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ON QUANTUM HYDRODYNAMIC AND QUANTUM ENERGY
TRANSPORT MODELS∗
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Abstract. In this paper, we consider two recently derived models: the Quantum Hydrodynamic
model (QHD) and the Quantum Energy Transport model (QET). We propose different equivalent
formulations of these models and we use a commutator formula for stating new properties of the mod-
els. A gauge invariance lemma permits to simplify the QHD model for irrotational flows. We finish by
considering the special case of a slowly varying temperature and we discuss possible approximations
which will be helpful for future numerical discretizations.
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1. Introduction
This paper is the continuation of a series of works investigating the properties

and numerical approximations of quantum hydrodynamics and diffusion models based
on the entropy principle. The growing interest of the scientific community towards
quantum macroscopic models arises from the fact that they are computationally less
expensive than microscopic models such as the Schrödinger or Wigner equation [3, 4,
9, 30, 32, 33]. Simultaneously, collisions can be modeled without the use of quantum
collision operators which are difficult to handle. The modeling of both quantum effects
and collisions is particularly important for semiconductor devices where the active
zone is small (sometimes less than 100 nanometers) and quantum effects are dominant,
while the access zones are constituted of electron reservoirs in which collisions are
predominant and drive the system towards thermodynamic equilibrium. An example
of such a device is the resonant tunneling diode [7], which constitutes a good candidate
for testing models, since it can be approximated by a one dimensional device.

The route which usually has been followed for the derivation of quantum hydro-
dynamics and diffusion models consists in incorporating some “quantum” correction
terms, often based on the Bohm potential, into classical fluid models. This Bohm
potential appears naturally in the fluid formulation of the Schrödinger equation for
a single particle evolving in an external potential V . One obtains this formulation
through the use of the Madelung Transform, which consists in writing the wave func-
tion in an exponential form ψ=

√
neiS/~, where n is the density of mass, S is the phase

and ~ denotes the scaled Planck constant. Inserting this ansatz into the Schrödinger
equation, taking the real part and the gradient of the imaginary part, we recover the
“Madelung equations,” consisting in a pressureless Euler system involving an addi-

tional potential, called the Bohm potential ~
2

2 ∆
√
n/n. The first use of this Bohm

potential in the semiconductor context dates back to [1, 2], in which the Bohm poten-
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tial is added to the Drift-Diffusion equations and gives rise to the so-called Density-
Gradient model. This model has been used and studied in many articles [6, 28, 31].
In a diffusive setting, we can also cite [8] in which the Bohm potential is added to
the Energy Transport model. In an hydrodynamic setting, many models including
quantum corrections have been derived, and one can cite [19, 21, 22, 23, 24, 25, 26, 27].

New quantum hydrodynamic-like models have been constructed in [15] by apply-
ing the moment method to the quantum framework. These macroscopic models differ
from the previous ones by the fact that they are fully quantum and do not rely on
a perturbative approach when the scaled Planck constant is small. The derivation
method consists in integrating the quantum Liouville equation with respect to the
momentum p against a given vector of polynomials of p. Following the approach
that Levermore [29] developed in the classical case, the moment system is closed by a
quantum local equilibrium defined as the solution of the minimization problem for the
quantum entropy subject to the constraints that its moments are given. The quan-
tum entropy being defined globally as the trace of an operator, the relation between
the extensive variables (the chosen moments) and the thermodynamic intensive vari-
ables (the Lagrange multipliers of the constraints) is non-local. An interesting special
case of the quantum moment method is obtained by choosing the hydrodynamic mo-
ments (1,p,|p|2/2) as the moment system. This leads to the Quantum Hydrodynamic
(QHD) model describing the evolution of the mass density n, the current density
nu and the energy density W. More recently, Diffusion models have been derived in
[14], namely the Quantum Energy Transport (QET) and the Quantum Drift-Diffusion
(QDD) model, through diffusion limits of a collisional Wigner equation. The BGK-
like collision operator used in this derivation has been constructed in order to relax
the Wigner distribution function towards a quantum local equilibrium. The QDD
model has been further studied in [13], and a numerical scheme for solving it has
been proposed in [18]. Numerical simulations of a resonant tunneling diode and com-
parisons with other existing models have been reported in [10]. These simulations
showed that the QDD model can provide reliable simulations of diffusive transport
in nanoscale devices. Then, even more recently, the isothermal version of the QHD
model (called the isothermal Quantum Euler system) has been studied in [11]. Many
interesting properties of this model such as gauge invariance have been proved, and
preliminary numerical simulations have been shown. A review of all this work can be
found in [12].

In this paper, we consider non isothermal models, such as the QHD and QET
models, and investigate some important properties of these models. These properties
are important to take care of in numerical simulations. Previous works about numer-
ical approximations of the QDD and Quantum Euler models [18, 10, 11] have been
based on the simplification of the models by means of exact commutator relations.
This strategy allowed to obtain partial differential equations describing the evolutions
of the moments in terms of the moments themselves and their dual variables (i.e.,
the Lagrange multipliers of the constraints in the minimization problem). The quan-
tum feature appears in the constitutive equations which give the link between the
moments and their dual Lagrange multipliers. This constitutive relation supposes the
diagonalization of a suitably defined Hamiltonian (see Section 2). It appears that this
becomes more complex when an energy equation is added, and such a simplification
is not possible in general. The evolution equations on the moments involve quan-
tities that cannot be written in terms of a simple differential form of the moments
and of their dual variables. Therefore numerical discretization will require to write
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the unknown moments in terms of the spectrum of the above mentioned Hamilto-
nian. Nevertheless, we can derive some differential constraints that link the moments
and their dual Lagrange multipliers. These constraints need to be correctly approx-
imated in any reliable numerical discretization. These constraints can be obtained
via a lemma about commutators of operators the symbols of which are of the form
λ(x)pα, where α is a multi-index α=(α1,α2,α3), i.e.,λ(x)pα =λ(x)pα1

1 pα2
2 pα3

3 . This
commutator relation was not written before (to the knowledge of the authors) and
possesses an intrinsic value for future developments in this field.

The paper is organized as follows: In Section (2), we recall briefly the derivation
of the QHD and QET models that can be found with more details in [15, 13, 14]. In
particular, in Subsection (2.1) we recall the notion of quantum entropy and quantum
local equilibrium, before stating the models themselves in Subsection (2.2) and (2.3).

In Section (3), we give four preliminary technical lemmas, the most important
ones being Lemma (3.2), which allows us to write all the moments and their derivatives
with respect to the discrete spectrum of the modified Hamiltonian, and Lemma (3.4),
which gives the above-mentioned commutator relation. Note that these lemmas are
useful for any quantum moment system derived by the method given in [15].

Then, Section (4) deals with the remarkable properties of the QHD model. Ap-
plication of the preliminary technical lemmas first allows us to write all the quantities
of the QHD model in terms of the spectrum of the modified Hamiltonian defined in
Section (2) Lemma (4.1). It also allows us to state the differential constraints that
link the moments and their dual Lagrange multipliers, Theorem (4.2). Again, these
constraints should properly be taken into account in any reliable discretization of the
system. Then, in Subsection (4.2), we state a gauge invariance Lemma (4.3) which
leads to gauge transformations formulas (Lemma 4.4) and finally to a major simplifi-
cation of the QHD model for irrotational flows (Theorem 4.5 and its Corollary 4.6).
From these simplifications emerges a dispersive velocity term which has been found
in other QHD derivations and which is discussed in Subsection (4.2.2). In Subsection
(4.2.3) we discuss the special case of the QHD model in one dimension. In Subsection
(4.3), we finally discuss some simplifications of the fluxes of the QHD model when the
temperature is supposed to vary slowly.

Section (5) deals with the properties of the QET model. Like for the QHD model,
application of preliminary technical lemmas first allows us to write the QET model
in terms of the spectrum of the modified Hamiltonian defined in Section (2) Lemma
(5.3). Application of the commutator Lemma (3.4) also allows us to derive the dif-
ferential constraints between the moments and their Lagrange multipliers, Theorem
(5.2), which any future discretization should take into account. In Subsection (5.2)
possible simplifications for the fluxes of the QET model with slowly varying temper-
ature are discussed.

Finally, in Section (6) we finish by giving a conclusion and some possible perspec-
tives. We wish to specify that the arguments presented in this article are formal. A
precise mathematical framework in which this analysis could be made rigorous is still
an open subject.

2. Context

This section is a summary of previous work dealing with the Quantum Hydrody-
namic model [15, 13] and the Quantum Energy Transport model [14]. This summary
is given here to set up the context and the notation, and for the clarity of the presen-
tation.
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2.1. Quantum entropy and quantum local equilibrium. By a density
operator, we shall always mean a positive, Hermitian, trace-class operator acting on
L2(R3). Let us define the first moments of a density operator ̺, i.e., the mass density
n,the current density nu and the energy density W, by duality, considering scalar test
functions φ and vector test functions Φ. We set

∀φ∈C∞
0 (R3)

∫

nφ dx=Tr(̺φ), (2.1)

∀Ψ∈C∞
0 (R3)3

∫

nu ·Ψ dx=Tr
(

̺W−1 (Ψ ·p)
)

=−i~Tr

(

̺

(

Ψ ·∇+
1

2
(∇·Ψ)

))

, (2.2)

∀φ∈C∞
0 (R3)

∫

Wφ dx=Tr

(

̺W−1

(

φ
|p|2
2

))

=−~2

2
Tr

(

̺

(

∇·(φ∇)+
1

4
∆φ

))

. (2.3)

In (2.2) and in (2.3), W−1 denote the inverse Wigner transform (or Weyl quantiza-
tion). For the sake of completeness, let us recall the definition of the Wigner transform
and the inverse Wigner transform. The Wigner transform maps operators on L2(R3)
to symbols, i.e., L2(R3×R3) functions of the classical position and momentum vari-
ables (x,p)∈R3×R3. More precisely, one defines the integral kernel of the operator
̺ to be the distribution ̺(x,x′) such that ̺ operates on any function ψ(x)∈L2(R3)
as follows:

̺ψ(x)=

∫

̺(x,x′)ψ(x′)dx′.

Then, the Wigner transform W (̺)(x,p) is defined by:

W (̺)(x,p)=

∫

̺

(

x− 1

2
η,x+

1

2
η

)

e
iη·p

~ dη. (2.4)

The Wigner transform can be inverted and its inverse is defined for any function
w(x,p) as the operator acting on ψ(x)∈L2(R3) as:

W−1(w)ψ(x)=

∫

w

(

x+y

2
,p

)

ψ(y)e
ip·(x−y)

~

dpdy

(2π~)3
. (2.5)

The Wigner Transform W and its inverse W−1 are isometries between the space of
Hilbert-Schmidt operators L2 (the space of operators such that the product ̺̺† is trace
class, where ̺† is the Hermitian conjugate of ̺) and the Hilbert space L2(R3×R3):

Tr(̺σ†)=

∫

W (̺)(x,p)W (σ)(x,p)
dxdp

(2π~)3
. (2.6)

This property allows us to define the mass density, the momentum density and the
energy density in the Wigner picture, where we denote W (̺)=w:





n
nu
W



=

∫

w





1
p

|p|2

2





dp

(2π~)3
. (2.7)
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Definition 2.1. Let s be a strictly convex continuously differentiable function on
R+. We define the quantum entropy by:

S (̺)=Tr(s(̺)). (2.8)

Let the functions n, nu and W be given and consider the following constrained mini-
mization problem:

min{S (̺) such that ̺ is a density operator satisfying (2.1), (2.2) and (2.3)} .
(2.9)

The solution, if it exists, is called the local equilibrium density operator associated
to n, nu and W. Lagrange multiplier theory for the constrained problem (2.9) (see
[15]) shows that there exist scalar functions Ã and C̃, and a vector function B̃, all
real valued and defined on R3, such that this local equilibrium density operator takes
necessarily the form:

̺eq
n,nu,W =(s′)−1

(

H̃(Ã,B̃,C̃)
)

, (2.10)

where H̃(Ã,B̃,C̃) is the following modified Hamiltonian:

H̃(Ã,B̃,C̃)=W−1
(

Ã+B̃ ·p+ C̃|p|2
)

= Ã− i~
(

B̃ ·∇+
1

2
(∇·B̃)

)

−~2

(

∇·(C̃∇)+
1

4
∆C̃

)

. (2.11)

It is convenient to change the entropic variables (Ã,B̃,C̃) into more physical
variables (A,B,C) in order to write the equilibrium density operator in the form:

̺eq
n,nu,W =(s′)−1 (−H(A,B,C)) , (2.12)

where

H(A,B,C)=W−1

(

1

2C
(p−B)2 +A

)

=−~2

(

∇·
(

1

2C
∇
)

+
1

4
∆

1

2C

)

+i~

(

B

C
·∇+

1

2

(

∇· B
C

))

+A+
B2

2C
. (2.13)

We will call the variables A, B and C, respectively, the generalized chemical potential,
the generalized mean velocity and the generalized temperature.

The link between (Ã,B̃,C̃) and (A,B,C) is given by:

A=−Ã+
B̃2

4C̃
; B=− B̃

2C̃
; C=− 1

2C̃
, (2.14)

or equivalently by:

Ã=−A− B2

2C
; B̃=

B

C
; C̃=− 1

2C
. (2.15)

This definition is obviously incomplete if no assumption is made on n, nu and
W. In fact, this result has to be understood only at a formal level. Several crucial
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questions remain open: in which functional spaces n, nu and W have to be chosen,
in which spaces A, B and C have to be sought, and the question of existence and
uniqueness of A, B and C. Throughout this paper, we shall postpone this delicate
question of realizability of moments, assuming that, as soon as the minimization
problem (2.9) has to be solved, n, nu and W are such that the associate functions A,
B and C are uniquely defined. Note that even in the classical setting, the question of
the realizability of moments for the constrained extremal problem is already a delicate
question as pointed out in [16].

2.2. The Quantum Hydrodynamic model (QHD). In order to derive the
QHD model, we start from the collisional quantum Liouville equation:

i~∂t̺=[H,̺]+ i~Q(̺)

ε
, (2.16)

where H is the Hamiltonian:

H=−~2

2
∆+V, (2.17)

and Q(̺) is an unspecified collision operator which describes the interaction of the
particles with themselves and with their environment and accounts for dissipation
mechanisms (ε is the scaled relaxation time). The key property that we request is
that it drives the system to the local equilibria defined in the previous subsection.
This is a consequence of the two following assumptions:

(i) mass, current and energy are conserved during collision, i.e., for any density
operator ̺ we have

∀ϕ,Ψ Tr



Q(̺)W−1





ϕ
Ψ ·p
ϕ |p|2

2







=0,and (2.18)

(ii) the quantum entropy is dissipated, except for the density operator in the
kernel of Q, which is explicitely described as follows:

Q(̺)=0 iff ∃(A, B, C) such that ̺=(s′)−1 (−H(A,B,C)) . (2.19)

Taking the Wigner Transform of (2.16), we get the following collisional Wigner
equation for w=W (̺):

∂tw+p ·∇w−Θ~(V )w=
Q(w)

ε
, (2.20)

with

Θ~(V )w=
i

(2π)3~

∫ (

V

(

x+
~

2
η

)

−V
(

x− ~

2
η

))

w(x,q)eiη·(p−q)dqdη, (2.21)

and Q(w) is the Wigner Transform of Q(̺).
The moment method consists in taking the moments of the Wigner equation, i.e.,

multiplying it by





1
p

|p|2

2



 and integrating over p. Due to the conservation of mass,
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current and energy of the collision operator, and due to the properties of Θ~(V ), we
obtain the following system:

∂tn+∇·nu=0, (2.22)

∂t(nu)+∇·Π=−n∇V, (2.23)

∂tW+∇·Φ=−nu ·∇V, (2.24)

with the pressure tensor Π and the energy flux Φ given by:

Π=

∫

w(p⊗p) dp

(2π~)3
, (2.25)

Φ=

∫

w
|p|2
2
p

dp

(2π~)3
. (2.26)

It is readily seen that, with no further assumption, Π and Φ cannot be expressed
in terms of n, nu and W, meaning this system is not closed. Hence, by analogy
with Levermore’s methodology [29] and according to [15], we modify this system by
replacing w=W (̺) by the ansatz

weq
n,nu,W =W (̺eq

n,nu,W)=W
(

(s′)−1 (−H(A,B,C))
)

, (2.27)

which plays the role of a Maxwellian here. This ansatz corresponds to the modeling
assumptions (i) and (ii) made on Q, and represents the most likely quantum micro-
scopic state which possesses the moments n, nu and W, according to the statistics
that has been chosen, i.e., the function s (this ansatz can also be justified by the
hydrodynamic limit obtained when the scaled relaxation time ε tends to 0). We ob-
tain the QHD model, which consists of the mass, current and energy conservation
equations (2.22–2.24), with:





n
nu
W



=

∫

weq
n,nu,W





1
p

|p|2

2





dp

(2π~)3
, (2.28)

and

Π=

∫

weq
n,nu,W(p⊗p) dp

(2π~)3
, (2.29)

Φ=

∫

weq
n,nu,W

|p|2
2
p

dp

(2π~)3
. (2.30)

2.3. The Quantum Energy Transport model (QET). We notice that the
derivation of the QHD model did not require any knowledge of the exact form of the
collision operator. For deriving a diffusion model such as the QET model from a
kinetic equation, the exact form of the collision operator matters and the coefficients
of the diffusion model itself depend on this collision operator. The most simple choice
is a relaxation operator also called the BGK operator (for Bhatnagar, Gross, Krook
[5]). The collision operator expresses the relaxation of the collision operator to the
local thermodynamical equilibrium. We will choose:

Q(̺)=̺eq
n,W −̺, (2.31)
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or in the Wigner picture:

Q(w)=weq
n,W −w, (2.32)

where we have

weq
n,W =W

(

̺eq
n,W

)

=W
(

(s′)−1(−H(A,0,C))
)

, (2.33)

and the functions A and C are such that the operator Q conserves the mass and
energy, i.e.,:

∫

W ((s′)−1(−H(A,0,C)))

(

1
|p|2

2

)

dp

(2π~)3
=

(

n
W

)

. (2.34)

We recall that the quantum equilibrium ̺eq
n,W is a solution of the entropy minimization

principle: for n and W given, to find

min{S (̺) such that ̺ is a density operator satisfying (2.1 and 2.3)}. (2.35)

Now we consider a diffusion scaling of the collisional Wigner equation:

ε2∂tw
ε +ε(p∇wε−Θ~(V )wε)=Q(wε), (2.36)

where the pseudo-differential operator Θ~(V ) is defined by (2.21). This scaling is
obtained through the change t→ t/ε, which means that we are looking at long time
scales. The limit ε→0 of (2.36) is the QET model which consists of the following
mass and energy conservation equations:

∂tn+∇·jn =0, (2.37)

∂tW+∇·jW +∇V ·jn =0, (2.38)

where

jn =−∇·Π−n∇V, (2.39)

jW =−∇·Q−(WId+Π) ·∇V +
~2

8
n∇(∆V ), (2.40)

with:

(

n
W

)

=

∫

weq
n,W

(

1
|p|2

2

)

dp

(2π~)3
(2.41)

and

Π=

∫

weq
n,W(p⊗p) dp

(2π~)3
, (2.42)

Q=

∫

weq
n,W(p⊗p) |p|

2

2

dp

(2π~)3
. (2.43)
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3. Preliminary technical lemmas

In this section, we give preliminary technical lemmas which are going to be useful
for deriving properties of the QHD and QET models. Note that these lemmas can
also be useful for any quantum moment systems that can be derived by applying
the method explained in [15]. We start by giving a lemma that can be found in [15]
(Lemma 3.1), and which proof is just an exercise in Fourier transform using Definition
(2.5):

Lemma 3.1. Let α=(α1,α2,α3)∈N3 be a multi-index (with N the set of natural inte-
gers) and write pα =pα1

1 pα2
2 pα3

3 and ∂α
x =∂/∂xα1

1 ∂/∂xα2
2 ∂/∂xα3

3 . Then for any smooth
real or complex valued function λ(x), we have the following equivalent expression of
the operator W−1 (λpα):

W−1 (λpα)=(−i~)|α|
∑

0≤γ≤α

(

α
γ

)

1

2|γ|
(∂γ

xλ)∂α−γ
x , (3.1)

where |α|=α1 +α2 +α3,

(

α
γ

)

=

(

α1

γ1

)(

α2

γ2

)(

α3

γ3

)

are the binomial coefficients and

we denote
∑

0≤γ≤α

=

α1
∑

γ1=0

α2
∑

γ2=0

α3
∑

γ3=0

.

As a consequence, we give the following lemma, which allows us to write the
moments and the derivative of the moments associated to a quantum equilibrium
̺eq =(s′)−1(−H), where s is a convex function and H an operator with a discrete
spectrum (we use the same notations as in the previous lemma):

Lemma 3.2. Let α=(α1,α2,α3)∈N3 and η=(η1,η2,η3)∈N3 be two multi-indices.
Suppose we have defined a quantum equilibrium ̺eq =(s′)−1(−H), where s is a convex
function and H an operator with a discrete spectrum that we denote by (λp,ψp)p∈N;
then we have (see Lemma (3.1) for the notations):

∂η
x

∫

pαW (̺eq)
dp

(2π~)3
=(−i~)|α|

∑

p∈N

(s′)−1(−λp)× (3.2)

∑

0≤γ≤α

(

α
γ

)(

−1

2

)|γ|
∑

0≤ξ≤γ+η

(

γ+η
ξ

)

(

∂α−γ+ξ
x ψp

)(

∂γ+η−ξ
x ψp

)

. (3.3)

Proof. Let φ(x) be a smooth test function; we have:

∫ (

∂η
x

∫

pαW
(

(s′)−1(−H)
) dp

(2π~)3

)

φdx

=(−1)|η|
∫

pαW
(

(s′)−1(−H)
)

∂η
xφ

dp

(2π~)3
dx

=(−1)|η|Tr
(

W−1 (pα∂η
xφ)(s′)−1(−H)

)

=(−1)|η|
∑

p∈N

(

W−1 (pα∂η
xφ)(s′)−1(−H)ψp ,ψp

)

L2(R3)

=(−1)|η|
∑

p∈N

(s′)−1(−λp)
(

W−1 (pα∂η
xφ)ψp ,ψp

)

L2(R3)
.
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Then we use Lemma (3.1) to compute W−1 (pα∂η
xφ)ψp, and the desired weak formu-

lation is obtained after integrations by parts.

We recall now a lemma which can be found in [14] (Lemma 5.4) and whose proof
is a direct application of pseudo-differential calculus (see for example [34]).

Lemma 3.3. Let us consider two symbols w1(x,p) and w2(x,p) that are infinitely
differentiable. The operation w1 ◦~w2 gives the symbol of their operator product (this
operation is sometimes noted w1♯w2 in the literature), i.e.,:

w1 ◦~w2 =W
(

W−1(w1)W
−1(w2)

)

. (3.4)

The following formal expansion holds:

w1 ◦~w2 =

∞
∑

n=0

~nw1 ◦nw2 (3.5)

with

w1 ◦nw2(x,p)=

(

i

2

)n
∑

γ,ζ,|γ+ζ|=n

(−1)|γ|

γ!ζ!
∂ζ

x∂
γ
pw1(x,p)∂

γ
x∂

ζ
pw2(x,p), (3.6)

where we denote by λ=(λ1,λ2,λ3) and ζ=(ζ1,ζ2,ζ3) two multi-indices, and λ!=
λ1!λ2!λ3! (see Lemma (3.1) for the other notations).

As a consequence, we give now a lemma which is helpful for commutator compu-
tations.

Lemma 3.4. Let α=(α1,α2,α3)∈N3 and β=(β1,β2,β3)∈N3 be two multi-indices,
and let λ(x) and µ(x) be any smooth real- or complex-valued functions. Let us denote
by [λpα,µpβ ]~ the symbol associated to the commutator of the operators W−1(λpα)
and W−1(µpβ), i.e.,:

[λpα,µpβ ]~ =W
([

W−1 (λpα) ,W−1
(

µpβ
)])

. (3.7)

The following formal expansion holds:

[λpα,µpβ ]~ =

⌊(|α+β|−1)/2⌋
∑

k=0

~2k+1[λpα,µpβ ]2k+1, (3.8)

with

[λpα,µpβ ]2k+1 = i

(

−1

4

)k
∑

0≤γ≤α,0≤ζ≤β

|γ+ζ|=2k+1

(−1)|γ|
(

α
γ

)(

β
ζ

)

(∂ζ
xλ)(∂γ

xµ)pα+β−γ−ζ ,

(3.9)
where ⌊·⌋ denotes the floor function (see Lemma (3.1) for the other notations).

Proof. By the definition of the commutator and using notations of Lemma (3.3),
we have:

[λpα,µpβ ]~ =λpα ◦~µp
β −µpβ ◦~λp

α

=

∞
∑

n=0

~n(λpα ◦nµp
β −µpβ ◦nλp

α).
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The operation ◦n being commutative (resp. anticommutative) when n is even (resp.
odd), we obtain:

[λpα,µpβ ]~ =

∞
∑

k=0

~2k+1(2λpα ◦2k+1µp
β).

Then we apply the definition of the operation ◦2k+1 (3.6) to obtain the coefficients
[λpα,µpβ ]2k+1, and we notice that these coefficients are zero as soon as k> ⌊(|α+β|−
1)/2⌋.

4. Remarkable properties of QHD

4.1. Applications of the technical lemmas to QHD. All the quantities
expressed in the QHD model can be written with respect to the spectrum of the
modified HamiltonianH(A,B,C). This is what we do in the next lemma using Lemma
(3.2).

Lemma 4.1. Suppose H(A,B,C) has a discrete spectrum that we denote (λp,ψp)p∈N;
then we have:

n=
∑

p∈N

(s′)−1(−λp)|ψp|2, (4.1)

nu=~
∑

p∈N

(s′)−1(−λp)Im(∇ψpψp), (4.2)

W =
~2

4

∑

p∈N

(s′)−1(−λp)
(

|∇ψp|2−Re(∆ψpψp)
)

. (4.3)

We can also express:

Π=
~2

2

∑

p∈N

(s′)−1(−λp)Re(∇ψp⊗∇ψp−ψp∇⊗∇ψp), (4.4)

Φ=−~3

8

∑

p∈N

(s′)−1(−λp)Im
(

2(∇⊗∇ψp) ·∇ψp +∆ψp∇ψp +ψp∇∆ψp

)

, (4.5)

and the fluxes:

∇·nu=~
∑

p∈N

(s′)−1(−λp)Im(∆ψpψp), (4.6)

∇·Π=
~2

2

∑

p∈N

(s′)−1(−λp)Re(∇ψp∆ψp−ψp∇∆ψp), (4.7)

∇·Φ=−~3

8

∑

p∈N

(s′)−1(−λp)Im
(

2∇ψp ·∇∆ψp +ψp∆∆ψp

)

. (4.8)

Proof. Let {e1,e2,e3} denote the standard basis of R3. We use lem. (3.2) with:

• η=(0,0,0) and α=(0,0,0) to get (4.1),

• η=(0,0,0) and α=ei to get the ith component of (4.2),

• η=(0,0,0) and α=2ej to get (4.3) after summation on j and division by 2,
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• η=(0,0,0) and α=ei +ej to get the coefficient (i,j) of (4.4),

• η=(0,0,0) and α=ei +2ej to get (4.5) after summation on j and division by
2,

• η=ej and α=ej to get (4.6) after summation on j,

• η=ej and α=ei +ej to get the ith component of (4.7) after summation on j.

• η=ej and α=2ei +ej to get (4.8) after summation on i and j and division
by 2.

We now give an application of Lemma (3.4). The following theorem gives general
relations involving n, nu, W, Π, Φ and A, B, C as soon as they are linked according
to (2.27–2.30). Any future discretization should be thought such that the following
relations are respected.

Theorem 4.2. Let n, nu, W, Π, Φ and A, B, C satisfy (2.27–2.30). Then we have:

∇· nu
C

=∇· nB
C
, (4.9)

∇· Π
C

=∇·
(

nu⊗ B

C

)

+

(

∇B

C

)

·nu−n∇
(

A+
B2

2C

)

−W∇ 1

C

+
~2

8
∆

(

n∇ 1

C

)

, (4.10)

∇· Φ

C2
=

1

C
Π:

(

∇B

C

)

+
1

C
∇·
(

B

C
W
)

− 1

C
∇
(

A+
B2

2C

)

·nu

+
~2

8C

(

∇·
(

nu∆
1

C
−n∆

B

C

)

+∆

(

nu ·∇ 1

C

))

. (4.11)

Proof. Let µ(x) be a smooth test function. Using Lemma (3.4), we compute:
[

W
(

H̃(Ã,B̃,C̃)
)

,µ
]

~

=
[

Ã,µ
]

~

+
[

B̃ ·p,µ
]

~

+
[

C̃|p|2,µ
]

~

=0− i~
(

B̃ ·∇µ+2C̃∇µ ·p
)

. (4.12)

[

W
(

H̃(Ã,B̃,C̃)
)

,µp
]

~

=
[

Ã,µp
]

~

+
[

B̃ ·p,µp
]

~

+
[

C̃|p|2,µp
]

~

=−i~
(

−µ∇Ã+(B̃ ·∇µ)p−µ(∇B̃) ·p

+2C̃(∇µ ·p)p−µ∇C̃|p|2 +
~2

4
∇C̃∆µ

)

. (4.13)

[

W
(

H̃(Ã,B̃,C̃)
)

,µ|p|2
]

~

=
[

Ã,µ|p|2
]

~

+
[

B̃ ·p,µ|p|2
]

~

+
[

C̃|p|2,µ|p|2
]

~

=−i~
(

−2µ∇Ã ·p−2µ(p⊗p) : (∇B̃)+B̃ ·∇µ|p|2

−~2

4
∆B̃ ·∇µ+2C̃∇µ ·p|p|2−2µ∇C̃ ·p|p|2

−~2

4

(

2∆C̃∇µ ·p−2∆µ∇C̃ ·p
)

)

. (4.14)



P. DEGOND, S. GALLEGO AND F. MÉHATS 899

Then due to the cyclicity of the trace, we write for the three commutators:

Tr
([

H̃(Ã,B̃,C̃),W−1(µpα)
]

̺eq
n,nu,W

)

=0

=

∫

[

W
(

H̃(Ã,B̃,C̃)
)

,µpα
]

~

W
(

̺eq
n,nu,W

) dxdp

(2π~)3

which gives weakly the three desired identities after integrations by parts and the
change of variable given by (2.15).

4.2. Gauge invariance and irrotational flows.

4.2.1. Gauge invariance. We now turn to look at gauge invariance, an
interesting property that will simplify the model for irrotational flows.

Lemma 4.3 (Gauge invariance). Let α=(α1,α2,α3)∈N3 be a multi-index, and
let S(x) and λ(x) be smooth functions. Then we have:

eiS/~H(A,B,C)e−iS/~ =H(A,B+∇S,C). (4.15)

Proof. To prove identity (4.15), we remark that for |α|≤2,

eiS/~W−1 (λpα)e−iS/~ =W−1 (λ(p−∇S)α) .

The modified Hamiltonian H(A,B,C)=W−1
(

1
2C (p−B)2 +A

)

being an operator as-
sociated to a polynomial in p of order 2, we have:

eiS/~W−1

(

1

2C
(p−B)2 +A

)

e−iS/~ =

(

1

2C
(p−(B+∇S))2 +A

)

,

which is (4.15).

This gauge invariance lemma allows us to write gauge transformations which are
summarized in the next lemma.

Lemma 4.4. Let n(A,B,C), nu(A,B,C), W(A,B,C), Π(A,B,C) and Φ(A,B,C) de-
note the extensive quantities associated to the intensive quantities (A,B,C) according
to (2.27–2.30). Then we have the following identities:

n(A,B+∇S,C)=n(A,B,C), (4.16)

(nu)(A,B+∇S,C)=(nu)(A,B,C)+n(A,B,C)∇S, (4.17)

W(A,B+∇S,C)=W(A,B,C)+(nu)(A,B,C) ·∇S+
1

2
n(A,B,C)|∇S|2,(4.18)

Π(A,B+∇S,C)=Π(A,B,C)+(nu)(A,B,C)⊗∇S
+∇S⊗(nu)(A,B,C)+n(A,B,C)∇S⊗∇S, (4.19)

Φ(A,B+∇S,C)=Φ(A,B,C)+(Π(A,B,C)+W(A,B,C)Id) ·∇S

+
1

2
n(A,B,C)|∇S|2∇S+

1

2
(nu)(A,B,C)|∇S|2

+((nu)(A,B,C) ·∇S)∇S− ~2

8
n(A,B,C)∇∆S, (4.20)

which relate the mass, current, and energy densities, the pressure tensor and the
energy flux for two values of B differing by a gradient.
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Proof. Let α=(α1,α2,α3)∈N3 be a multi-index and λ be a smooth test function
and let us denote weq(A,B,C)=W

(

(s′)−1 (−H(A,B,C))
)

. Due to Lemma (4.3), we
can write:
∫

weq(A,B+∇S,C)λpα dxdp

(2π~)3
=Tr

(

(s′)−1 (−H(A,B+∇S,C))W−1 (λpα)
)

=Tr
(

eiS/~(s′)−1 (−H(A,B,C))e−iS/~W−1 (λpα)
)

=Tr
(

(s′)−1 (−H(A,B,C))e−iS/~W−1 (λpα)eiS/~

)

.

Then, as we have already noticed earlier, we use the fact that for |α|≤2,

e−iS/~W−1 (λpα)eiS/~ =W−1 (λ(p+∇S)α) ,

so that finally we have for |α|≤2

∫

weq(A,B+∇S,C)λpα dxdp

(2π~)3
=

∫

weq(A,B,C)λ(p+∇S)α dxdp

(2π~)3

which gives the following identity:

∫

weq(A,B+∇S,C)pα dp

(2π~)3
=

∫

weq(A,B,C)(p+∇S)α dp

(2π~)3
.

Then we choose (denoting by {e1,e2,e3} the standard basis of R3):

• α=(0,0,0) to get (4.16),

• α=ei to get the ith component of (4.17),

• α=2ej to get (4.18) after summation on j and division by 2,

• α=ei +ej to get the coefficient (i,j) of (4.19).

In order to get (4.20), we compute for α=ei +2ej

e−iS/~W−1 (λpα)eiS/~ =W−1 (λ(p+∇S)α)− ~2

4
λ∂i∂

2
jS,

and we get the following identity for α=ei +2ej :

∫

weq(A,B+∇S,C)pα dp

(2π~)3
=

∫

weq(A,B,C)

(

(p+∇S)α− ~2

4
∂i∂

2
jS

)

dp

(2π~)3
.

Finally we obtain the ith component of (4.20) after summation on j and division by
2.

4.2.2. Irrotational flows. It is now possible to give interesting properties
for the special case of the QHD model with irrotational flows as stated in the next
theorem.

Theorem 4.5. Let n, nu, W and A, B, C be given according to Definition (2.1).
Assume moreover that u is an irrotational vector field, i.e., that there exists S(x)
such that u=∇S. Then B is defined by

B=u=∇S, (4.21)
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and we have

̺eq
n,nu,W =eiS/~̺eq

n,0,W e−iS/~, (4.22)

where the two equilibrium density operators ̺eq
n,nu,W and ̺eq

n,0,W are given according
to Definition (2.1). If we denote by n(A,B,C), nu(A,B,C), W(A,B,C), Π(A,B,C)
and Φ(A,B,C) the extensive quantities associated to the intensive quantities (A,B,C)
according to (2.27–2.30), we have moreover:

n(A,B,C)=n(A,0,C), (4.23)

W(A,B,C)=W(A,0,C)+
1

2
n(A,0,C)|u|2, (4.24)

Π(A,B,C)=Π(A,0,C)+n(A,0,C)u⊗u, (4.25)

Φ(A,B,C)=(Π(A,0,C)+W(A,0,C)Id) ·u+
1

2
n(A,0,C)|u|2u

−~2

8
n(A,0,C)∆u. (4.26)

Proof. Let n, nu and W be given and consider the following minimization problem
with only two constraints: Find

min
{

S (̺) such that the density associated to ̺ is n,

see (2.1), and the energy is W− 1
2nu

2, see (2.3)
}

. (4.27)

Following [14], this minimization problem (4.27) is attained on a density operator
which reads

̺0 =(s′)−1 (−H(α,0,γ)) ,

where α and γ are two scalar functions and H(α,0,γ) is still defined according to
(2.11). Due to the fact that the Wigner function of ̺0 is even (see [14]), this den-
sity operator carries no current. This is enough to conclude that ̺0 =̺eq

n,0,W− 1
2 nu2

(following Definition 2.1) or, equivalently, that

n(α,0,γ)=n, (nu)(α,0,γ)=0, W(α,0,γ)=W− 1

2
nu2.

Denote now

̺S =(s′)−1 (−H(α,∇S,γ)) .
Applying the Gauge invariance of Lemma (4.3), we have:

H(α,∇S,γ)=eiS/~H(α,0,γ)e−iS/~.

It is immediate to deduce from elementary functional calculus that

̺S =eiS/~̺0e
−iS/~.

Note then that, by definition, the mass density, the current density and the energy den-
sity corresponding to ̺S are respectively n(α,∇S,γ), (nu)(α,∇S,γ) and W(α,∇S,γ),
and, as a direct consequence of Lemma (4.4), we have

n(α,∇S,γ)=n(α,0,γ)=n,

(nu)(α,∇S,γ)=(nu)(α,0,γ)+n(α,0,γ)∇S=nu,

W(α,∇S,γ)=W(α,0,γ)+(nu)(α,0,γ)∇S+
1

2
n(α,0,γ)|∇S|2 =W.
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Therefore, according to the property of uniqueness of the Lagrange multipliers A, B
and C assumed in Subsection (2.1), we deduce that A=α, B=∇S and C=γ.

The last part of the theorem (identities 4.23-4.26) is a direct consequence of
Lemma 4.4.

Corollary 4.6. For irrotational flows, the QHD model reads:

∂tn+∇·nu=0, (4.28)

∂t(nu)+∇·Π=−n∇V, (4.29)

∂tW+∇·
(

(Π+WId) ·u−n|u|2u− ~2

8
n∆u

)

=−nu ·∇V, (4.30)

with

n=

∫

weq
n,W

dp

(2π~)3
, (4.31)

W =
1

2
n|u|2 +

∫

weq
n,W

|p|2
2

dp

(2π~)3
, (4.32)

and

Π=nu⊗u+

∫

weq
n,W(p⊗p) dp

(2π~)3
,. (4.33)

The quantum local equilibrium weq
n,W is defined by

weq
n,W =W

(

̺eq
n,W

)

=W
(

(s′)−1 (−H(A,0,C))
)

, (4.34)

where H(A,0,C) is the following modified Hamiltonian:

H(A,0,C)=W−1

(

1

2C
p2 +A

)

(4.35)

=−~2

(

∇·
(

1

2C
∇
)

+
1

4
∆

1

2C

)

+A. (4.36)

Proof. The proof is straightforward using Theorem (4.5).

Let us summarize the simplifications obtained for the QHD model with irrota-
tional flows. Firstly, two unknowns have been canceled, namely the energy flux Φ and
the generalized mean velocity B. Secondly, the link between the moments and their
dual variables is simpler. The underlying minimization problem is now (4.27), with
only the constraint on the density and the energy, instead of (2.9). The local equilib-
rium ̺eq

n,W =(s′)−1 (−H(A,0,C)) is the same as the one of the QET model, and in the
case where its spectrum is discrete, this spectrum has the advantage of being real. In

addition, notice that the dispersive velocity term −~
2

8 ∇·(n∆u) appearing in the di-
vergence of the energy flux (4.30) also appears in other QHD derivations. It has been
derived in [20] from a mixed-state Wigner model and interpreted as a dispersive ”heat
flux”. It also appears in the QHD equations of [22] involving a ”smoothed” potential,
derived from the quantum Liouville equation by a Chapman-Enskog expansion. Fi-
nally, it appears in [27] where an ~ expansion of the QHD model presented here (with
a Boltzmann statistics) is performed. It has been noted in [27] that an interesting
feature of this dispersive term is that it stabilizes the QHD system numerically.
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4.2.3. One-dimensional flows. A special case of irrotational flows is one-
dimensional flows. It is natural to wonder if the 1D QHD model can be written in a
simple way. It appears that this is a delicate question and we see two possibilities:

1. If the transport is confined in one dimension (for example if we want to
model quantum transport confined on a wire [17], we can suppose that the
temperature is anisotropic and the momentum p is confined on a line with
coordinate x1∈R), then we can start from a 1D Wigner equation and define
a 1D quantum local equilibrium, and in this case we obtain the following
model:

∂tn+∂x1
(nu)=0, (4.37)

∂t(nu)+2∂x1
W =−n∂x1

V, (4.38)

∂tW+∂x1

(

3Wu−nu3− ~2

8
n∂2

x1
u

)

=−nu∂x1
V. (4.39)

Notice that these 3 equations are now decoupled from the constitutive equa-
tions linking (n,nu,W) to (A,B,C). This model is exact (without any approx-
imation) and its only quantum character reduces to the dispersive velocity

term −~
2

8 ∂x1
(n∂2

x1
u). A surprising fact is that this model coincides with its ~

expansion up to second order, proving that the higher order terms are equal
to zero independently of the chosen statistics. Notice also that in the semi-
classical limit (~→0), we do not recover the classical hydrodynamic equations
used in the literature.

2. If the problem is in dimension three (for the momentum p) but all the quan-
tities depend only on one space variable (say on x1), then the derivation of
the 1D model from the 3D model (4.28–4.35) is not possible without some
more assumptions. This statement needs to be made precise. Let us consider
the stress tensor P=

∫

weq
n,W(p⊗p) dp

(2π~)3 appearing in the pressure tensor Π

(4.33). Without any assumption, this tensor is not diagonal, contrary to the
classical case (as already noticed in [14]). With the assumption that all the
quantities depend only on the variable x1, and if we suppose that the function
(s′)−1(·) is expandable as a power series, it is possible to show that weq

n,W is
even with respect to p2 and p3. Using Lemma (3.3), we prove indeed that
any power of H(A,0,C) is a symbol depending only on (x1,p) and even with
respect to p2,p3, and thus P is diagonal. But nevertheless it is not scalar.
If we suppose moreover that P is scalar, using the constraint that its trace
must be equal to 2W−n|u|2, we can suppose that P=(2W−n|u|2)/3Id. We
obtain then the following 1D QHD model:

∂tn+∂x1
(nu)=0, (4.40)

∂t(nu)+
2

3
∂x1

(W+nu2)=−n∂x1
V, (4.41)

∂tW+∂x1

(

5

3
Wu− 1

3
nu3− ~2

8
n∂2

x1
u

)

=−nu∂x1
V. (4.42)

Here we do not measure the error arising from the assumption that the stress
tensor is scalar but we recover the classical hydrodynamic equations used in
the literature at the semiclassical limit (~→0).
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4.3. Simplification of fluxes and QHD with slowly varying temperature.
In three dimensions, the QHD model is more complicated and the relations of Lemma

(4.1) are nonlocal and difficult to handle numerically. We would like, at least for the
pressure tensor Π and the energy flux Φ, to give local expressions (as has been done
for the isothermal Quantum Euler system [11]), i.e., to express ∇·Π and ∇·Φ in a
differential way involving only the extensive variables n, nu, W, and the intensive ones
A, B, C. Unfortunately we have not succeeded yet, but Theorem (4.2) constitutes
one step in this direction. It gives us ∇· Π

C and ∇· Φ
C2 instead of ∇·Π and ∇·Φ. If

we suppose that the generalized temperature is slowly varying, we can suppose that
∣

∣

∣

∣

∇C
C

∣

∣

∣

∣

=ε≪1 (4.43)

with ε a small positive parameter.
Using Lemma (4.2), we obtain the following approximation for the divergence of

the pressure tensor:

∇·Π=∇(nu⊗B)+(∇B) ·nu−n∇
(

AC+
B2

2

)

+O(ε). (4.44)

Note that if we take C=T to be a constant, we find the expression of ∇·Π already
found for the Isothermal Quantum Euler model [11].

In the same manner we obtain the following approximation for the energy flux:

∇·Φ=(Π∇) ·B+∇·(BW)−nu ·∇
(

AC+
B2

2

)

− ~2

8
∇·(n∆B)+O(ε). (4.45)

In this last expression, we see that ∇·Φ depends on Π, and unfortunately we do
not know any approximation for it and we have not been able to find one which is
compatible with the approximation made for ∇·Π in expression (4.44).

5. Remarkable properties of QET

5.1. Applications of the technical lemmas to QET. All the quantities
expressed in the QET model can also be written with respect to the spectrum of the
modified Hamiltonian H(A,0,C). Suppose H(A,0,C) has a discrete spectrum that we
denote (λp,ψp)p∈N; then this spectrum is real and Lemma (3.2) allows us to compute
the moments n and W as has been done in Lemma (4.1). In the same lemma, we
have given the expression for Π and ∇·Π. In the next lemma, we complete this list
for the QET model.

Lemma 5.1. Suppose H(A,0,C) has a discrete spectrum that we denote (λp,ψp)p∈N;
then we have:

Q=−~4

16

∑

p∈N

(s′)−1(−λp)

(

∇ψp⊗∇∆ψp−2(∇⊗∇ψp)
2 +∇∆ψp⊗∇ψp

−∆ψp(∇⊗∇ψp)+2(∇⊗∇⊗∇ψp) ·∇ψp−ψp(∇⊗∇∆ψp)

)

, (5.1)

∇·Q=−~4

16

∑

p∈N

(s′)−1(−λp)

(

−2(∇⊗∇ψp) ·∇∆ψp +∆∆ψp∇ψp

+2(∇⊗∇∆ψp) ·∇ψp−ψp∇∆∆ψp

)

, (5.2)
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∇·∇·Q=−~4

16

∑

p∈N

(s′)−1(−λp)

(

∆∆ψp∆ψp +2∇ψp ·∇∆∆ψp

−ψp∆∆∆ψp−2|∇∆ψp|2
)

. (5.3)

We have also:

∇·∇·Π=
~2

2

∑

p∈N

(s′)−1(−λp)(|∆ψp|2−ψp∆∆ψp), (5.4)

∇·(WId)=
~2

4

∑

p∈N

(s′)−1(−λp)(2(∇⊗∇ψp) ·∇ψp−∇ψp∆ψp−ψp∇∆ψp) . (5.5)

Proof. Let {e1,e2,e3} denote the standard basis of R3. We use Lemma (3.2) with:

• η=(0,0,0) and α=ei +ej +2ek to get the coefficient (i,j) of (5.1) after sum-
mation on k and division by 2,

• η=ej and α=ei +ej +2ek to get the ith component of (5.2) after summation
on j and k and division by 2,

• η=ei +ej and α=ei +ej +2ek to get (5.3) after summation on i, j and k and
division by 2,

• η=ei +ej and α=ei +ej to get (5.4) after summation on i and j,

• η=ei and α=2ej to get the ith component of (5.5) after summation on j and
division by 2.

As has been done in Lemma (5.2), we now state some general properties involving
Π, Q and some differential expressions of the extensive quantities n, W and intensive
ones A and C.

Theorem 5.2. Let n, W, Π, Q and A, C satisfy (2.33, 2.41–2.43). Then:

∇· Π
C

=−n∇A−W∇ 1

C
+

~2

8
∆

(

n∇ 1

C

)

, (5.6)

∇· Q

C2
+

1

2C
TrQ∇ 1

C
=−(Π+WId) · ∇A

C
+

~2

8C

(

n∇∆A+W∇∆
1

C
+∇·

(

Π∆
1

C

)

+2∇·
((

∇⊗∇ 1

C

)

Π

)

+∆

(

(Π+WId) ·∇ 1

C

)

)

− ~4

64C
∆

(

n∇∆
1

C

)

. (5.7)

Proof. For the first identity, we use (4.10) with B=0. For the second identity,
we use again Lemma (3.4). Let µ(x) be a smooth test function; we compute:

[

W
(

H̃(Ã,0,C̃)
)

,µ|p|2p
]

~

=
[

Ã,µ|p|2p
]

~

+
[

C̃|p|2,µ|p|2p
]

~
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=−i~
(

−2µ(∇Ã ·p)p−µ|p|2∇Ã+
~2

4
µ∇∆Ã

−2µ(∇C̃ ·p)|p|2p−µ∇C̃|p|2|p|2 +2C̃(∇µ ·p)|p|2p

−~2

4

(

−µ∇∆C̃|p|2 +2(∇µ ·p)∆C̃p+4
(

(∇⊗∇C̃)(p⊗p)
)

·∇µ

−2∆µ(∇C̃ ·p)p−∆µ∇C̃|p|2
)

− ~4

16
∆µ∇∆C̃

)

. (5.8)

Then due to the cyclicity of the trace, we write:

Tr
([

H̃(Ã,B̃,C̃),W−1(µ|p|2p)
]

̺eq
n,W

)

=0

=

∫

[

W
(

H̃(Ã,0,C̃)
)

,µ|p|2p
]

~

W
(

̺eq
n,W

) dxdp

(2π~)3
,

which gives weakly the desired identity after integrations by parts and the change of
variable given by (2.15) (with B= B̃=0).

5.2. Simplification of fluxes and QET with slowly varying temperature.
As has been done for the QHD model, we can discuss the case of slowly varying

temperature for the QET model. Let us denote again
∣

∣

∇C
C

∣

∣=ε≪1. Using Theorem
(5.2), we obtain the following approximation for the divergence of the pressure tensor:

∇·Π=−n∇(AC)+O(ε). (5.9)

Note that if we take C=T to be a constant, we find the expression of ∇·Π already
found for the Quantum Drift-Diffusion model [13, 18, 10].

For the divergence of the heat flux tensor, we find the following approximation:

∇·Q=−(Π+WId) ·∇(AC)+
~2

8
n∇∆(AC)+O(ε), (5.10)

so that the currents can be approximated by

jn =n∇(AC−V )+O(ε) (5.11)

jW =(WId+Π) ·∇(AC−V )− ~2

8
n∇(∆(AC−V ))+O(ε). (5.12)

Unfortunately again, we do not know any approximation for Π and we have not
been able to find one which is compatible with the approximation made for ∇·Π in
expression (5.9) — except in one dimension, where we see again two possibilities.

1. If we suppose that the transport is confined in dimension one (the momentum
p being confined on a line with coordinate x1∈R), and if we suppose that
∣

∣

∣

∂x1
C

C

∣

∣

∣
=ε≪1, the 1D QET model reads:

∂tn+∂x1
jn =0, (5.13)

∂tW+∂x1
jW +(∂x1

V )jn =0, (5.14)

where

jn =−2∂x1
W−n∂x1

V, (5.15)

jW =3W∂x1
(AC−V )− ~2

8
n∂3

x1
(AC−V )+O(ε), (5.16)
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with:

(

n
W

)

=

∫

weq
n,W

(

1
p2
1

2

)

dp1

2π~
. (5.17)

The quantum local equilibrium is defined by

weq
n,W =W

(

̺eq
n,W

)

=W
(

(s′)−1 (−H(A,0,C))
)

, (5.18)

where H(A,0,C) is the following modified Hamiltonian:

H(A,0,C)=W−1

(

p2
1

2C
+A

)

=−~2

(

∂x1
(

1

2C
∂x1

)+
1

4
∂2

x1

1

2C

)

+A. (5.19)

2. If the problem is in dimension 3, but all the quantities depend only on one
space variable (say x1), then it is possible to show that the tensor Π is diagonal
(see Subsection 4.2.3). If we suppose that this tensor is scalar and equal to
2W/3Id, then the expressions of the currents (5.15) and (5.16) have to be
replaced by:

jn =−2

3
∂x1

W−n∂x1
V, (5.20)

jW =
5

3
W∂x1

(AC−V )− ~2

8
n∂3

x1
(AC−V )+O(ε). (5.21)

6. Conclusion and perspectives
In this paper, we have given the expressions of the QHD and QET models with

respect to the spectrum of the modified Hamiltonians H(A,B,C) and H(A,0,C). We
have then given some differential constraints that link the moments and their dual
Lagrange multipliers. Concerning specifically the QHD model, a gauge invariance
lemma allows us to simplify the model for irrotational flows. All these properties
allow us to discuss some possible approximations of the models in the special cases
of slowly varying temperature and/or of one dimensional flows which will facilitate
future numerical approximations. The use of the commutator lemma should also allow
us to study other quantum hydrodynamic-like models that have been derived with
the same methodology based on the entropy principle, but involving other moments.
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[11] P. Degond, S. Gallego and F. Méhats, Isothermal quantum hydrodynamics: derivation, asymp-

totic analysis and simulation, SIAM Multiscale Model. Simul., 6(1), 246–272, 2007.
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[26] A. Jügel and D. Matthes, A derivation of the isothermal quantum hydrodynamic equations

using entropy minimization, Z. Angew. Math. Mech., 85, 806–814, 2005.
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