− ȳ|2 +ǫ2
)

−1

2

−2B(t̄)κ2

b
1
2

|x̄− ȳ|6
(

|x̄− ȳ|2 +ǫ2
)

−5

2 −(κdB(t̄)+κh)|x̄− ȳ|≤0.

But,

(

|x̄− ȳ|2 +ǫ2
)

1

2

(

B′(t̄)−6B(t̄)κ2

b
1
2

|x̄− ȳ|2

|x̄− ȳ|2 +ǫ2
−2B(t̄)κ2

b
1
2

|x̄− ȳ|6

(|x̄− ȳ|2 +ǫ2)
3

−(κdB(t̄)+κh)
|x̄− ȳ|

(

|x̄− ȳ|2 +ǫ2
)

1

2

)

≥
(

|x̄− ȳ|2 +ǫ2
)

1

2
(

B′(t̄)−8κ2

b
1
2

B(t̄)−κdB(t̄)−κh

)

≥0.

Consequently,
γ

(T − t̄)2
≤0 which is absurd. So v(x,t)−v(y,t)≤Φǫ(x,y,t) and letting

ǫ tend to 0, one obtains

v(x,t)−v(y,t)≤B(t)|x−y|.

Exchanging x and y yields

|v(x,t)−v(y,t)|≤B(t)|x−y|.

Theorem 3.3 (Regularity results). The solution v is uniformly continuous in
time.

Proof. We proceed as in [40]. In a first step, we assume that v0 is bounded,
periodic, C2, and such that there exists C, ||Dv0||L∞(R2),||D

2v0||L∞(R2)≤C. Let us

set C1 = sup
x∈R2

(

ζ +E(x,D2v0)+F∗(Dv0,D
2v0),ζ−E(x,D2v0)−F ∗(Dv0,D

2v0)

)

with

ζ = ξd||Dv0||L∞(R2) +ξh. Let us also set v− =v0−C1t and v+ =v0 +C1t. It can be
checked that v− is a subsolution of (2.2) and v+ is a supersolution.
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Using classical arguments and the comparison principle, we obtain after interme-
diate steps that

|v(x,t+h)−v(x,t)|≤C1h.

We now assume that v0 is only bounded, periodic and Lipschitz continuous, and use
mollification. Let us define ρ to be a standard mollifier (see chapter IV from [21] and

section 2.5 from [10]): ρ∈C∞
c (R2), ρ≥0, supp(ρ)⊂B(0,1), and

∫

R2

ρ dx=1. For each

ǫ>0, let us set: ρǫ(·)=
1

ǫ2
ρ
( ·

ǫ

)

. The functions ρǫ are C∞
c (R2) and

∫

R2

ρǫ dx=1, and

supp(ρǫ)⊂B(0,ǫ). We set v0
ǫ =v0 ∗ρǫ. Obviously, v0

ǫ has the same periodicity as v0.

|v0
ǫ (x)|= |v0 ∗ρǫ(x)|=

∣

∣

∣

∣

∫

R2

v0(x−y)ρǫ(y)dy

∣

∣

∣

∣

≤||v0||L∞(R2)

∫

R2

ρǫ(y)dy = ||v0||L∞(R2).

Consequently, v0
ǫ is bounded. By the same way, we prove that v0

ǫ is C2 and such that
there exists C such that ||Dv0

ǫ ||L∞(R2),||D
2v0

ǫ ||L∞(R2)≤C (see for instance [40]). It

can be checked that ||Dv0
ǫ ||L∞(R2)≤B0 and ||D2v0

ǫ ||L∞(R2)≤
B0

ǫ
C2 with C2 a positive

constant (this calculus is similar to that performed in [40]). Moreover,

|v0(x)−v0
ǫ (x)|= |v0(x)−

∫

R2

v0(x−y)ρǫ(y)dy|,

=

∣

∣

∣

∣

∫

R2

(

v0(x)−v0(x−y)
)

ρǫ(y)dy

∣

∣

∣

∣

,

≤

∫

R2

∣

∣v0(x)−v0(x−y)
∣

∣ρǫ(y)dy,

≤B0

∫

B(0,ǫ)

|y|ρǫ(y)dy,

≤ ǫB0.

We denote vǫ to be the solution with initial condition v0
ǫ . Then, by the comparison

principle,

||vǫ′(·,t)−vǫ(·,t)||L∞(R2)≤||v0
ǫ′(·,t)−v0

ǫ (·,t)||L∞(R2).

Also, v0
ǫ uniformly converges to v0 so (v0

ǫ )ǫ is a Cauchy sequence. Consequently
(vǫ(·,t))ǫ is a Cauchy sequence and uniformly converges to v which is, by stability
(see [14]), the solution of (2.2) with initial condition v0. Still using the comparison
principle, we have

||vǫ(·,t)−v(·,t)||L∞(R2)≤||v0
ǫ −v0||L∞(R2).

Finally,

|v(·,t+h)−v(·,t)|= |v(·,t+h)−vǫ(·,t+h)+vǫ(·,t+h)−vǫ(·,t)+vǫ(·,t)−v(·,t)|,

≤|v(·,t+h)−vǫ(·,t+h)|+ |vǫ(·,t+h)−vǫ(·,t)|+ |vǫ(·,t)−v(·,t)|,

≤2||v0
ǫ −v0||L∞(R2) +C1

(

B0,
B0

ǫ
C2

)

h.

≤2ǫB0 +C1

(

B0,
B0

ǫ
C2

)

h,
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and

||v(·,t+h)−v(·,t)||L∞(R2)≤2ǫB0 +C1

(

B0,
B0

ǫ
C2

)

h.

By taking the minimum on ǫ , we obtain the modulus of continuity of v which depends
on B0.

Conclusion 3.2. We have proved the existence and uniqueness of a viscosity solu-
tion of problem (2.2), which is bounded, periodic, continuous on R

2× [0,T ), Lipschitz
continuous in space so differentiable almost everywhere, and uniformly continuous in
time. We now discretize the evolution equation. In the sequel, we set Ω∋x=(x1,x2).

4. Experimental results

Let ∆x1 and ∆x2 be the spatial steps, ∆t be the time step and (x1i,x2j)=
(i∆x1,j∆x2) be the grid points, 1≤ i≤M and 1≤ j≤N . For a function Ψ :Ω→R,
let Ψn

ij =Ψ(i∆x1,j∆x2,n∆t). We define the following finite difference schemes:

Dx1Ψn
i,j =

Ψn
i+1,j −Ψn

i−1,j

2∆x1
Dx2Ψn

i,j =
Ψn

i,j+1−Ψn
i,j−1

2∆x2
,

Dx1

− Ψn
i,j =

Ψn
i,j −Ψn

i−1,j

∆x1
Dx2

− Ψn
i,j =

Ψn
i,j −Ψn

i,j−1

∆x2
,

Dx1

+ Ψn
i,j =

Ψn
i+1,j −Ψn

i,j

∆x1
Dx2

+ Ψn
i,j =

Ψn
i,j+1−Ψn

i,j

∆x2
,

Dx1x1Ψn
i,j =

Ψn
i+1,j −2Ψn

i,j +Ψn
i−1,j

∆x2
1

Dx2x2Ψn
i,j =

Ψn
i,j+1−2Ψn

i,j +Ψn
i,j−1

∆x2
2

,

Dx1x2Ψn
i,j =

Ψn
i+1,j+1 +Ψn

i−1,j−1−Ψn
i+1,j−1−Ψn

i−1,j+1

4∆x1∆x2
.

To discretize (2.2), we use an explicit finite difference scheme as follows. The
problem is also complemented by Neumann boundary conditions. For the discretiza-
tion of the convection component, we refer to [56] or [60] (we have used the notation
d=(d1,d2)).

vn+1
i,j =vn

i,j +∆t bi,j

(

Dx1x1vn
i,j +Dx2x2vn

i,j

)

−∆t

(

max
(

(d1)i,j ,0
)

Dx1

− vn
i,j +min

(

(d1)i,j ,0
)

Dx1

+ vn
i,j

+max
(

(d2)i,j ,0
)

Dx2

− vn
i,j +min

(

(d2)i,j ,0
)

Dx2

+ vn
i,j

)

−∆t hi,j +∆t µ
Dx1x1vn

i,j(D
x1vn

i,j)
2+2Dx1vn

i,jDx2vn
i,jDx1,x2vn

i,j+Dx2x2vn
i,j(D

x2vn
i,j)

2

(Dx1vn
i,j)

2+(Dx2vn
i,j)

2+ǫ
.

(4.1)

4.1. Numerical experimentations of extrapolation. The experiments
have been performed on a 2.21 GHz Athlon with 1.00 GB of RAM. In all our experi-
ments, ∆x1 =∆x2 =1. For each test, we provide a view of the initial gradient vector
field −Dg(||DI||) and a view of the extrapolated vector field.

Our first experimental test figure 4.1 and figure 4.2 is similar to those performed
by Xu and Prince in [64, 65] and by Jifeng et al. in [50]. We computed the GVF
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field, the NGVF field and the gradient vector field obtained with the proposed method
for this U-shaped object. The initialization was made either by setting v0≡0, or by
setting v0≡−g(||DI||). In all the tests we performed, it does not seem to influence the
obtained result. The number of iterations as well as the computational time (order of
a second) are similar for the three methods.

Our method qualitatively performs in a way similar to the GVF and the NGVF:
we increase the capture range of the gradient vector field and we obtain downward
components within the boundary concavity. Nevertheless, contrary to the GVF and
NGVF models, the method requires only one unknown.

Fig. 4.1. On the left, depiction of the initial gradient vector field W =−Dg(||DI||). On the
right, the obtained vector field with the GVF method (µ=0.1, ∆t=0.2).

Fig. 4.2. On the left, the obtained vector field with the NGVF method (µ=0.1, ∆t=0.2). On
the right, the obtained vector field with our proposed approach (µ=0.05, ∆t=0.1).

The second example figure 4.3 and figure 4.4 is also taken from [50] and shows
a long and thin concavity. As stressed by Jifeng et al., the NGVF performs more
accurately than the GVF in the concavity: the NGVF force field points vertically to
the bottom of the concavity, while the GVF fails to enter the concavity. Indeed, the
Laplacian operator that naturally appears in the GVF model can be decomposed as
the sum of the second derivative in the normal direction, and the second derivative
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in the tangent direction. The former component that is kept in the NGVF model
weighs heavily in the extrapolation process and has good properties unlike the later
component which proves to be parasitic.

Our proposed approach performs better in the concavity than the GVF model
but is not as accurate as the NGVF model. The process seems to be sensitive to the
geometry and the thickness of the boundaries.

Fig. 4.3. On the left, depiction of the initial gradient vector field W =−Dg(||DI||). On the
right, the obtained vector field with the GVF method (µ=0.1, ∆t=0.2).

Fig. 4.4. On the left, the obtained vector field with the NGVF method (µ=0.1, ∆t=0.2). On
the right, the obtained vector field with our proposed approach (µ=0.05, ∆t=0.1).

A last example of extrapolation of vector field on a synthetic image is provided in
figure 4.5. Finally, we conclude this part with applications to real data. We start
with a slice of the brain (figure 4.6, courtesy of the Laboratory of Neuro Imaging,
UCLA), with an image taken from the Image Toolbox of Matlab figure 4.7, and
with an image showing a slice of Tuffeau (figure 4.8, courtesy of ISTO/ESRF). Our
proposed approach performs well but seems to be sensitive to the textures of the
objects contained in the image.

4.2. Application to segmentation. This part is dedicated to segmentation
and more precisely to the integration of this extrapolated vector field in the geodesic
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Fig. 4.5. On the left, depiction of the initial gradient vector field W =−Dg(||DI||). On the
right, the obtained vector field with our proposed approach (µ=0.05, ∆t=0.1).

Fig. 4.6. On the left, depiction of the initial gradient vector field W =−Dg(||DI||). On the
right, the obtained vector field with our proposed approach (µ=0.05, ∆t=0.1).

Fig. 4.7. On the left, depiction of the initial gradient vector field W =−Dg(||DI||). On the
right, the obtained vector field with our proposed approach (µ=0.05, ∆t=0.1).
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Fig. 4.8. On the left, depiction of the initial gradient vector field W =−Dg(||DI||). On the
right, the obtained vector field with our proposed approach (µ=0.1, ∆t=0.1).

active contour model, in order to alleviate the constraint on the choice of the initial
condition.

In [28], Caselles et al. introduce the geodesic active contour model. Denoting C
to be a parameterized curve defined by

C :

{

[0,1]→R
2

q 7→C(q),

they propose to minimize the following functional:

∫ 1

0

g(||DI(C(q))||)||C′(q)||dq, (4.2)

where I is the image and g is an edge-detector function. The evolution equation of
the curve C to deform the initial contour C(.,0) towards a local minimizer of (4.2) is
established thanks to the Euler-Lagrange theorem and the gradient descent method.
One obtains:

∂C

∂t
=g(||DI(C(q,t))||)κ(q,t)−→n (q,t)−〈Dg(||DI||)(C(q,t)),−→n (q,t)〉−→n (q,t), (4.3)

with κ(q,t) the curvature at point C(q,t) and −→n (q,t) the unit inward normal vector
to the curve at point C(q,t).

In order to avoid certain local minima or to increase the speed of convergence, a
constant motion term of the form cg(||DI(C(q,t))||)−→n (q,t) (with c a parameter) can
be incorporated into the partial differential equation.

The model is then cast in the level set setting developed by Osher and Sethian in
[57]. That is, the evolving curve C is represented implicitly via an explicit 3D function
denoted by Φ and at each time t, the curve C is considered as the zero level set of the
function Φ which is a Lipschitz continuous function. This representation is intrinsic
and allows splits and merges. We obtain the following partial differential equation
which constitutes the general geodesic active contour model:

∂Φ

∂t
= ||DΦ||div

(

g(||DI||)
DΦ

||DΦ||

)

+cg(||DI||)||DΦ||, (4.4)
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that is,

∂Φ

∂t
=g(||DI||)||DΦ||div

( DΦ

||DΦ||

)

+〈Dg(||DI||),DΦ〉+cg(||DI||)||DΦ||.

The component 〈Dg(||DI||),DΦ〉 guarantees a good attraction towards the boundaries
one aims at detecting but acts locally in a narrow band around the edges. We propose,
as done in [58], to replace W =−Dg(||DI||) by the extrapolated vector field obtained
with our proposed approach.

To illustrate this, we propose an example which still uses the two disks in figure
4.9. In this example, we aim at demonstrating that the initialization stage is now more
flexible than in the case of the classical geodesic active contour model. The initial
condition is made of two contours: one inside the upper disk, the other enclosing the
lower disk. Of course, with an initial contour enclosing both disks, or composed of
two contours enclosing each disk or initialized inside each disk, the extrapolation stage
would not be necessary and the classical geodesic active contour model would perform
adequately. But with this initialization, even with the inflation/deflation force, we
are not guaranteed that the classical geodesic active contour model will provide the
expected segmentation: it will more probably fail to detect both shapes.

Fig. 4.9. Steps of the segmentation of the synthetic image with two disks (200 iterations).

We propose, for this example, a comparison figure 4.10 with another method [41]
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based on the Generalized Fast Marching Method (GFMM) (see [23]), and that allows
weakening of the constraint in the initialization stage. The GFMM developed by
Carlini et al. is an extension of the Fast Marching Method (FMM) that removes the
sign constraint (the normal velocity is of constant sign in the case of the FMM) by
authorizing time-dependent velocity with no restriction on the sign. The obtained
results are similar (computation time of the same order) but the obtained contour is
more regular in the case of the proposed method. Nevertheless, in more general cases
the GFMM-based method offers more flexibility in the initialization stage (see [41] for
more details). A second example taken from [58] is given in figure 4.11. This synthetic

Fig. 4.10. Steps of the segmentation of the synthetic image with two disks by the method
developed in [41].

image contains convex geometrical shapes. The representation of the extrapolated
vector field (not given here) shows that the vector flow points towards the boundaries
of the closest object. This example demonstrates that the initial condition (composed
of several shapes here) can be made inside, outside or across the boundaries, provided
the initial curves contain part of the extrapolated vector flow skeleton. Of course, the
proposed method cannot detect automatically interior contours but this drawback is
overcome by the flexibility in the initialization step. We illustrate this remark with
the example proposed in figure 4.12 (similar to the one in figure 4.6) by taking as
initial shape a deformed torus. This would not be possible with the application of the
classical geodesic active contour method. To finish, we propose an illustration on a
sequence of images representing cross-sections of the main pulmonary artery (courtesy
of CHU du Haut-Lévêque, Pessac) (see figure 4.13). The quality of the first image of
the sequence is moderate. The contrast between the vessel wall and the surrounding
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Fig. 4.11. Steps of the segmentation of the synthetic image taken from [58].

Fig. 4.12. Steps of the segmentation process of a slice of the brain.

medium (see figure 4.14) is impaired at the bottom left-hand side of the section.
Impairment in the contrast can be related to partial volume effect, flow turbulences,
that are correlated with the severity of the pulmonary arterial hypertension, and the
absence of the so-called ‘proton inflow phenomenon’, which leads to poor blood image
contrast at the end-diastolic cardiac phase in the image frame.

To cope with this difficulty, we propose to apply our algorithm to increase the
capture range of the external force field. The initial condition (see figure 4.15) crosses
the object boundary. The obtained final contour for the first image is then used as
an initial condition for the second image figure 4.16, and so on (see figure 4.17, figure
4.18 and figure 4.19). All the images are segmented according to the same process.
The time step is fixed at ∆t=0.2, and the coefficient balancing the component related
to the extrapolated vector field is chosen equal to 2.0.



C. LE GUYADER AND L. GUILLOT 443

Fig. 4.13. Cross-sections of the main pulmonary artery.

Fig. 4.14. Zoom of the portion of the pulmonary artery section that exhibits weak edge.

5. Conclusion

This paper was devoted to the theoretical study of a new method to extrapolate
vector fields using the infinity Laplacian and with applications to image processing.
Contrary to prior related works, the number of unknowns is reduced to a single one.
The problem is phrased in a variational framework and the Euler-Lagrange equation is
then derived. It is solved using a gradient descent method, which leads to a parabolic
problem that falls within the viscosity solution theory framework.

The existence and uniqueness of a viscosity solution continuous in space and time,
Lipschitz continuous in space and uniformly continuous in time is established.

The theoretical study is complemented by several numerical experiments, first
dedicated to the extrapolation problem, and then extended to the segmentation prob-
lem.
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Fig. 4.15. Steps of the segmentation process for the first image of the sequence (iterations 10,
20, 30, 40, 50).

Fig. 4.16. Steps of the segmentation process for the second image of the sequence (iterations
10, 20, 30, 40).

Fig. 4.17. Steps of the segmentation process for the third image of the sequence (iterations 10,
20).

Fig. 4.18. Steps of the segmentation process for the fourth image of the sequence (iterations
10, 20).
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Fig. 4.19. Steps of the segmentation process for the last image of the sequence (iterations 10, 20).

The experiments show that the proposed approach performs well, even if in strong
concavities the results are slightly less accurate than with the NGVF. The model is
sensitive to the geometry of the boundaries and to the textures present in the images.

In the segmentation framework, the introduction of this new force field allows to
widen the choice of the initial condition.
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Appendix A. Main steps of Proof 3. For the sake of clarity, in this proof we
denote Ψ to be the initial condition of the evolution problem (2.2), that is, v(x,0)=
Ψ(x) in (2.2).

We follow the arguments of [33]. We first observe that for λ>0, ũ=u−
λ

T − t
is also

a subsolution of (2.2) and

ũt +G∗(x,Dũ,D2ũ)≤−
λ

(T − t)2
≤−

λ

T 2
.

Since u≤v follows from ũ≤v in the limit λ→0, it will simply suffice to prove the
comparison under the additional assumptions:







(i) ut +G∗(x,Du,D2u)≤−
λ

T 2
,

(ii) lim
t→T

u(x,t)=−∞.
(A.1)

Let us set

M = sup
R2×[0,T )

u(x,t)−v(x,t).

We aim to show that M ≤0. We argue by contradiction and assume that M >0.

Let us also introduce M0 defined by:

M0 = sup
R2×R2×[0,T )

{

u(x,t)−v(y,t)−(4ǫ)−1|x−y|4
}

, ǫ>0.
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This supremum is reached, owing to the bound above of u and −v, the fact that
f(x,y,t)=u(x,t)−v(y,t)−(4ǫ)−1|x−y|4 is such that ∀h∈Z

2,f(x+2h,y+2h,t)=
f(x,y,t), and (A.1)(ii). We denote (x0,y0,t0)∈R

2×R
2× [0,T ) to be a maximum

point. Consequently, x0, y0 and t0 depend on ǫ and M0 =u(x0,t0)−v(y0,t0)−
(4ǫ)−1|x0−y0|

4. Obviously, M0≥M >0.

Let us assume that t0 =0. Because the function u is a subsolution , we have
u(x,0)≤Ψ(x) on R

2. Similarly, because the function v is a supersolution, we have
v(x,0)≥Ψ(x) on R

2.
Consequently,

M ≤M0 =u(x0,0)−v(y0,0)−(4ǫ)−1|x0−y0|
4≤Ψ(x0)−Ψ(y0)−(4ǫ)−1|x0−y0|

4,

≤ sup
R2×R2

(

Ψ(x)−Ψ(y)−(4ǫ)−1|x−y|4
)

. (A.2)

We first observe that 0≤ sup
R2×R2

(

Ψ(x)−Ψ(y)−(4ǫ)−1|x−y|4
)

. Using the same argu-

ments as those previously mentioned, this supremum is reached. We denote (xǫ,yǫ)
to be a maximum point of Ψ(x)−Ψ(y)−(4ǫ)−1|x−y|4. Denoting by R= ||Ψ||L∞(R2),
we then obtain

0≤Ψ(xǫ)−Ψ(yǫ)−(4ǫ)−1|xǫ−yǫ|
4≤2R−(4ǫ)−1|xǫ−yǫ|

4,

so |xǫ−yǫ|
4≤8ǫR and |xǫ−yǫ|≤ (8ǫR)

1

4 .

But, 0≤Ψ(xǫ)−Ψ(yǫ)−(4ǫ)−1|xǫ−yǫ|
4≤B0|xǫ−yǫ| (B0 Lipschitz constant of Ψ).

Thus passing to the limit in (A.2) when ǫ tends to 0, it yields that sup
R2×R2

(

Ψ(x)−

Ψ(y)−(4ǫ)−1|x−y|4
)

−→
ǫ→0

0, which contradicts M >0. So t0 >0 if ǫ is small enough.

In the following, we denote by ϕ the function defined by ϕ(x,y,t)=(4ǫ)−1|x−y|4.
We now distinguish two cases:

Case x0 =y0:

By virtue of Theorem 8.3 from [33], setting τ =∂tϕ(x0,y0,t0)=0 and A=
D2ϕ(x0,y0,t0), for all γ >0 there exist τ1,τ2∈R and X,Y ∈S2 such that

τ =0= τ1−τ2,

(τ1,p1,X)∈P̄+u(x0,t0), (τ2,p2,Y )∈P̄−v(y0,t0),

−(
1

γ
+ ||A||)I ≤

(

X 0
0 −Y

)

≤A+γA2, (A.3)

with p1 =Dxϕ(x0,y0,t0) and p2 =−Dyϕ(x0,y0,t0). In the following, we set p0 =x0−
y0.
A mere calculus gives p1 =(ǫ)−1|x0−y0|

2(x0−y0)=(ǫ)−1|p0|
2p0, p2 =p1, and

A=
2

ǫ
|p0|

2

(

Z −Z

−Z Z

)

, with Z =
I

2
+

p0⊗p0

|p0|2
.
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This last inequality gives that X ≤Y , owing to the particular form of matrix A.

Lemma A.1 (Matrix estimates.). We have the following estimates on the matrix
A:











||A||≤
6|p0|

2

ǫ
,

A≤||A||I and
1

||A||
A2≤||A||I,

where ||A||= sup
ξ∈R4\{0

R4}

〈Aξ,ξ〉

〈ξ,ξ〉
.

Proof. Let us set ξ =

(

ξ1

ξ2

)

∈R
4.

〈Aξ,ξ〉=
2|p0|

2

ǫ
〈Z(ξ1−ξ2),ξ1−ξ2〉,

≤
2|p0|

2

ǫ
||Z|| |ξ1−ξ2|

2,

≤
4|p0|

2

ǫ
||Z|| |ξ|2.

So, ||A||≤
4|p0|

2

ǫ
||Z||. Moreover, now with ξ =

(

ξ1

ξ2

)

∈R
2,

〈Zξ,ξ〉=
1

2
|ξ|2 +〈

p0⊗p0

|p0|2
ξ,ξ〉,

=
1

2
|ξ|2 +

1

|p0|2
〈p0,ξ〉

2,

≤
1

2
|ξ|2 + |ξ|2 =

3

2
|ξ|2.

We finally deduce that ||Z||≤
3

2
and ||A||≤

6

ǫ
|p0|

2.

Let us take ξ =

(

ξ1

ξ2

)

∈R
4.

〈Aξ,ξ〉≤ ||A|| |ξ|2 = ||A||〈Iξ,ξ〉 and
1

||A||
〈A2ξ,ξ〉≤ ||A|| |ξ|2 = ||A||〈Iξ,ξ〉.

Using the previous lemma and taking γ =
1

||A||
, we can rewrite the matrix inequality

(A.3) in the following form:

−
12

ǫ
|p0|

2I ≤

(

X 0
0 −Y

)

≤
12

ǫ
|p0|

2I. (A.4)

Because the function u is a subsolution and the function v is a supersolution, we have,
using (A.1)(i),

τ1 +c(x0,(ǫ)
−1|p0|

2p0)+E(x0,X)+F∗((ǫ)
−1|p0|

2p0,X)≤−
λ

T 2
,

τ2 +c(y0,(ǫ)
−1|p0|

2p0)+E(y0,Y )+F ∗((ǫ)−1|p0|
2p0,Y )≥0. (A.5)
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If x0 =y0, from (A.4), it yields X =0 and Y =0. Having F ∗(0,0)=F∗(0,0)=0 and

E(x,0)=0, we thus obtain from (A.5) that
λ

T 2
≤0, which is absurd.

Case x0 6=y0:

∀γ >0, we have

(

X 0
0 −Y

)

≤A+γA2. As x0 6=y0, we take γ =
1

2
ǫ|p0|

−2 and obtain

(

X 0
0 −Y

)

≤2ǫ−1

(

C −C

−C C

)

(A.6)

with C = |p0|
2I +5p0

⊗

p0. From this last inequality, it yields X ≤Y and using the
ellipticity of F , the following holds:

F ((ǫ)−1|p0|
2p0,Y )−F ((ǫ)−1|p0|

2p0,X)≤0.

E(y0,Y )−E(x0,X)= b(x0)trace(X)−b(y0)trace(Y ),

=trace

(

b(x0)X 0
0 −b(y0)Y

)

,

=trace

0

B

B

@

0

B

B

@

b(x0)I
√

b(x0)b(y0)I
√

b(x0)b(y0)I b(y0)I

1

C

C

A

0

B

B

@

X 0
0 −Y

1

C

C

A

1

C

C

A

=trace

0

B

B

@

G

0

B

B

@

X 0
0 −Y

1

C

C

A

1

C

C

A

,

where G is the matrix defined by G=

(

b(x0)I
√

b(x0)b(y0)I
√

b(x0)b(y0)I b(y0)I

)

.

Because the matrix G is symmetric semipositive definite, it can be written in the form
of G=χχT and

trace

(

G

(

X 0
0 −Y

))

=trace

(

χχT

(

X 0
0 −Y

))

=trace

(

χT

(

X 0
0 −Y

)

χ

)

,

=

4
∑

i=1

χT
i

(

X 0
0 −Y

)

χi,

where χi is the ith column of χ.
Using inequality (A.6), we have

4
∑

i=1

χT
i

(

X 0
0 −Y

)

χi ≤2ǫ−1
4

∑

i=1

χT
i

(

C −C

−C C

)

χi,

so,

trace

(

G

(

X 0
0 −Y

))

≤2ǫ−1trace

(

G

(

C −C

−C C

))

,

≤2ǫ−1
(
√

b(x0)−
√

b(y0)
)2

trace(C)≤2ǫ−1κ2

b
1
2

|x0−y0|
2trace(C).

A mere calculus gives that trace(C)=7|p0|
2, and finally,

trace(G

(

X 0
0 −Y

)

)≤14ǫ−1κ2

b
1
2

|x0−y0|
4.



C. LE GUYADER AND L. GUILLOT 449

Consequently, by applying Theorem 8.3 from [33] with the same notations as in the
case x0 =y0, we obtain that there exist τ1,τ2∈R, and X,Y ∈S2 such that

τ1 +c(x0,(ǫ)
−1|p0|

2p0)+E(x0,X)+F ((ǫ)−1|p0|
2p0,X)≤−

λ

T 2
,

τ2 +c(y0,(ǫ)
−1|p0|

2p0)+E(y0,Y )+F ((ǫ)−1|p0|
2p0,Y )≥0.

So,
∣

∣

∣

∣

∣

∣

λ

T 2
≤ c(y0,(ǫ)

−1|p0|
2p0)−c(x0,(ǫ)

−1|p0|
2p0)+E(y0,Y )−E(x0,X),

≤
(

κd +14κ2

b
1
2

)

ǫ−1|x0−y0|
4 +κh|x0−y0|,

the function c being locally Lipschitz in space. From this last inequality, we deduce
that

λ≤
(

κd +14κ2

b
1
2

)

ǫ−1T 2|x0−y0|
4 +κhT 2|x0−y0|. (A.7)

Denoting by ϑ=max
(

||u||L∞(R2),||v||L∞(R2)

)

, it can be easily proved that |x0−y0|≤

(8ϑǫ)
1

4 .

Let us now denote by M ′ = lim
h→0

sup
|y−x|≤h, t∈[0,T )

(

u(x,t)−v(y,t)

)

and Mh =

sup
|y−x|≤h

(

u(x,t)−v(y,t)

)

. Let (xh
n,yh

n,thn) be such that u(xh
n,thn)−v(yh

n,thn)≥Mh−
1

n

with |xh
n−yh

n|≤h. So,

Mh−
1

n
−

h4

4ǫ
≤u(xh

n,thn)−v(yh
n,thn)−(4ǫ)−1|xh

n−yh
n|

4≤M0≤u(x0,t0)−v(y0,t0).

Letting h tend to 0, it yields

M ′−
1

n
≤u(x0,t0)−v(y0,t0).

Sending ǫ to 0, it gives

M ′−
1

n
≤ lim

ǫ→0
inf u(x0,t0)−v(y0,t0),

≤ lim
ǫ→0

sup u(x0,t0)−v(y0,t0),

≤ lim
ǫ→0

sup sup
|x−y|≤(8ϑǫ)

1
4 , t∈[0,T )

(

u(x,t)−v(y,t)

)

,

≤ lim
h→0

sup sup
|x−y|≤h, t∈[0,T )

(

u(x,t)−v(y,t)

)

,

=M ′. (A.8)

So lim
ǫ→0

u(x0,t0)−v(y0,t0)=M ′. From M ′−
1

n
≤M0≤u(x0,t0)−v(y0,t0), we obtain

lim
ǫ→0

M0 =M ′.

Consequently, lim
ǫ→0

(

u(x0,t0)−v(y0,t0)−M ′

)

= lim
ǫ→0

|x0−y0|
4

4ǫ
=0.

Letting ǫ tend to 0 in (A.7), we obtain a contradiction. Therefore M ≤0 and

u≤v in R
2× [0,T ).
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[3] R. Arcangeli and M.C. López de Silanes, Multidimensional Minimizing Splines, Kluwer Aca-
demic Publishers, 2004.

[4] G. Aronsson, Minimization problems for the functional sup
x

F (x,f(x),f ′(x)), Arkiv für Mate.,
6, 33–53, 1965.

[5] G. Aronsson, Minimization problems for the functional sup
x

F (x,f(x),f ′(x)). II, Arkiv für
Mate., 6, 409–431, 1966.

[6] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Arkiv für Mate., 6(6),
551–561, 1967.

[7] G. Aronsson, On the partial differential equation u2
x
uxx +2uxuyuxy +u2

y
uyy =0, Arkiv für

Mate., 7, 395–425, 1968.
[8] G. Aronsson, Minimization problems for the functional sup

x
F (x,f(x),f ′(x)). III, Arkiv für

Mate., 7, 509–512, 1969.
[9] G. Aronsson, M. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing

functions, American Mathematical Society Bulletin. New Series, 41, 439–505, 2004.
[10] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential

Equations and the Calculus of Variations, Springer Verlag, 2002.
[11] J.F. Aujol and G. Aubert, Modeling very oscillating signals. Application to image processing,

Applied Mathematics and Optimization, 51(2), 163–182, 2005.
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