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FRONT PROPAGATION IN INFINITE CYLINDERS. I. A
VARIATIONAL APPROACH∗

C.B. MURATOV† AND M. NOVAGA‡

Abstract. In their classical 1937 paper, Kolmogorov, Petrovsky and Piskunov proved that for a
particular class of reaction-diffusion equations on the real line the solution of the initial value problem
with the initial data in the form of a unit step propagates at long times with constant velocity equal
to that of a certain special traveling wave solution. This type of a propagation result has since been
established for a number of general classes of reaction-diffusion-advection problems in cylinders. Here
we show that in problems without advection or in the presence of transverse advection by a potential
flow these results do not rely on the specifics of the problem. Instead, they are a consequence of the
fact that the equation considered is a gradient flow in an exponentially weighted L

2-space generated
by a certain functional, when the dynamics is considered in the reference frame moving with constant
velocity along the cylinder axis. We show that independently of the details of the problem only three
propagation scenarios are possible in the above context: no propagation, a “pulled” front, or a
“pushed” front. The choice of the scenario is completely characterized via a minimization problem.
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1. Introduction
This paper is concerned with the study of front propagation in reaction-diffusion-

advection problems in cylinders which arise in numerous applications [11,15,32]. Let
Ω⊂R

n−1 be a bounded domain (not necessarily simply connected), and consider
Σ=Ω×R, an infinite cylinder in R

n. In Σ, we shall consider the following parabolic
equation

ut +v ·∇u=∆u+f(u,y). (1.1)

Here u=u(x,t)∈R is the dependent variable (corresponding, e.g., to temperature in
combustion problems), v=v(y)∈R

n is an imposed advective flow, and f :R×Ω→R

is a nonlinear reaction term. By x=(y,z)∈Σ, we denote a point with coordinate
y∈Ω on the cylinder cross-section and z∈R along the cylinder axis. We also assume
that u=0 is a trivial solution of (1.1).

We are considering a particular situation in which the flow v is transverse to the
axis of the cylinder, i.e., when v does not have a component along z. Furthermore,
we assume that v(y) is a potential flow:

v=(−∇yϕ,0), ϕ :Ω→R. (1.2)

The parts of ∂Ω on which ν ·∇yϕ>0, denoted by ∂Ω+, are the inlets and the parts
where ν ·∇yϕ<0, denoted by ∂Ω−, are the outlets (of fuel in combustion problems,
e.g.). Here and below ν is the outward normal to ∂Ω (or ∂Σ). We denote the parts of
∂Ω on which ν ·∇yϕ=0 by ∂Ω0, thus these are impermeable walls. Consistent with
this interpretation of the flow v, we impose the following boundary conditions:

u
∣∣
∂Σ±

=0, ν ·∇u
∣∣
∂Σ0

=0. (1.3)
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on ∂Σ± =∂Ω±×R and ∂Σ0 =∂Ω0×R. Naturally, the case of a purely reaction-
diffusion equation (ϕ=0) with either Dirichlet or Neumann boundary conditions is
included in our formulation. In fact, it is the diffusion part in combination with
Dirichlet boundary conditions and/or the inhomogeneous reaction term that present
the main difficulties in the analysis of this problem. Nevertheless, for the sake of
generality and because of the importance to applications (see e.g. [8,40]) we will treat
the case of a general transverse potential flow here.

Equation (1.1) has been the subject of great many studies (see e.g. [2–4, 7, 18,
27, 35, 45] and references therein, this list is certainly incomplete), beginning with
the pioneering work of Fisher [17] and Kolmogorov, Petrovsky and Piskunov [23].
The celebrated result of Kolmogorov, Petrovsky and Piskunov applied to the Fisher’s
equation:

ut =uxx +u(1−u), (x,t)∈R×R
+, (1.4)

states that the solution of the initial value problem for this equation with the initial
data u(x,0)=θ(−x), where θ is the Heaviside step, propagates at long times with the
asymptotic speed c∗ =2 (in the sense of average velocity of the level sets). The speed
c∗ is that of a special traveling wave solution and is determined by the linearization
of (1.4) around u=0 (the so-called minimal “pulled” front in the terminology of [39]).

One might ask whether this kind of propagation result holds more generally for
equations like (1.1). For example, given that the solutions of (1.1) take values in the
unit interval, what can one say about propagation of solutions of the initial value
problem with front-like initial data, say,

u(x,0)=θ(−z)tanh(ε−1dist(x,∂Σ±∪{z =0})), (1.5)

with ε sufficiently small? Previous work on this subject relied heavily on the ap-
plications of the Maximum and Comparison Principles which require a rather de-
tailed knowledge of certain special types of solutions of (1.1), in particular, traveling
waves [1,2,16,21,27,35] (see also [9,18,28,38] for an alternative approach using prob-
abilistic methods). If no assumptions on the type of the nonlinearity, the geometry of
the domain, or the flow are made, then there is no hope to obtain a sharp character-
ization of propagation within this setup using such techniques.

What we found, however, is that a sharp characterization of propagation can
be made without relying on any a priori detailed knowledge about the problem by
using instead a variational approach. This approach relies on the observation, first
made in the case of gradient reaction-diffusion systems [30] and generalized here to
the considered class of reaction-diffusion-advection problems, that (1.1) written in a
reference frame moving with speed c along the axis of the cylinder is a gradient flow
in the exponentially weighted L2-space:

ut =−e−cz−ϕ(y) δΦc[u]

δu
, (1.6)

generated by the functional in (2.3). In particular, traveling wave solutions with the
right decay at z =+∞ are critical points of Φc, and it is natural to look for the
minimizers of this functional [24, 25]. It turns out, as we will show below, that the
speed of these minimizers, if they exist, in fact determines the asymptotic propagation
speed for the solutions of the initial value problem for (1.1) (in the sense of the leading
edge, see the following sections for precise definitions) with the initial data from (1.5)
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for sufficiently small ε. This is the situation of “nonlinear selection” in the terminology
of [39], with the minimizer being the fastest “pushed” front.

If, on the other hand, these minimizers do not exist, but at the same time the
solution u=0 is linearly unstable, then, as we show below, there exists a certain trav-
eling wave solution (a minimal wave) whose speed is determined by the linearization
of the problem around u=0 and governs the asymptotic propagation speed for the
initial data from (1.5) with ε≪1. This is the situation of “linear selection” in the
terminology of [39], with the traveling wave solution in question being the slowest
“pulled” front. Finally, if neither the minimizer nor the minimal wave exist, then no
propagation is possible.

Thus, we demonstrate that independently of the specifics of the problem under
consideration and, in particular, independently of whether the nonlinearity in (1.1) is
of KPP, monostable, ignition, bistable, or any other type whatsoever, there are only
three scenarios possible for front-like initial data in (1.5) with ε small enough: either
no propagation at all, or propagation with the speed of the minimal wave, or propa-
gation with the speed of the minimizer. These statements are a simple consequence of
Corollary 5.3 and Theorem 5.8. It appears from our analysis that the phenomenon of
propagation from front-like initial data is a consequence of the structure of equation
(1.1) alone, and not the precise details of f , Ω, or ϕ. This is the main result of this
paper. We have also obtained a series of results characterizing the relevant traveling
wave solutions, such as their existence, uniqueness (up to translations), monotonicity,
asymptotic decay, as well as the way to estimate the propagation speed, together with
general statement of propagation results for wide classes of initial data, including lo-
calized initial data leading to pairs of counter-propagating fronts. Note that we have
not addressed the questions of convergence of solutions of (1.1) to traveling waves,
which is part of the conclusions of [16, 23, 27, 35]. This will be the subject of future
study.

This paper is organized as follows. In section 2, we present all the basic assump-
tions used throughout the paper. In sections 3 and 4, we present our results, given
by Thms 3.3, 3.9, and 4.2 on the existence and properties of certain special traveling
wave solutions which play the key role for the propagation results of section 5. In
the next section, section 5, we establish general propagation results for the leading
edge of the solutions of the initial value problem in (1.1), see Theorem 5.8. Finally,
in section 6 we compare the obtained results with other studies in the literature, and
then discuss some open problems.

Notation. Throughout the paper Ck, C∞
0 , Ck,α denote the usual spaces of

continuous functions with k continuous derivatives, smooth functions with compact
support, and continuously differentiable functions with Hölder-continuous derivatives
of order k for α∈ (0,1) (or Lipschitz-continuous when α=1), respectively. Unless it is
otherwise clear from the context, “·” denotes a scalar product and | · | the Euclidean
norm in R

n. The symbol ∇ is reserved for the gradient in R
n, while ∇y stands

for the gradient in Ω⊂R
n−1. Similarly, the symbol ∆ stands for the Laplacian in

R
n, and ∆y for the Laplacian in Ω. By a classical solution of (3.1) we mean a

function u∈C2(Σ)∩C1(Σ) that satisfies this equation with a given value of c>0 and
the boundary conditions in (1.3). The classical solution of (1.1) is understood to
be a C2

1 (Σ×(0,∞))∩C0(Σ× [0,∞)) function [13]. The numbers C,K,M,λ, etc., will
denote generic positive constants.

2. Preliminaries and main hypotheses

In this section, we summarize all the hypotheses used in this paper in the analysis
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of (1.1). Throughout the paper, Ω⊂R
n−1 is assumed to be a bounded, connected

(possibly multiply connected) open set with boundary of class C2. We also assume
that ∂Ω± and ∂Ω0 are a collection of finitely many (possibly one) closed disjoint
portions of ∂Ω.

Now we discuss the assumptions on the nonlinearity f(u,y). Our method is quite
general, and so we do not need to explicitly prescribe the type of the nonlinearity in
our problem. We basically need to assume that f(·,y) is sufficiently regular on some
compact subset of R which is an invariant set with respect to the evolution governed
by (1.1). Since the Comparison Principle holds for (1.1) [34], without loss of generality
we may assume that u(x,t)∈ [0,1], as long as:

(H1) The function f : [0,1]×Ω→R satisfies

f(0,y)=0, f(1,y)≤0. ∀y∈Ω. (2.1)

(H2) For some γ∈ (0,1)

f ∈C0,γ([0,1]×Ω), fu ∈C0,γ([0,1]×Ω), ϕ∈C1,γ(Ω), (2.2)

where fu =∂f/∂u.
The starting point of our variational approach is the functional

Φc[u]=

∫

Σ

ecz+ϕ(y)

(
1

2
|∇u|2 +V (u,y)

)
dx, (2.3)

where

V (u,y)=





0, u<0,

−
∫ u

0
f(s,y)ds, 0≤u≤1,

−
∫ 1

0
f(s,y)ds, u>1.

(2.4)

From the definition of V and the assumptions on f it readily follows that |V (u)|≤
Cu2, and so Φc[u] is naturally defined in an exponentially weighted Sobolev space
H1

c (Σ) (for conciseness we do not explicitly mention ϕ, which is part of the definition
of H1

c (Σ)). Formally, let D(Σ) be the subspace of C∞(Σ) defined by the restrictions
to Σ of all the functions u∈C∞

0 (Rn) which vanish on ∂Σ±. Then

Definition 2.1. For c>0, denote by H1
c (Σ) the completion of D(Σ) with respect to

the norm

||u||2H1
c (Σ) = ||u||2L2

c(Σ) + ||∇u||2L2
c(Σ), ||u||2L2

c(Σ) =

∫

Σ

ecz+ϕ(y)|u|2dx. (2.5)

These are the spaces in which we will consider both the minimizers of Φc and the
solutions of the initial value problem for (1.1).

Let us mention an important general property of the spaces H1
c (Σ) that is an

analogue of the Poincaré inequality which will be needed to establish the existence
result (for the proof we refer to [25]).

Lemma 2.2. For all u∈H1
c (Σ), we have

c2

4

∫ +∞

R

∫

Ω

ecz+ϕ(y)u2dydz≤
∫ +∞

R

∫

Ω

ecz+ϕ(y)u2
zdydz, (2.6)

∫

Ω

eϕ(y)u2(y,R)dy≤ e−cR

c

∫ +∞

R

∫

Ω

ecz+ϕ(y)u2
z dydz, (2.7)
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for any R∈R∪{−∞}.
We also have the following obvious inclusions for spaces H1

c (Σ) with different
values of c:

Lemma 2.3. Let c′ >c>0. Then

H1
c′(Σ)∩W 1,∞(Σ)⊂H1

c (Σ)∩W 1,∞(Σ). (2.8)

We now turn to the hypothesis that is crucial to the existence of the minimizers
of Φc:

(H3) There exist c>0, satisfying c2 +4ν0 >0, where

ν0 = min
ψ∈H1(Ω)
ψ|∂Ω±

=0

R(ψ), R(ψ)=

∫
Ω

eϕ(y)(|∇yψ|2−fu(0,y)ψ2)dy∫
Ω

eϕ(y)ψ2dy
, (2.9)

and u∈H1
c (Σ), such that Φc[u]≤0 and u 6≡0.

This type of condition was already used in [25] in the context of Ginzburg-Landau
problems as a sufficient condition for existence of variation traveling waves, and is
needed for proving sequential lower semicontinuity of Φc in the weak topology of
H1

c (Σ). What we will show here, however, is that for scalar equations this condition
is also necessary for existence of minimizers of Φc.

Let us also introduce an auxiliary functional

E[v]=

∫

Ω

eϕ(y)

(
1

2
|∇yv|2 +V (v,y)

)
dy, (2.10)

defined for all v∈H1(Ω) satisfying Dirichlet boundary conditions on ∂Ω±. By regu-
larity of V and ϕ the critical points of E satisfy

∆yv+∇yϕ ·∇yv+f(v,y)=0, v|∂Ω±
=0, ν ·∇v|∂Ω0

=0. (2.11)

Clearly, v =0 is a critical point of E, and in general there may exist only non-trivial
minimizers of E over all v∈H1(Ω) subject to v|∂Ω±

=0, denoted by v0 [12]. In this
case we necessarily have that v0 >0 and E[v0]≤0. Thus, existence of a non-trivial
minimizer of E guarantees existence of a critical point of E with negative energy.

3. Existence and properties of the minimizers
In this and the following section we analyze existence of certain traveling wave

solutions for (1.1). A traveling wave solution is a pair (c,ū), with c>0, such that
u(x,t)= ū(y,z−ct) solves (1.1). Substituting this form into (1.1), we obtain an elliptic
equation for ū with the respective boundary conditions

∆ū+cūz +∇yϕ ·∇yū+f(ū,y)=0, ū
∣∣
∂Σ±

=0, ν ·∇ū
∣∣
∂Σ0

=0. (3.1)

Note that (3.1) may in general have many solutions [7, 14, 29]. In the context of the
initial value problem for (1.1) one is interested in the particular type of traveling waves
in the form of fronts that invade the u=0 equilibrium at z =+∞. From the basic
energy estimates for (3.1), one expects the solution to connect two distinct equilibria:
v+ =0 at z =+∞ and v− =v(y) at z =−∞, where v is a solution of (2.11), when
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c>0 [7,14,43]. The speed c of such a front is part of the problem of finding solutions
of (3.1).

Here we present a formal discussion of the decay of the solutions in order to
clarify the key issues (these statements will be justified later on). Suppose there
exists a solution of (3.1) with a particular speed c>0. Linearizing (3.1) with respect
to u=0, we obtain that

ū(y,z)∼
∑

k

akψk(y)e−λkz, (3.2)

which describes the asymptotic behavior of the traveling wave solution at z =+∞,
provided that all λk >0. Here λk satisfies a quadratic equation

λ2
k−cλk−νk =0. (3.3)

where νk are the eigenvalues of

∆yψk +∇yϕ ·∇yψk +fu(0,y)ψk +νkψk =0, (3.4)

with the same boundary conditions as in (3.1). The eigenvalue problem in (3.4) can
be easily characterized.

Proposition 3.1. There exists a countable set of eigenvalues {νk} and a complete
set of orthonormal (in L2(Ω;eϕ(y)dy)) eigenfunctions ψk for problem (3.4). All νk

are real, and ν0 <ν1≤ν2≤ ...νk →∞. One can choose ψ0 >0 in Ω, conversely all the
other eigenfunctions change sign for k≥1.

Proof. The existence of an increasing sequence of real eigenvalues converging to
+∞ follows from the spectral representation theorem for compact self-adjoint oper-
ators (see for instance [10, Theorem VI.11]). The fact that ν0 has multiplicity one
follows from the characterization of ψ0 as a minimizer of the Rayleigh quotient R in
(2.9), which also gives ψ0 >0, by the Strong Maximum Principle. Since the other
eigenvectors are orthogonal to ψ0, they must necessarily change sign.

Remark 3.2. Note that if ν0 6=0, then v =0 is an isolated critical point for the
functional E in the cone C =

{
v∈H1(Ω) : v≥0

}
.

Proof. Assume by contradiction that there exists a sequence of critical points
vn →0 in H1(Ω), such that vn ≥0. Letting ṽn =vn/‖vn‖H1(Ω), since each vn solves
(2.11), by elliptic regularity we have the estimate

‖ṽn‖H1(Ω) =1 ‖ṽn‖H2(Ω)≤C, (3.5)

for some C >0. In particular, there exists a function ṽ∈H1(Ω), with ‖ṽ‖H1 =1 and
ṽ≥0, such that ṽn → ṽ in H1(Ω). Recalling that ṽn satisfies the equation

∆y ṽn +∇yϕ ·∇ṽn +
1

‖vn‖H1(Ω)
f

(
‖vn‖H1(Ω)ṽn,y

)
=0, (3.6)

passing to the limit as n→+∞, we obtain that ṽ solves (3.4) with νk =0, thus con-
tradicting Proposition 3.1.

In the following, we always assume that ψ0 >0. Then, in order for ū to remain
positive for all z >0 we need a0 >0 and λ0 <λk for all k >0. Let us first consider
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the simpler case of ν0 >0, which corresponds to the situation in which u=0 is locally
stable with respect to (1.1). In this case (3.3) has a unique positive solution for each
k, and, furthermore, λk are increasing with k. Therefore, the asymptotic behavior of

ū is given by a0ψ0(y)e−λ+
0 z, where a0 >0 and λ±

k =λ±(c,νk) with

λ±(c,νk)=
c±

√
c2 +4νk

2
. (3.7)

Note that λ+
0 > c

2 , and so these solutions are expected to lie in the exponentially
weighted Sobolev space H1

c (Σ).
On the other hand, the case of ν0 <0, when u=0 is unstable, requires a more

careful consideration. First of all, it is clear that we should have c2 +4ν0≥0 in order
for ū to remain positive (otherwise the approach to zero is oscillatory due to the
imaginary part of λk). However, when c2 +4ν0 >0, there are two positive solutions
of (3.3) for λ0, according to (3.7). In fact, one would generically expect the decay of
the solution to be governed by λ−

0 =λ−(c,ν0), since λ−(c,ν0)<λ+(c,ν0) in this case.
On the other hand, if the solution is also known to lie in H1

c (Σ), then λ−
0 is not

allowed, since λ−
0 < c

2 would make ū fail to lie in H1
c (Σ). Therefore, those traveling

wave solutions that lie in H1
c (Σ) are expected to have a non-generic exponential

decay a0ψ0(y)e−λ+
0 z, with a0 >0. This is still true in the case ν0 =0 for exponentially

decaying solutions.
One can repeat the above arguments to study the behavior of the solution at

z =−∞. Linearizing around u=v(y), we obtain u−v∼∑
k ãkψ̃k(y)e−λ̃kz and

∆yψ̃k +∇yϕ ·∇yψ̃k +fu(v,y)ψ̃k + ν̃kψ̃k =0. (3.8)

Here we should require that λ̃k <0, where λ̃k satisfies (3.3) with ν̃k instead of νk. As-
suming that all ν̃k 6=0, one sees immediately that ãk =0 for all ν̃k <0. If, furthermore,
it is known that ū−v <0 for large negative z, then we must have ν̃0 >0 and ã0 <0, and
choose λ̃0 = λ̃−

0 =λ−(c,ν̃0). In other words, under the assumptions of non-degeneracy
of v and approach from below, the equilibrium v is necessarily a local minimum of E.

If ū∈H1
c (Σ), then, at least formally, ū is a critical point of the functional Φc,

since the first variation of Φc is

δΦc[u]=

∫

Σ

ecz+ϕ(y) (∇u ·∇δu+Vu(u,y)δu)dx

=−
∫

Σ

ecz+ϕ(y)

(
∆u+cuz +∇yϕ ·∇yu+f(u,y)

)
δudx, (3.9)

where we integrated by parts, using the boundary conditions from (1.1), and assumed
that 0≤u(x)≤1. We call this type of traveling wave solution variational traveling
waves [25, 30]. Among these solutions, of special interest are the traveling wave solu-
tions which are in fact minimizers of Φc in H1

c (Σ). Let us note that existence of a
minimizer ū of Φc implies that

Φc[ū]=0. (3.10)

This follows immediately from the way the functional Φc transforms under translations

Φc[u(y,z−a)]=ecaΦc[u(y,z)], (3.11)
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and the fact that Φc[ū] should not change under infinitesimal translations of ū. We
also point out that for the same reason (3.10) should in fact hold for any critical point
of Φc and, hence, for any variational traveling wave.

Let us note that not all variational traveling waves can be minimizers of Φc,
and not all traveling wave solutions, of course, have to be variational. Nevertheless,
as was shown in [24, 30], for a large class of nonlinearities and sufficiently rapidly
decaying initial data only the variational traveling waves can be selected as the long-
time attractors for the initial value problem governed by (1.1). It may also happen
that the minimizer of Φc is the only variational traveling wave among all traveling
wave solutions satisfying 0<ū(x)<1 in Σ, hence, the only candidate for the long-time
asymptotic behavior of the solutions of the initial value problem.

Since the variational traveling waves and minimizers, in particular, play a key
role in the propagation phenomena governed by (1.1), we will concentrate our efforts
on establishing their existence and uniqueness. Later, in section 5, we will show that
their speed in fact determines the asymptotic long time propagation speed for the
solutions of the initial value problem for (1.1) with sufficiently rapidly decaying front-
like initial data (for more precise definitions and results, see section 5). Below is our
main result concerning the existence of minimizers of Φc.

Theorem 3.3. Under hypotheses (H1)–(H3), there exists a unique c†∈R such that
c†≥ c>0 (where c is the “trial velocity” given by assumption (H3)), and ū∈H1

c†(Σ),
ū 6≡0, such that

(i) ū∈C2(Σ)∩W 1,∞(Σ), ū solves (3.1) with c= c†, and ū is a minimizer of Φc† .

(ii) ū(y,z) is strictly monotone decreasing in z for all y∈Ω, limz→+∞ ū(·,z)=0
in C1(Ω), and limz→−∞ ū(·,z)=v in C1(Ω), where v is a critical point of E,
with E[v]<0 and 0<v≤1 in Ω.

(iii) ū(y,z)=a0ψ0(y)e−λ+(c†,ν0)z +O(e−λz), with some a0 >0 and λ>λ+(c†,ν0),
uniformly in C1(Ω× [R,+∞)), as R→+∞.

(iv) ν̃0≥0, moreover, if ν̃0 >0, then ū(y,z)=v(y)+ ã0ψ̃0(y)e−λ−(c†,ν̃0)z +
O(e−λz), with some ã0 <0 and λ<λ−(c†, ν̃0), uniformly in C1(Ω×(−∞,R]),
as R→−∞.

(v) The obtained minimizer ū of Φc† is unique, up to translations.

Proof of part (i). The existence of a speed c†≥ c, a function ū∈H1
c†(Σ) min-

imizing Φc† , and the regularity of ū can be proved exactly as in [25, Theorem 1.1].
We will outline the proof of this statement here, modifying it in a few parts (so as
to not to rely on regularity of ū), in order to be able to apply it in the sequel to this
work [31]. The idea is to consider constrained minimizers of Φc, i.e., find uc ∈Bc,
where

Bc =

{
u∈H1

c (Σ) :

∫

Σ

ecz+ϕ(y)u2
z dx=2

}
, (3.12)

which satisfies Φc[uc]= infu∈Bc
Φc[u]. Note that by definition uc 6=0. Then, by hy-

pothesis (H3), we would necessarily have Φc[uc]≤0. Note that ū(x)∈ [0,1] for all
x∈Σ, since for any u∈H1

c (Σ) we have Φc[ũ]≤Φc[u], where ũ is the truncation of u:

ũ(x)=





0, u(x)<0,

u(x), 0≤u(x)≤1,

1, u(x)>1,

(3.13)
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and, in fact, this inequality is strict, unless ũ=u a.e.
Now, suppose the constrained minimizer uc exists, and let

c† = c
√

1−Φc[uc]. (3.14)

Note that since Φc[uc]≤0 we have c†≥ c. For any u∈H1
c†(Σ),u 6=0, define ua(y,z)=

u
(
y, c(z−a)

c†

)
for all (y,z)∈Σ. Then clearly ua ∈H1

c (Σ), and it is always possible to

choose a∈R such that ua ∈Bc. Assuming that a is chosen this way, we have

ec†aΦc† [u]=

∫

Σ

ec†z+ϕ(y)

(
1

2
|∇u(y,z−a)|2 +V (u(y,z−a),y)

)
dx

=
( c

c†

)∫

Σ

ecz+ϕ(y)

{
1

2

(
c†

c

)2(
∂ua

∂z

)2

+
1

2
|∇yua|2 +V (ua,y)

}
dx

=
c†

2−c2

2c†c

∫

Σ

ecz+ϕ(y)

(
∂ua

∂z

)2

dx+
( c

c†

)
Φc[ua]

=
( c

c†

)
(Φc[ua]−Φc[uc]), (3.15)

where in the computation of the last line in (3.15) we used (3.12) and (3.14). Now,
since Φc[uc]≤Φc[u] for any u∈Bc, we have Φc† [u]≥0 for all u∈H1

c†(Σ) and fur-

thermore the minimum is attained on ū(y,z)=uc

(
y, c†z

c

)
. In other words, ū is a

non-trivial minimizer of Φc† .
To prove existence of a constrained minimizer uc, one picks a minimizing sequence

on Bc. Since ϕ∈L∞(Ω), all the arguments in the proofs of Propositions 5.5 and 5.6
of [25] remain valid. The only difference is that in Lemma 5.4 of [25] one needs to
estimate Φc[u,(R,+∞)] with the help of (2.9). The fact that ū is a classical solution
of (3.1), together with gradient estimates, follows by standard regularity theory [20]
(see [25, Prop. 3.3]). Indeed, as a minimizer of Φc† the function ū solves

∫

Σ

ec†z+ϕ(y) (∇ū ·∇φ−f(ū,y)φ)dx=0, (3.16)

where φ∈H1
c (Σ) is an arbitrary test function. This is the weak form of (3.1).

Finally, to prove uniqueness of c†, suppose there exist c†1 >c†2 >0, and suppose the
corresponding non-trivial minimizers are ū1,2, with ū1∈H1

c†2
(Σ) by Lemma 2.3. Let

ũ(y,z)= ū1

(
y,

c†2z

c†1

)
∈H1

c†2
, then

Φc†2
[ũ]=

(
c†1
c†2

)∫

Σ

ec†1z+ϕ(y)





1

2

(
c†2
c†1

)2(
∂ū1

∂z

)2

+
1

2
|∇yū1|2 +V (ū1,y)



dx

=

(
c†1
c†2

)(
Φc†1

[ū1]−
c†1

2−c†2
2

2c†1
2

∫

Σ

ec†1z+ϕ(y)

(
∂ū1

∂z

)2

dx

)
<0. (3.17)

This contradicts existence of a minimizer for Φc†2
, which implies that Φc†2

[u]≥Φc†2
[ū2]=

0 for all u∈H1
c†2

(Σ).
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Proof of part (ii). Let us first prove monotonicity of ū. The idea of the proof
is related to the one used to prove uniqueness later on in part (v). We note that an
alternative way of proving monotonicity of the minimizers is via a one-dimensional
monotone rearrangement (see, e.g., [33]).

First of all, by repeating the arguments of [25, Proposition 3.3(iii)] we may con-
clude that ū(z,·)→0 in C0(Ω) as z→+∞ (in fact, ū(y,z)≤Ce−λz for some C >0
and λ>0). Standard regularity estimates [20] then imply that the convergence of
ū(y,z+R) is in fact in W 2,p(Ω×(0,1)), for all p>1, as R→+∞. Hence, in particu-
lar, ū(z,·)→0 in C1(Ω).

Now, for any a>0, let us introduce

ū1(y,z)=min(ū(y,z),ū(y,z−a)), (3.18)

ū2(y,z)=max(ū(y,z),ū(y,z−a)). (3.19)

According to (3.10), we have

0=Φc† [ū(y,z)]+Φc† [ū(y,z−a)]=Φc† [ū1]+Φc† [ū2], (3.20)

which is obtained by first splitting the integration domain in each integral into sub-
domains where ū1≥ ū2 and vice versa, and then recombining different terms. Also
since Φc† [u]≥0 for all u∈H1

c†(Σ), it follows that

Φc† [ū1]=0, Φc† [ū2]=0. (3.21)

Hence, ū1 and ū2 are also non-trivial minimizers. Now, consider w= ū2− ū1≥0. In
view of hypothesis (H2), w satisfies an elliptic equation

∆w+c†wz +∇yϕ ·∇yw+k(y,z)w=0, (3.22)

for some k∈L∞(Σ). Then, according to the argument following (6.8) in [25, Propo-
sition 6.4], which is based on the Strong Maximum Principle, we conclude that either
w=0 or w>0 in Σ. The first possibility would imply that ū is independent of z and,
hence, is zero, which is impossible. So, w>0, implying that ū(y,z−a)>ū(y,z) for
all x=(y,z)∈Σ. In view of the arbitrariness of a>0, this implies that ū is strictly
monotone decreasing.

Now, as was shown in part (i), the minimizer ū takes values from the unit interval.
Therefore, by monotonicity of ū, there exists a function v :Ω→R, with values v(y)∈
[0,1] such that ū(y,z)→v(y) for all y∈Ω, hence, again by elliptic regularity, v∈C1(Ω)
and u(·,z) converges to v in C1(Ω). For any R∈R, fix a test function φ(y,z)=
ψ(y)ηR(z) with arbitrary ψ∈H1(Ω), ψ|∂Ω±

=0 and ηR(z)=η0(z−R)≥0, with η0∈
C∞

0 (R). Then (3.16) becomes (here and below the prime denotes differentiation with
respect to z)

∫

supp(η)

∫

Ω

ec†z+ϕ(y)(ψūzη
′
R +ηR∇yū ·∇yψ−f(ū,y)ηRψ)dydz =0. (3.23)

Multiplying this equation by e−c†R, passing to the limit R→−∞ in the integral and
using the Fubini Theorem, we obtain

0=

∫

Ω

eϕ(y)(∇yv ·∇yψ−f(v,y)ψ)dy, (3.24)
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which is precisely the Frechet derivative of E[v]. Therefore, v is a critical point of E
and, furthermore, by standard elliptic regularity, we have v∈C2(Ω)∩C1(Ω), and v
satisfies (2.11).

Let us now show the inequality E[v]<0. First, note that E[v]= lim
z→−∞

E[ū(·,z)],

and E[ū(·,z)] is a continuous function of z. Let us show that E[v]≤E[ū(·,z)] for all
z∈R. Indeed, observe that by (3.10) and the Fubini Theorem we have

0=Φc† [ū]=

∫ +∞

−∞
ec†zE[ū(·,z)]dz+

1

2

∫

Σ

ec†z+ϕ(y)ū2
zdx, (3.25)

hence there exists some z0∈R such that E[ū(y,z0)]<0. Now, if E[v]>E[ū(·,z)] for
some z∈R, we can choose z0 to be a minimum of E[ū(·,z)], in view of the fact that
E[ū(·,z)]→0 as z→+∞. Then, taking ũ(y,z)= ū(y,z0) for all z <z0, and ũ(y,z)=
ū(y,z) for all z≥z0, for any y∈Ω, we find that Φc† [ũ]<0, contradicting the fact that
ū is a minimizer. Therefore, E[v]≤E[ū(·,z0)]<0.

Proof of part (iii). To obtain the decay of ū as z→+∞, we explicitly construct
the solution for z >R, with R large enough, by expanding it into a Fourier series
in terms of the eigenfunctions in (3.4) on the cross sections. The arguments below
basically formalize the earlier discussion of the decay of the solution at the beginning
of this section (see also [7, 41]).

For any z∈R, introduce

ak(z)=

∫

Ω

eϕ(y)ψk(y)ū(y,z)dy. (3.26)

By standard W 2,p estimates for ū on slices of Σ [20,25], we have ak ∈C1,α(R) for any
α∈ (0,1) and, furthermore, since by Proposition 3.1 the functions ψk form a complete
orthonormal basis, we obtain [10, Theorem VI.11]

ū(y,z)=
∞∑

k=0

ak(z)ψk(y),
∞∑

k=0

a2
k(z)=

∫

Ω

eϕ(y)ū2(y,z)dy, (3.27)

where the first series converges in L2(Ω;eϕ(y)dy) for each z. Testing (3.16) with
φ(y,z)=ψk(y)η(z), where η∈C∞

0 (R) is arbitrary, applying the Fubini Theorem, and
performing integration by parts, we obtain

∫ +∞

−∞
ec†z(a′

kη′+(νkak +gk)η)dz =0, (3.28)

where we introduced

gk(z)=

∫

Ω

eϕ(y)(fu(0,y)ū(y,z)−f(ū(y,z),y))ψk(y)dy. (3.29)

Note that gk ∈C0,γ(R). Again, by standard regularity theory [20], the functions ak

belong to C2,γ(R) and satisfy a second-order ordinary differential equation

a′′
k +c†a′

k−νkak =gk. (3.30)

Now, think of gk(z) as the components of a linear operator G in the basis of ψk’s:

gk(z)=

∫

Ω

eϕ(y)(Gū)(y,z)ψk(y)dy, Gū=(fu(0,·)−fu(ũ,·))ū, (3.31)
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for some 0<ũ<ū by hypothesis (H2), with ū given by (3.27). Since fu(·,y)∈C0,γ(R),
the operator G is a bounded operator from L2(Ω;eϕdy) to itself for any fixed z∈R.
In the following we freeze ũ in (3.31) and treat (3.30) as a system of linear ordinary
differential equations with ak(z)∈ l2 for all z∈R or, equivalently, a dynamical system
for ū(·,z)∈L2(Ω;eϕ(y)dy).

Using variation of parameters and keeping in mind that c2 +4νk >0 by hypothesis
(H3) and Proposition 3.1, one can write the solution for (3.30) in the form

ak(z)=a+
k (R)e−λ+(c†,νk)(z−R) +a−

k (R)e−λ−(c†,νk)(z−R)

− 1√
c†

2
+4νk

∫ z

R

eλ+(c†,νk)(ξ−z)gk(ξ)dξ

+
1√

c†
2
+4νk

∫ z

R

eλ−(c†,νk)(ξ−z)gk(ξ)dξ, (3.32)

where a±
k (R) are constants of integration satisfying a+

k (R)+a−
k (R)=ak(R). In par-

ticular, if λ−(c†,νk)<0, we have

a−
k (R)=− 1√

c†
2
+4νk

∫ +∞

R

eλ−(c†,νk)(ξ−R)gk(ξ)dξ, (3.33)

which is obtained by multiplying (3.32) by eλ−(c†,νk)z and passing to the limit z→+∞,
taking into account boundedness of ak’s and gk’s.

Now, by hypothesis (H2) we have ||G(z)||L2(Ω;eϕ(y)dy)≤C||ū(·,z)||γL∞(Ω), hence,

in particular, ||G(z)||L2(Ω;eϕ(y)dy) =O(e−µz) for some µ>0 (see the discussion at the

beginning of the proof of part (ii); this condition is only needed if λ−(c†,νk)=0 for
some k). Then, it is easy to see that with a+

k (R) fixed for all k and with a−
k (R) fixed

whenever λ−(c†,νk)≥0, the mapping defined by (3.32) is a contraction for sufficiently
large R in the Banach space with the norm

||ū||= sup
z∈[R,+∞)

||ū(·,z)||L2(Ω;eϕ(y)dy). (3.34)

Indeed, denoting the operator generated by the right-hand side of (3.32) as T and
introducing u1,u2 as described above, after some straightforward calculations we ob-
tain

||T (u1−u2)||≤Ce−µR/2||u1−u2||. (3.35)

In arriving at the last estimate we used the fact that the sequences (νk),(λ+(c†,νk)),
and (−λ−(c†,νk)) are monotone increasing.

So, T is a contraction, and so for any fixed a+
k (R), and for any fixed a−

k (R)
corresponding to λ−(c†,νk)≥0 there is a unique solution whose L2(Ω;eϕ(y)dy) norm
is uniformly bounded on [R,+∞). Moreover, by the estimate (2.7) of Lemma 2.2,

we have |ak(z)|≤Ce−c†z/2 for all k, which implies that (3.33) in fact holds whenever

λ−(c†,νk)≥0 as well, since λ−(c†,νk)< c†

2 by hypothesis (H3).
Let us now show that the value of λ+(c†,ν0) determines the exponential rate of

decay of the solution at z =+∞. For that, it is necessary that (3.33) does not hold with
λ−(c†,ν0) replaced with λ+(c†,ν0) and a−

k (R) replaced by −a+
k (R). Otherwise, there
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exists k =k0 such that this equation does not hold (the opposite implies that ū=0 in

Ω×(R,+∞)). Then ak =a+
k (R)e−λ(z−R) +O(e−(1+

1
2γ)λz) for all k0≤k≤k1 for which

λ=λ+(c†,νk) (with at least one a+
k (R) 6=0), and ak =O(e−(1+

1
2γ)λz) for all other

k’s. That k1 is finite follows from the fact that λ+(c†,ν) is a strictly monotonically
increasing function of ν, and that by Proposition 3.1 the eigenvalues of νk have finite
multiplicities and νk →+∞. In view of these estimates we have

ū(y,z)=

k1∑

k=k0

a+
k (R)e−λ+(c†,νk0

)(z−R)ψk(y)+o(e−λ+(c†,νk0
)z). (3.36)

Therefore, by orthogonality of all ψk’s to ψ0 >0 for k≥k0 and the fact that these ψk’s
change sign, we see that ū(·,z) will become negative somewhere on a set of non-zero
measure in Ω. This is clearly impossible, and so we finally obtain the estimate

ū(y,z)=a+
0 (R)e−λ+(c†,ν0)(z−R)ψ0(y)+O(e−λz), (3.37)

with λ=min{λ+(c†,ν1),(1+ 1
2γ)λ+(c†,ν0)}>λ+(c†,ν0), in L2(Ω,eϕ(y)dy) for each z.

By construction a0(z)>0, and so a+
k (R)>0 for large enough R.

Finally, consider the function w(y,z)= ū(y,z)−a+
0 (R)e−λ+(c†,ν0)(z−R)ψ0(y),

which satisfies a linear equation in Ω×(R,+∞)

∆w+c†wz +∇yϕ ·∇yw+fu(0,y)w−Gw

=a+
0 (R)Gψ0(y)e−λ+(c†,ν0)(z−R). (3.38)

Since for each z both w and the right-hand side of this equation are O(e−λR) in
L2(Ω×(R,R+1),eϕ(y)dy) with λ>λ+(c†,ν0), standard elliptic regularity theory [20,
Theorem 9.13] implies that w is O(e−λR) in W 2,2(Ω×(R+ 1

4 ,R+ 3
4 )) and hence, by

Sobolev imbedding, in Lp(Ω×(R+ 1
4 ,R+ 3

4 ),eϕ(y)dy) for some p>2. So, the above

estimate in fact holds in Lp(Ω×(R,R+1),eϕ(y)dy). Iterating this argument using
W 2,p estimates until the space imbeds into C1(Ω×(R+ 1

4 ,R+ 3
4 )), we obtain the

result.

Proof of part (iv). When ν̃0 >0, the proof follows exactly as in part (iii), where
we do not need an a priori estimate on the exponential decay of ū(·,z) to v as z→−∞
any more, since all ν̃k >0, and hence λ−(c†, ν̃k)<0 and λ+(c†, ν̃k)>0 for all k.

To prove that ν̃0 <0 is impossible, consider the analog of (3.30) with k =0:

ã′′
0 +c†ã′

0− ν̃0ã0 = g̃0. (3.39)

Observe that since ū(·,z)→v uniformly as z→−∞, by hypothesis (H2) and the fact
that ψ̃0 >0 and ū−v <0 we have

|g̃0(z)|≤C

∫

Ω

eϕ(y)(v(y)− ū(y,z))1+γψ̃0(y)dy≤ε|ã0(z)|, (3.40)

for any ε>0, as long as z is a sufficiently large negative number. It is then easy to
see (using, e.g., variation of parameters) that (3.39) does not have bounded solutions
for z <R when ε is small enough.
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Proof of part (v). Our proof of uniqueness is based on the argument due to
Heinze [21]. Suppose that ū1 and ū2 are two non-trivial minimizers of Φc. Then, there
exists a translation a such that ū1(y

∗,z∗)= ū2(y
∗,z∗−a) at some point x∗ =(y∗,z∗)∈

Σ. Indeed, if not, then without loss of generality we can assume that ū1(y,z)<
ū2(y,z−a) for all x=(y,z)∈Σ and all a∈R. Also, by the result of part (iii), ū2(y,z−
a)→0 as a→−∞, hence, ū1 =0, contradicting the assumption that ū1 is a non-trivial
minimizer. So, ū1(y

∗,z∗)= ū2(y
∗,z∗−a), and let us introduce

ū3(y,z)=min(ū1(y,z),ū2(y,z−a)), (3.41)

ū4(y,z)=max(ū1(y,z),ū2(y,z−a)). (3.42)

Arguing as in part (ii), we have

0=Φc[ū1]+Φc[ū2]=Φc[ū3]+Φc[ū4]⇒Φc[ū3]=Φc[ū4]=0. (3.43)

Therefore, ū3 and ū4 are also minimizers of Φc, and w= ū4− ū3≥0. Once again, using
the arguments following (3.22) and taking into account that w(x∗)=0, from the Strong
Maximum Principle we conclude that w(x)=0 in all of Σ. So, ū1(y,z)= ū2(y,z−a)
for all x=(y,z)∈Σ.

This completes the proof of Theorem 3.3.

Let us note that if the nonlinearity f is independent of y and the boundary
conditions are Neumann, then the solution is essentially one-dimensional.
Proposition 3.4. Let ū be a solution obtained in Theorem 3.3, and assume that
∇yf =0 and ∂Σ± =∅. Then ū depends only on the variable z.

Proof. The proof follows directly from the argument of Proposition 6.3 of [25].

In view of Proposition 3.4, the planar front solutions of Proposition 3.4 are also
the fastest variational traveling waves among all waves with fixed y-independent non-
linearity and different choices of the boundary conditions.

The proof of parts (iii), (iv) of Theorem 3.3 relied only on the fact that the
minimizer is sandwiched between the two equilibria it connects. Using the same
arguments as in part (iii) of Theorem 3.3, it is also easy to show that for a variational
traveling wave one should have c2 +4ν0 >0 in order for the wave to have the right
decay. So we have

Proposition 3.5. Let uc ∈H1
c (Σ) be a solution of (3.1) which also satisfies 0<uc <v,

where v =limz→−∞uc(·,z) uniformly in Ω. Then, c2 +4ν0 >0, and statement (iii) of
Theorem 3.3 holds for uc. If, in addition, ν̃0 6=0, statement (iv) of Theorem 3.3 holds
for uc as well.

More generally, since, according to Proposition 3.5 and (3.10), any constant sign
variational traveling wave is a trial function satisfying hypothesis (H3), the minimizer
obtained in Theorem 3.3 is the fastest variational traveling wave. In other words, we
have

Proposition 3.6. If uc ∈H1
c (Σ) is a solution of (3.1), as in Proposition 3.5, then

c≤ c†.

In fact, the following stronger statement concerning all variational traveling waves
that connect the same equilibria as the minimizer holds.

Proposition 3.7. Let uc ∈H1
c (Σ) be a solution of (3.1), and let 0<uc <v, where

v =limz→−∞uc(y,z) is the same as in Theorem 3.3, and ν̃0 6=0. Then (c,uc)=(c†,ū),
where the pair (c†,ū) is the solution obtained in Theorem 3.3, up to translation.
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Proof. First of all, in view of Proposition 3.5 the fact that uc ∈H1
c (Σ) implies

that uc has the decay specified in part (iii) of Theorem 3.3. By direct inspection,
λ+(c,ν0)>0 and λ−(c,ν̃0)<0 are both increasing functions of c. Therefore, when
c<c†, the solution uc decays to zero slower exponentially than ū as z→+∞, and faster
to v as z→−∞. So, it is possible to translate ū sufficiently far towards z =−∞ to
achieve ū<uc in Σ. Then, using the Comparison Principle for parabolic equations [34]
applied to the corresponding traveling wave solutions of (1.1), we see that uc must
move no slower than c†, which is impossible. If we repeat this argument for c>c†,
except now one has to translate ū towards z =+∞ to get an appropriate supersolution,
and once more we obtain a contradiction.

In other words, there are no other variational traveling waves which are sand-
wiched between the same equilibria as the minimizer of Φc† obtained in Theorem 3.3.
We also point out that under an assumption of non-degeneracy and uniqueness of
the local minimizer v0 >0 with E[v0]<0 (which is then the global minimizer, see the
discussion at the end of section 2), the pair (c†,ū) from Theorem 3.3 is in fact the
only variational traveling wave solution. In general, however, there may exist other
variational traveling waves with speeds c<c† which connect u=0 to a local minimum
of E other than v in part (ii) of Theorem 3.3.

Remark 3.8. In view of Proposition 3.5 and equation (3.10), existence of a minimizer
necessarily implies that hypothesis (H3) is true. Thus, hypothesis (H3) is both neces-
sary and sufficient for existence of variational traveling waves (this fact was already
pointed out in [24] in the case Σ=R).

Now we would like to get back to considering an important special case of ν0≥0,
i.e., the case when u=0 is a locally stable (or marginally stable) solution of (1.1). Here,
to satisfy hypothesis (H3) we just need to find a non-trivial trial function u∈H1

c (Σ)
for which Φc[u]≤0 for some small enough c>0. In fact, the following stronger version
of Theorem 3.3 holds.

Theorem 3.9. Assume that hypotheses (H1) and (H2) hold, and that ν0≥0 in (2.9).
Then the statements of Theorem 3.3 remain true if and only if

inf
v∈H1(Ω)
v|∂Ω±

=0

E[v]<0. (3.44)

Proof. The proof follows from a straightforward extension of the arguments of
Proposition 6.2 of [25].

In other words, the statement of Theorem 3.9 holds if and only if there exists a
non-trivial minimizer of E in the admissible class. In particular, if v0 is the unique
critical point with negative energy (necessarily the minimizer) and ν0 >0, then there
is a unique pair (c†,ū) solving (3.1). Indeed, by Proposition 3.7 the minimizer in
Theorem 3.9 is the only variational traveling wave, and there are no other traveling
wave solutions for ν0 >0. Note that the same statement is true for the ignition-type
nonlinearity from combustion theory under the assumption of uniqueness of v0.

4. Minimal waves
What if hypothesis (H3) is not satisfied? In this case, there are obviously no

variational traveling wave solutions. However, if ν0 <0, it is still possible to have
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traveling wave solutions with values u(x)∈ [0,1] which invade the u=0 equilibrium
with speed c≥ c0, where

c0 =2
√
−ν0, (4.1)

and which do not lie in H1
c (Σ) [7]. Among them, the so-called minimal waves, i.e.,

solutions with c= c0, if they exist, are of special significance for propagation (see
section 5).

The following proposition gives a general sufficient condition for non-existence of
minimizers for Φc and is a generalization of the earlier results of [24,25].

Proposition 4.1. Under hypotheses (H1) and (H2), assume that ν0 <0 and

2

u2

∫ u

0

f(s,y)ds≤fu(0,y), ∀y∈Ω. (4.2)

Then the functional Φc has no non-trivial minimizers.

Proof. Let us first show that under this assumption, Φc[u]=0 implies u=0 for
all c≥ c0, where c0 is given by (4.1). After an integration by parts, we can write

Φc[u]=

∫

Σ

ecz+ϕ(y)

{
1

2

(
uz +

c

2
u
)2

+
1

2
|∇yu|2 +

c2

8
u2 +V (u,y)

}
dx. (4.3)

By the assumption of the proposition we have V (u,y)≥− 1
2fu(0,y)u2, and so

Φc[u]≥ 1

2

∫

Σ

ecz+ϕ(y)

{(
uz +

c

2
u
)2

+ |∇yu|2 +

(
c2

4
−fu(0,y)

)
u2

}
dx

≥ 1

2

∫

Σ

ecz+ϕ(y)

{(
uz +

c

2
u
)2

+

(
c2

4
+ν0

)
u2

}
dx. (4.4)

The second term in the integrand above is non-negative for c≥ c0, so Φc[u]=0 would
imply that u is a minimizer and that the first term in the integrand is equal to
zero. That, in turn, means that u=v(y)e−cz/2 for some v :Ω→R, and, in view of
boundedness of the minimizers of Φc, we have v≡0.

Let us now show that when c<c0, the functional Φc is not bounded from below.
For that, consider a trial function

uλ(y,z)=

{
aψ0(y)e−λz, z >0,

aψ0(y), z≤0,
(4.5)

where ψ0 >0 is the zeroth eigenfunction of the operator in (3.4) and λ> c
2 . Choosing

a>0 small enough, we can always make V (uλ(y,z),y)≤− 1
2 (fu(0,y)−ε)u2

λ for any
ε>0. Plugging uλ into the functional, we obtain

Φc[uλ]≤ 1

2

∫ 0

−∞

∫

Ω

ecz+ϕ(y){|∇yuλ|2−(fu(0,y)−ε)u2
λ}dydz

+
1

2

∫ +∞

0

∫

Ω

ecz+ϕ(y){|∇yuλ|2 +(λ2 +ε−fu(0,y))u2
λ}dydz

=
a2

2c

∫

Ω

eϕ(y)(|∇ψ0|2−(fu(0,y)−ε)ψ2
0)dy

+
a2

2(2λ−c)

∫

Ω

eϕ(y)(|∇yψ0|2 +(λ2 +ε−fu(0,y))ψ2
0)dy

=
a2

2

(
ν0 +ε

c
+

λ2 +ε+ν0

2λ−c

)∫

Ω

eϕ(y)ψ2
0 dy. (4.6)
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It is then easy to see that the last line in the expression above can be made arbitrarily
large and negative for sufficiently small ε and c<c0 by choosing λ sufficiently close
to c

2 . Therefore, in this case the functional Φc has no minimizers.

A typical example of the situation in which Φc has no non-trivial minimizers is
the KPP-type nonlinearity of (1.4). Non-existence of variational traveling waves in
this case follows from the above proposition. Nevertheless, our variational procedure
allows us to establish existence of traveling waves with speed c= c0, where c0 is defined
in (4.1), when ν0 <0 and non-trivial minimizers of Φc do not exist. As in the case
of the minimizers, this solution turns out to determine the asymptotic propagation
speed for sufficiently rapidly decaying front-like initial data (see section 5). Thus, to
summarize the results of Theorem 3.3 and Theorem 4.2 below, under the condition
in (3.44) there always exists a positive monotone traveling wave solution with speed
satisfying c2 +4ν0≥0 which decays exponentially at z =+∞.

Theorem 4.2. Assume that hypotheses (H1) and (H2) hold, whereas hypothesis
(H3) is not satisfied. Assume in addition that ν0 <0. Then there exists ū0∈C2(Σ)∩
W 1,∞(Σ) which solves (3.1) with c= c0, where c0 is given by (4.1). Furthermore, ū0

has the limiting behavior

ū0(y,z)=(a0 +b0z)e−
1
2 c0zψ0(y)+O(e−λz), (4.7)

for some λ> c0

2 and either b0 >0 or b0 =0,a0 >0, as z→+∞, and assertions (ii) and
(iv) of Theorem 3.3 still hold for u0.

Proof. We prove this theorem by approximating the solution (c0,ū0) of (3.1) with
pairs (cε,ūε) solving

∆ūε +cε
∂ūε

∂z
+∇yϕ ·∇yūε +fε(ūε,y)=0, (4.8)

ūε

∣∣
∂Σ±

=0, ν ·∇ūε

∣∣
∂Σ0

=0, (4.9)

where

fε(u,y)=f(u,y)− εγKu

εγ +uγ
, K =max

y∈Ω
fu(0,y)>0. (4.10)

Associated with fε are the function Vε and the functionals Φε
c, Eε, and Rε, defined

with fε in place of f . Note that by the definition of fε we have

0≤f(u,y)−fε(u,y)≤εγK, ∀u∈ [0,1], ∀y∈Ω, (4.11)

and fε(u,y) is a monotonically decreasing function of ε.
Observe that the assumption ν0 <0 implies (3.44), since for a>0 sufficiently small

we have

infE≤E[aψ0]=
1
2ν0a

2 +o(a2)<0. (4.12)

So, by continuity infEε <0 for sufficiently small ε. We also have ∂fε(u,y)
∂u

∣∣∣
u=0

≤0 for

all y∈Ω. Hence νε
0 ≥0, where νε

0 is defined as the minimum of Rε. Then, by Theorem
3.9 there exists a pair (cε,ūε), with ūε ∈H1

cε
(Σ), which is the minimizer of Φε

cε
, with

all the properties given by Theorem 3.3. In particular, we have

lim
z→−∞

ūε(y,z)=vε(y) in C1(Ω), (4.13)

∆yvε +∇yϕ ·∇vε +fε(vε,y)=0, Eε[vε]<0. (4.14)
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We are now going to demonstrate that the vε are uniformly bounded away from zero
as ε→0.

The proof comes in two steps. First, we show that any critical point vε of Eε

such that Eε[vε]<0 has ||vε||L∞(Ω)≥Cε1/2, with some C >0 and for small enough ε.

Indeed, multiplying (4.14) by eϕ(y)vε and integrating over Ω, and then substituting
the result into the definition of Eε, we get

Eε[vε]=

∫

Ω

eϕ(y)
{
Vε(vε,y)+ 1

2vεfε(vε,y)
}

dy

=
1

2

∫

Ω

eϕ(y)

∫ vε

0

(
s
∂fε(s,y)

∂s
−f(s,y)

)
dsdy

=
1

2

∫

Ω

eϕ(y)

∫ vε

0

s2 ∂

∂s

(
fε(s,y)

s

)
ds≥0, (4.15)

whenever vε ≤Cε1/2 for some C >0 and ε small enough. The last inequality follows
by direct computation and taking into account that f(·,y)∈C1,γ([0,1]), uniformly for
all y∈Ω.

In the second step, we demonstrate that ||vε||L∞(Ω)≥Cε1/2 implies ||vε||L∞(Ω)≥ δ
for some δ >0 independent of ε, for small enough ε. Indeed, assume that ||vε||L∞(Ω)→
0 and define ṽε =vε/||vε||L∞(Ω). Then, from (4.14) ṽε satisfies

∆y ṽε +∇yϕ ·∇ṽε +fu(0,y)ṽε =gε, (4.16)

where the right-hand side may be estimated as

||gε||L∞(Ω)≤C||vε||γL∞(Ω) +εγK||vε||−γ
L∞(Ω). (4.17)

By the previous result, we have that ε||vε||−1
L∞(Ω)→0 as ε→0, hence by assumption

||gε||L∞(Ω)→0 as well. So, since by standard elliptic regularity theory the functions
vε are uniformly bounded in W 2,p(Ω) for all p>n, on a suitable sequence of ε→0
we have ṽε → ṽ0, where ṽ0 solves (4.16) with gε =0, and, furthermore, ||ṽ0||L∞(Ω) =1
and ṽ0≥0 (in fact, by the Strong Maximum Principle, ṽ0 >0) [20]. This gives a
contradiction since, recalling the fact that ν0 <0, the kernel of the linear operator in
the left-hand side of (4.16) does not contain functions which are positive throughout
Ω.

Now, observe that in view of monotonicity of Vε as a function of ε the sequence
of cε is monotone increasing. Furthermore, it is bounded from above by c0. Indeed,
Φcε

[ūε]≤Φε
cε

[ūε]=0, and if cε >c0, then the pair (cε,ūε) satisfies hypothesis (H3) for
the original problem, which is false. So, cε ≤ c0. Let us show that in fact c0 =limε→0 cε.
Indeed, for a>0 fixed consider a trial function

ũε(y,z)=





aψ0(y), z <0,

ae−cz/2ψ0(y), 0≤z≤R,

ae−cR/2
(
1− c(z−R)

2

)
ψ0(y), R≤z≤R+ 2

c ,

0, z >R+ 2
c ,

(4.18)
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for some R>0. By construction, ũε ∈H1
c (Σ). Then

Φε
c[ũε]=

∫ 0

−∞

∫

Ω

ecz+ϕ(y)

(
1

2
|∇ũε|2 +Vε(ũε,y)

)
dydz

+

∫ +∞

0

∫

Ω

ecz+ϕ(y)

(
1

2
|∇ũε|2 +Vε(ũε,y)

)
dydz

=
1

c

∫

Ω

eϕ(y)

(
a2

2
|∇yψ0|2 +Vε(aψ0(y),y)

)
dy

+

∫ R

0

∫

Ω

ecz+ϕ(y)

(
1

2
|∇ũε|2 +V (ũε,y)

)
dydz

+

∫ R

0

∫

Ω

ecz+ϕ(y) (Vε(ũε,y)−V (ũε,y))dydz

+

∫ R+ 2
c

R

∫

Ω

ecz+ϕ(y)

(
1

2
|∇ũε|2 +Vε(ũε,y)

)
dydz. (4.19)

By hypothesis (H2), it is possible to choose the constant a such that

V (ũε,y)≤− 1
2 (fu(0,y)−δ)ũ2

ε, ∀δ >0. (4.20)

Also, we have uniform estimates |Vε(u,y)|≤Cu2/2, where C is independent of ε or y,
and Vε(u,y)−V (u,y)≤εγKu, in view of (4.11). Therefore, continuing the argument
above, we can write

Φε
c[ũε]≤

a2

2c

∫

Ω

eϕ(y)
(
|∇yψ0|2 +Cψ2

0

)
dy

+
a2

2

∫ R

0

∫

Ω

eϕ(y)

(
c2

4
ψ2

0 + |∇yψ0|2−fu(0,y)ψ2
0 +δψ2

0

)
dydz

+KεγaecR/2

∫ R

0

∫

Ω

eϕ(y)ψ0dydz

+
a2

2

∫ R+ 2
c

R

∫

Ω

ec(z−R)+ϕ(y)

(
c2

4
ψ2

0 + |∇yψ0|2 +Cψ2
0

)
dydz.

≤ a2

2c

∫

Ω

eϕ(y)
(
|∇yψ0|2 +Cψ2

0

)
dy

+
a2R

8
(c2 +4ν0−δ)

∫

Ω

eϕ(y)ψ2
0 dy+KεγaRecR/2

∫

Ω

eϕ(y)ψ0dy

+
9a2

c

∫

Ω

eϕ(y)

(
c2

4
ψ2

0 + |∇yψ0|2 +Cψ2
0

)
dy

=a2M1R(c2 +4ν0 +δ)+εγaM2RecR/2 +a2M3, (4.21)

where the Mi are positive constants independent of ε,δ,a,R.
Now, for any positive c<c0 it is possible to choose δ >0 small enough such that

c2 +4ν0 +δ <0. This fixes the value of a. Then, choose R large enough, so that
M1R(c2 +4ν0 +δ)+M3 <0. Finally, there exists ε>0 small enough such that the
term multiplying M2 is sufficiently small, so that the expression in the last line of
(4.21) remains negative. This implies that Φε

c[ũε]≤0, so that cε ≥ c for ε small enough.
In view of the arbitrariness of c, this implies cε → c0.
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Now we construct the limit function ū0 and show that it satisfies (3.1) with c= c0.
Recalling Remark 3.2, the assumption ν0 <0 implies that there exists δ >0 such that
0 is the only critical point of E taking values in [0,δ]. In particular, we can choose
δ small enough, so that maxΩvε >δ for ε small enough. Recalling the monotonicity
and the limit behavior of ūε, after an appropriate translation we can assume that ūε

satisfies, as z→±∞,

max
y∈Ω

ūε(y,0)= δ (4.22)

for small enough ε. As the functions ūε are uniformly bounded in W 1,∞(Σ) and
in W 2,p

loc (Σ), we can pass to the limit as ε→0, and obtain a function ū0∈C2(Σ)∩
W 1,∞(Σ) which solves (3.1) with speed c= c0. Moreover, we have 0≤ ū0≤1, and ū0

satisfies (4.22) and, hence, is not identically zero. Furthermore, ū0 is non-increasing
in the z-variable, and so by the Strong Maximum Principle we have 0<ū0 <1 and
∂ū0/∂z <0 in Σ.

Reasoning as in the proof of [25, Proposition 6.6], we can show that ū0 connects
two critical points v± of E, for z→±∞ respectively, with 0≤v+≤ δ and E[v−]<
E[v+]. By (4.22) and Remark 3.2 it follows that v+ =0 and v− =v, where 0<v≤1,
and hence E[v]<0.

The asymptotic expansion in (4.7) follows from exactly the same arguments as
in the proof of part (iii) of Theorem 3.3. The only ingredient that is missing here is
an a priori estimate of exponential decay of the solution (since it may no longer lie in
any of the exponentially weighted Sobolev spaces H1

c (Σ)). To overcome this difficulty,
consider (3.30) with k =0:

a′′
0 +c0a

′
0 + 1

4c2
0a0 =g0. (4.23)

By the same argument as the one leading to (3.40), we have |g0(z)|≤εa0(z) for
arbitrary ε>0 when z≥R, with R large enough. Therefore, introducing b(z)=
ec0z/2a0(z)>0, from (4.23) we obtain b′′≤εb for all z≥R. Now, choosing b̄(z)=
Ce

√
εz, which solves b̄′′ =εb̄, with C so large that b̄(R)>b(R) and b̄′(R)>b′(R), it is

easy to see that b̄≥ b for all z≥R (since b̃= b̄−b is convex in z and b̃(R)>0, b̃′(R)>0),

implying that a0(z)≤Ce−(
c0
2 −√

ε)z as z→+∞.
This, in turn, implies exponential decay of u0. Indeed, let um(z)=maxy∈Ω ū0(y,z)

and let ym(z) be the location of this maximum in Ω. By previous results we have that
um →0 as z→+∞. Now, by regularity of ∂Ω, there exists a closed cone CΩ (with
finite height) such that each point y∈Ω is a vertex of a cone Cy ⊂Ω congruent to
CΩ. Therefore, by the uniform estimate on |∇u0| for each z sufficiently large there
exists a cone C̃ym

⊆Cym
similar to Cym

such that u0(y,z)≥ 1
2um(z) for all y∈C̃ym

and

|C̃ym
|=C1u

n−1
m (z), with some C1 >0 independent of z. Also, since dist(C̃ym

,∂Ω±)≥
C2um and by the Hopf Lemma the normal derivative of ψ0 on ∂Ω± is bounded from
below [20, Lemma 3.4], we also have that ψ0(y)≥C3um for all y∈Cym

. Using these
estimates in the definition of a0, we get

a0(z)=

∫

Ω

eϕ(y)ū0(y,z)ψ0(y)dy≥
∫

C̃ym

eϕ(y)ū0(y,z)ψ0(y)dy≥Cun+1
m , (4.24)

and so um ≤Ca
1

n+1

0 (z)≤Ce−µz, with some µ>0, for large enough z.

Note that in general there is no uniqueness in Theorem 4.2. This can be easily
seen from the phase plane analysis in the case Σ=R in the presence of multiple



C.B. MURATOV AND M. NOVAGA 819

equilibria. On the other hand, under an extra assumption of non-degeneracy of v =
limz→−∞ ū0(·,z), uniqueness follows from the sliding domain method of Berestycki
and Nirenberg [6] in the class of solutions with the same limit at z =−∞.

Remark 4.3. As follows from the argument of Kawohl [22], if ν0 <0 and s 7→V (
√

s,y)
is a strictly convex function of s for any fixed y∈Ω, there exists a unique positive
critical point of E (necessarily the minimizer with negative energy). Since the assump-
tion of convexity above implies the condition in Proposition 4.1, we are automatically
dealing with the case covered by Theorem 4.2.

We illustrate this situation with an example of the Allen-Cahn equation, for which
f(u)=u(1−u2). Letting w=v2, we can rewrite the functional E as

E[v]= Ẽ[w]=

∫

Ω

eϕ(y)

( |∇w|2
8w

− w

2
+

w2

4

)
dy. (4.25)

By inspection, Ẽ is strictly convex on w>0 (which corresponds to v >0), and so it
admits at most one critical point with negative energy. If it does, there exists a unique
(up to translations) traveling wave solution of (3.1) with speed c0. Let us also point
out that the classical Fisher nonlinearity f(u)=u(1−u) satisfies the assumption of
Remark 4.3.

5. Propagation
We are now going to study the role the traveling waves constructed in the preced-

ing sections play for the initial value problem governed by (1.1). Following [24,30], we
introduce the concept of the solution’s leading edge to study the notion of propagation:

Rδ(t)=sup{z∈R :u(y,z,t)>δ, ∀y∈Ω}, (5.1)

where u solves (1.1), δ >0 is small enough, setting Rδ =−∞ if the set in (5.1) is empty.
Our main result in this section is that, under certain generic assumptions on the front-
like initial data, the solutions of the initial value problem propagate asymptotically
with the speed c† of the minimizers or, if these do not exist, with speed c0 of the
minimal waves.

In order to proceed, we first need to set up a suitable existence theory for the
initial value problem associated with (1.1). This is relatively standard, except for
the fact that we also want to have control on the behavior of solutions at z =+∞
to ensure that the solutions stay in the spaces H1

c (Σ) with appropriate values of c.
This is needed in order to be able to apply the energy methods associated with the
functional Φc evaluated on the solutions of (1.1).

We start with the following basic result that guarantees existence of solutions for
the initial value problem in (1.1) for initial data with sufficiently rapid exponential
decay.

Proposition 5.1. Let c>0 and let u0∈UC(Σ), where UC(Σ) denotes the space of
uniformly continuous functions on Σ. Also, let u0 satisfy the boundary conditions in
(1.3) and assume u0(x)∈ [0,1] for all x∈Σ. Then there exists a unique solution u∈
C2

1 (Σ×(0,∞))∩C0(Σ× [0,+∞)) of (1.1) with boundary conditions from (1.3), which
satisfies u(·,0)=u0, u(x,t)∈ [0,1], for all x∈Σ and t>0, and ‖∇u‖L∞(Σ×(t0,+∞)) <
∞, for all t0 >0. Moreover, if u0∈L2

c(Σ), we also have u∈Cα((0,+∞);H2
c (Σ))∩

C1,α((0,+∞);L2
c(Σ)), for all α∈ (0,1), where H2

c (Σ) denotes the space of functions
with up to second derivatives in L2

c(Σ).
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Proof. The result follows by standard theory of analytic semigroups (see e.g. [26]).
The existence of a unique solution u∈C2

1 (Σ×(0,+∞))∩C0(Σ× [0,+∞)) follows as in
[26, Proposition 7.3.1], which can be extended to a cylindrical domain with boundary
of class C2. The estimate u(·,t)∈ [0,1] follows from the Comparison Principle for
parabolic equations [34, Chapter 3], since u≡0 and u≡1 are sub- and supersolutions
of (1.1), respectively. As a consequence we obtain that ‖∇u‖L∞(Σ×(t0,+∞)) <∞, for
all t0 >0.

Now, let u0∈L2
c(Σ), and denote by A :D(A)→L2

c(Σ) the linear operator Au=
∆u+cuz +∇yϕ ·∇yu, with u∈D(A)=H2

c (Σ)⊂L2
c(Σ). Since A is a sectorial operator

in L2
c(Σ), and u 7→f(u,y) is (after an appropriate extension outside [0,1]) a Lipschitz

map from L2
c(Σ) into itself, it follows from [26, Proposition 7.1.10] extended to a cylin-

drical domain that u∈Cα((0,+∞);H2
c (Σ))∩C1,α((0,+∞);L2

c(Σ)), for all α∈ (0,1).

Note that ũ(y,z,t)=u(y,z+ct,t) satisfies the equation

ũt =∆ũ+cũz +∇yϕ ·∇yũ+f(ũ,y), (5.2)

and as was already noted in the introduction, (5.2) is a gradient flow generated by Φc

on L2
c(Σ). Therefore,

dΦc[ũ(·,t)]
dt

=−
∫

Σ

ecz+ϕ(y)ũ2
t (·,t)dx≤0, (5.3)

which helps to establish c† as the upper bound for the speed of the leading edge for
the initial data with sufficiently fast decay (see also [25,30]).

Proposition 5.2. Under the assumptions of Theorem 3.3, let u0 satisfy the assump-
tions of Proposition 5.1 with some c>c†. Then, for any δ >0 we have Rδ(t)<c′t for
any c′ >c† and for all t≥T , where T =T (c′)≥0.

Proof. First fix any c′∈ (c†,c) and c′′∈ (c†,c′). Then, according to Lemma 2.3,
u(·,t)∈H1

c′′(Σ) as well. According to (5.3) with c= c′′, the function t 7→Φc′′ [u(y,z+
c′′t,t)] is non-increasing, and so 0≤Φc′′ [u(y,z+c′′t,t)]≤C for all t≥ t0 >0. This, in
turn, implies that Φc′′ [u(y,z+c′t,t)]=e−c′′(c′−c′′)tΦc′′ [u(y,z+c′′t,t)]→0. Arguing as
in [25, Proposition 6.10], we conclude that u(y,z+c′t,t)→0 in L2

c′′(Σ), and in view of
the uniform gradient estimate of Proposition 5.1 this means that u(·,t) converges to
zero uniformly on the set Ω× [c′t,+∞) as t→∞. Therefore, there exists T ≥0 such
that Rδ(t)<c′t for all t>T . Since this statement remains true also for all c′ >c, this
completes the proof.

We point out that the proof of Proposition 5.2 relied only on the property Φc[u]≥0
for all u∈H1

c (Σ) for all c>c†. So, as a simple extension of the argument above, we
have the following propagation failure result, consistent with the conclusion of [30].

Corollary 5.3. Assume ν0≥0 and hypothesis (H3) is false, and let u0 satisfy
the assumptions of Proposition 5.1 with some c>0. Then, for any δ >0 we have
Rδ(t)<c′t for any c′ >0 and all t≥T , where T =T (c′)≥0.

On the other hand, if hypothesis (H3) is false, but ν0 <0, then the same is true for
all c>c0, with c0 given by (4.1).

Corollary 5.4. Under the assumptions of Theorem 4.2, let u0 satisfy the assump-
tions of Proposition 5.1 with c>c0. Then, for any δ >0 we have Rδ(t)<c′t for any
c′ >c0 and all t≥T , where T =T (c′)≥0.
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Now we are going to study sufficient conditions for propagation. We point out
right away that in general it is not clear whether a particular initial condition will
result in a solution which propagates with non-zero velocity at long times. For exam-
ple, if f is of bistable type, then propagation is clearly impossible for sufficiently small
initial data, since they will rather decay to zero. In their classical work, Aronson and
Weinberger presented a comprehensive study of propagation phenomena for scalar
reaction-diffusion equations under various assumptions on the nonlinearity f [1, 2].
Their results depend quite delicately on the properties of the traveling wave solu-
tions admitted by these equations and involve extensive applications of Maximum
and Comparison Principles. Recently, a general notion of wave-like solutions of (1.1)
was introduced in [30] that identifies a large class of solutions of gradient reaction-
diffusion systems which are propagating in a certain generalized sense (see Theorem
4.7 of [30]). Under some extra assumptions on the nonlinearity, propagation in this
generalized sense implies propagation in the sense similar to the one used by Aronson
and Weinberger [24,30].

Generally, different modes of propagation can occur in the presence of multiple
traveling wave solutions. Therefore, it is reasonable to ask what part of the initial
condition determines the final propagation speed when propagation does occur. What
we will show below is that for sufficiently rapidly decaying initial data the propagation
speed can be controlled by the behavior of the initial data at z =−∞ for front-like
initial data.

We first give the result under the assumption of existence of minimizers of Φc.

Proposition 5.5. Under the assumptions of Theorem 3.3, let u0 satisfy the assump-
tions of Proposition 5.1 with c= c†, and also assume that liminfz→−∞u0(·,z)≥v of
Theorem 3.3 uniformly in Ω. Then, there exists δ0 >0 such that for all δ∈ (0,δ0) we
have Rδ(t)>ct for any c∈ (0,c†) and all t≥T , where T =T (c)≥0.

Proof. Let us first show that for any c<c† there exists a function uc ∈C1(Σ) with
compact support such that Φc[uc]<0. Indeed, multiplying (3.1) by ecz+ϕ(y)ūz and
integrating over Σ, after a number of integrations by parts we obtain (see also [25,30])

Φc[ū]=
c−c†

c

∫

Σ

ecz+ϕ(y)ū2
z dx<0. (5.4)

Therefore, approximating ū by a function from C1(Σ) with compact support and
taking into account continuity of Φc in H1

c (Σ), we obtain the desired function uc.

Also observe that since ū(·,z)<v for all z∈R, we can choose uc such that
0≤uc(·,z)≤v. Define ΣR =Ω×(−R,R), where R>0 is large enough, so that
supp(uc)⊆ΣR. We now consider a minimizer 0≤ ūc ≤v of Φc over all functions in
H1(Σ) vanishing outside ΣR and on ∂Σ±. By elliptic regularity theory [20], the
minimizer ūc is a classical solution of (3.1) in ΣR, and by the standard reflection
argument ūc ∈W 1,∞(ΣR). Furthermore, since Φc[ūc]≤Φc[uc]<0=Φc[0] and ūc has
compact support, we have 0<ūc ≤v−ε, for some ε>0, by the Strong Maximum
Principle.

Therefore, in view of the uniformity of liminfz→−∞u0(·,z) in Ω, there exists
a∈R such that u0(y,z)≥ ūc(y,z−a) for all (y,z)∈Σ. Choosing ũ(y,z,0)= ūc(y,z−a),
we obtain a subsolution of (5.2) that propagates as R̃δ(t)≥ ct+a−R. Therefore,
Rδ(t)≥ R̃δ(t)>c′t for any c′ <c and t≥T (c′), and the statement follows by the fact
that c can be chosen arbitrarily close to c†.
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Remark 5.6. Note that in general the dependence of Rδ(t) on δ cannot be removed
because of the possibility of stacked waves moving with different speeds in the presence
of multiple equilibria of E [36, 44].

Now, if the minimizers do not exist for Φc, then, as expected, a similar result
holds for u as in Proposition 5.5.

Proposition 5.7. Under the assumptions of Theorem 4.2, let u0 satisfy the as-
sumptions of Proposition 5.1 with c= c0 and let liminfz→∞u0(·,z)≥v of Theorem 4.2
uniformly in Ω. Then, there exists δ0 >0 such that for any c<c0 we have Rδ(t)>ct,
for all δ∈ (0,δ0) and for all t≥T , where T =T (c)≥0.

Proof. The proof is a slight modification of the proof of Proposition 5.5. We first
use the same approximation as in Theorem 4.2 to show that for any c∈ (0,c0) there
exists a function uc ∈C1(Σ) with compact support such that Φc[uc]<0. Indeed, if uε

is a minimizer of the approximating functional Φε
c†ε

from the proof of Theorem 4.2,

then by (5.4) we have Φε
c[uε]<0 for all c<c†ε. In view of the fact that c†ε → c0 from

below, and in view of the continuity of Φε
c in H1

c (Σ), for any c∈ (0,c0) there exists
ε>0 and uc ∈C1(Σ) with compact support such that Φε

c[uc]<0 also. Then, we prove
the claim above by observing that V ≤Vε, and so Φc[uc]≤Φε

c[uc]. Now the conclusion
follows exactly as in Proposition 5.5.

Summarizing all the results obtained above, we have the following

Theorem 5.8. Assume hypotheses (H1) and (H2) are satisfied. Let u0 satisfy the
assumptions of Proposition 5.1 with some c>c∗, where c∗ = c† if hypothesis (H3)
is true, or c∗ = c0 if hypothesis (H3) is false and ν0 <0. In addition, assume that
liminfz→−∞u0(·,z)≥v uniformly in Ω, where v is defined in Theorem 3.3 or Theorem
4.2. Then there exists δ0 >0 such that for all δ∈ (0,δ0] and any ε>0,

(c∗−ε)t<Rδ(t)< (c∗+ε)t (5.5)

for all t≥T , where T =T (ε)≥0.

Thus, the speed c∗ in Theorem 5.8 has a meaning of the propagation speed for
solutions of (3.1) with the initial data whose decay is governed by the L2

c-norm with
c sufficiently large. These are the data that we call “decaying sufficiently rapidly”;
in particular, initial data that equal zero identically for large enough z automatically
fall in this class. Let us mention here that this assumption on the decay of the
initial data is in fact crucial; as is well-known, one can construct solutions which
propagate faster than c∗ when ν0 <0, if the initial data are allowed to decay more
slowly [9, 27,28,30,37,38].

Let us conclude by briefly discussing the situation in which u0 is not a front-like
function, contrary to the liminf assumption of Theorem 5.8, but instead is sufficiently
localized in both positive and negative z-directions, e.g. compactly supported. For
this type of initial data it is a generic property of (1.1) that u(x,t) approaches a
z-independent limit on compact sets as t→∞ (see e.g. [2]). Then, if this limit is in
fact v of Proposition 5.5, we can once again use the function uc constructed in its
proof as a subsolution for large enough times for the solutions of (1.1). Therefore, we
get the following more general version of Theorem 5.8 which, in particular, applies to
localized initial data.

Corollary 5.9. The statement of Theorem 5.8 remains true if the condition
liminfz→−∞u0(y,z)≥v(y) is replaced with liminft→∞u(y,z,t)≥v(y) uniformly on



C.B. MURATOV AND M. NOVAGA 823

compact subsets of Σ. If, in addition, u0(y,−z)∈L2
c(Σ), the same statement holds

for u(y,−z,t).

The last statement in Corollary 5.9 implies that when the initial data is sufficiently
localized, a pair of counter-propagating fronts will develop, moving with the same
speed c∗ in both positive and negative z-directions.

6. Discussion
Let us finally comment on the relationship of our results with those available in

the literature and discuss some open problems. Equation (1.1) has been studied in an
enormous number of works (for references, see the introduction). Let us point out,
however, that the main thrust of research on the reaction-diffusion-advection equation
in (1.1) has been towards problems with shear flows (e.g. when v has a z-component
which depends on y [7, 45, 46]). Such problems are motivated by, e.g., considering a
Poisueille flow of premixed fuel-oxidizer mixture inside an insulated pipe which can
sustain wrinkled deflagration fronts in combustion. We, on the other hand, considered
a different setup, in which the flow is perpendicular to the cylinder axis. Also, we
are constrained to considering only potential flows because of the limitations of our
variational approach. So, we cannot readily treat problems of front propagation in
shear flows considered in the majority of the literature.

Nevertheless, our results can be compared to previous results on existence of
traveling wave solutions in the absence of the flow, v≡0, i.e., for purely reaction-
diffusion problems. For Neumann boundary conditions our results naturally extend a
number of results of Berestycki and Nirenberg [7] to arbitrary types of nonlinearities
and, in particular, to nonlinearities which change type in different portions of the
cylinder cross-section. Moreover, under the assumption of uniqueness of the local
(hence global) non-degenerate minimizer v of E[v] with negative energy we obtain a
unique, monotone, exponentially decaying traveling wave solution which determines
the asymptotic propagation speed for a large class of sufficiently rapidly decaying
front-like initial data. This is even true when ν0 =0, the case that was left open in
the study of [7] and consequent studies (apart from the case of ignition nonlinearities).
Also, as was already mentioned earlier, in the case ν0 <0 existence of minimizers gives
a sharp criterion for linear vs. nonlinear selection, i.e., whether c∗ = c0 or c∗ >c0 in [7].
In fact, we have proposed a new sufficient condition for linear selection (Proposition
4.1), which is more general than the commonly used assumption f(u,y)≤ufu(0,y),
which is usually referred to as the KPP-type nonlinearity [5]. Moreover, the more
restrictive condition from Remark 4.3 would guarantee both the KPP-type behavior of
the traveling waves and the uniqueness of the minimizer of E[v], also for combinations
of Neumann and Dirichlet boundary conditions. We also note that the existence of a
critical speed c∗ in the case ν0 <0 which is established by our analysis no longer relies
on positivity of f and, together with Remark 4.3, applies, e.g., to nonlinearities like
f(u,y)=u(µ(y)−u) considered in [5].

Our method also easily treats various boundary conditions, in particular, Dirichlet
boundary conditions. The papers that are most relevant to our results here are those
of Vega [41–43] (see also [19, 21]). Vega constructed the unique solution connecting
two stable (in a certain sense) critical points of the functional E, provided there are
no other critical points of E with negative energy that are sandwiched between them.
He also constructed a family of solutions connecting an unstable equilibrium of E at
z =+∞ with the stable one at z =−∞ under a similar assumption on other critical
points of E. Our analysis generalizes these results by weakening the assumptions on
the nonlinearity, if we redefine the potential in (2.4) to be the negative antiderivative
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of f only for 0≤u(y,z)≤v(y), where v is a stable equilibrium of E with negative
energy such that there are no other such equilibria sandwiched between 0 and v.
We also only need to verify that ν0≥0 to ensure the existence of a unique, monotone
traveling wave solution connecting 0 and v. In the case ν0 <0, we obtain the existence
of the minimal speed front characterized by the fast exponential decay (see also [35]).
Let us point out that with our variational approach we are able to obtain various
estimates on the traveling wave speed, as well as distinguish between the linear and
nonlinear selection mechanisms. Also, we can similarly obtain various monotonicity
properties of the speed with respect to changes in the nonlinearity or the shape of Ω.

Let us also point out an important limitation of the approach of Vega. Consider
a situation in which the domain Ω consists of two sufficiently large mirror-symmetric
regions connected by a thin neck, with Dirichlet boundary conditions. Clearly, with
a bistable y-independent nonlinearity f (i.e., satisfying (3.44) and ν0 >0) one could
have three positive local minimizers for the functional E: two that are localized in
each of the halves of Ω and one which is localized in both halves. With no other
local minima of E one can use the method of Vega to construct the traveling wave
solutions which are localized in one of the corresponding halves of the cylinder Σ. Our
method, on the other hand, will always pick the (faster) traveling wave solution that
is localized in both halves of the cylinder. Indeed, by mirror symmetry the minimizer
of Φc must also be symmetric, hence the traveling wave will necessarily connect zero
with the symmetric local (also global) minimizer of E. In view of the discussion in
the previous paragraph, in this situation our method will yield all the traveling wave
solutions in the problem after a suitable redefinition of V in each case. We emphasize
that in general our method does not rely on the knowledge of the global picture for
the critical points of the functional E, in contrast to the approach of Vega.

In short, we have obtained a characterization of propagation in the spirit of Aron-
son and Weinberger [2] for the considered problem (see also [18]). It would be inter-
esting to see how the notion of propagation related to the motion of the leading edge
used here relates to the generalized notion of propagation which was recently intro-
duced for a class of the so-called wave-like solutions in [30, Theorem 4.7]. Let us
point out that both definitions of propagation velocity have c† (or c0 in the absence of
minimizers of Φc) as the upper bound. Similarly, the asymptotic propagation speed
from [30, Theorem 4.11] gives a lower bound for the propagation speed of the lead-
ing edge. One may naturally ask when these two asymptotic propagation speeds are
actually the same. We have not yet been able to answer this question. One way to
proceed here would be to apply Theorem 4.8 of [30] under the assumption that there
are no variational traveling waves other than the minimizer. This, however, seems
to be difficult to do, since one needs some a priori information on the exponential
decay of the solution of the initial value problem in the reference frame associated
with the leading edge. We note that this would also, in turn, imply a much stronger
result of convergence of the solution to the initial value problem to a minimizer as
t→∞, in view of the linear stability of the minimizer (by monotonicity, zero is the
smallest eigenvalue of the linearization around ū, all other eigenvalues and the essen-
tial spectrum are strictly above zero in the weighted space [37]). Alternatively, one
could use positivity of Φc evaluated on the solution of the initial value problem for
c=limt→∞ c̄(t), see [30, Definition 4.5], to interpret Φc as a Lyapunov functional for
the problem in the reference frame moving with speed c. Here, however, one faces
a difficulty associated with the lack of compactness in the problem. In sum, a more
precise characterization of propagation in the considered problem is still open.
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[10] H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1994.
[11] J.D. Buckmaster and G.S.S. Ludford, Theory of Laminar Flames, Cambridge University Press,

Cambridge, 1982.
[12] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
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