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ABSORBING BOUNDARY CONDITIONS FOR THE

MULTIDIMENSIONAL KLEIN-GORDON EQUATION∗

HOUDE HAN† AND DONGSHENG YIN‡

Abstract. We consider the numerical solution of the linear Klein-Gordon equation in R
2 and

R
3. An artificial boundary is introduced to obtain a bounded computational domain. On the given

artificial boundary, the exact boundary condition and a series of approximating boundary conditions
are constructed, which are called absorbing boundary conditions. By using either the exact or
approximating boundary conditions on the artificial boundary, the original problem is reduced to
either an equivalent or an approximately equivalent initial-boundary value problem on the bounded
computational domain. The uniqueness of the approximate problem is then proved. The numerical
results demonstrate that the method given in this paper is effective and feasible.
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1. Introduction

We consider the absorbing boundary conditions for the Klein-Gordon equation in
R

d(d=2,3). The Klein-Gordon equation is given by

~
2 ∂2u

∂t2
−~

2c2∆u+m4c4u=f(x,t),

where ~ is the Planck constant, m is the mass of the particle, and c is the velocity of
the particle.

The Klein-Gordon equation is a basic equation in relativistic quantum mechanics
[10] which describes the behavior of spin-zero particles, like pions or kaons.

For simplicity, we consider the following initial value problem:

∂2u

∂t2
−∆u+u=f(x,t), ∀ (x,t)∈R

d×(0,T ], (1.1)

u
∣

∣

t=0
=ϕ0(x), ut

∣

∣

t=0
=ϕ1(x),∀ x∈R

d. (1.2)

We assume that ϕ0(x),ϕ1(x), and f(x,t) satisfy

supp{ϕ0(x)}⊂BR0
=

{

x
∣

∣ |x|≤R0

}

,

supp{ϕ1(x)}⊂BR0
,

supp{f(x,t)}⊂BR0
× [0,T ].

Because the physical domain is unbounded, a numerical scheme for solving (1.1)-(1.2)
requires us to bound the computational domain by imposing an artificial boundary
condition on a given artificial boundary.
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Artificial boundary condition methods (ABC methods) refer to a class of methods
that is based on specifying proper boundary conditions on the artificial boundary. The
terms “radiation”, “non-reflecting”, or “absorbing” boundary conditions are often
used in the context of exterior wave problems.

There are two different approaces to constructing artificial boundary conditions
for wave equations. The first approach is called the perfectly matching layers method
[4, 18]; the methods in this class are often very effective. However, there are few the-
oretical results about their accuracy, convergence rate and computational costs. The
second approach is called the transparent or absorbing boundary conditions method
[5, 7, 11, 12, 14], for which the resulting boundary-value problem is either approx-
imates or is equivalent to the original problem. Some classic examples of these ap-
proaches are mentioned below.

In a well-known paper [5], Engquist and Majda explained local transparent bound-
ary conditions and furthermore extended the idea to equations with variable coef-
ficients and to domains with circular artificial boundaries. Bayliss and Turkel [3]
obtained a series of artificial boundary conditions based on a asymptotic expansion
of solutions to the hyperbolic equation at large distances. Higdon [17] considered a
two-dimensional wave equation in a rectangular computational domain.

Fully local boundary conditions are used in practice, however, they may generate
nonphysical reflections at an artificial boundary. Moreover, the well-posedness of the
resulting truncated initial-boundary problem is unknown. While the using discrete
transparent boundary conditions is very efficient, it has some disadvantages. Most of
the discrete transparent boundary conditions are of second-order accuracy, and the
computational meshes must be uniform either in time, in space, or both. Moreover, the
discrete boundary conditions are still nonlocal. Many methods have been introduced
to construct high-order local nonreflecting boundary conditions, see [8] and references
therein.

Nonlocal artificial boundary conditions have the potential of being more accurate
than local ones. Ting and Miksis [22] used the Kirchhoff formula for reflected waves
from the scatter to propose an exact boundary condition for scattering problems.
Teng [21] derived an exact nonreflecting boundary condition based on a boundary
integral equation for exterior problems of the three dimensional wave equation. Teng’s
method has advantages as it only involves information from a finite amount of past
time and has the flexibility of artificial boundary controls. Sofronov [20] and Grote
and Keller [11] designed an exact boundary condition on a spherical boundary for
the three dimensional wave equation by decomposing functions into a summation of
spherical harmonics. Unfortunately, their approach can not be extended directly to
the two dimensional wave equation. Han and Zheng [14, 15] obtained three kinds
of exact nonreflecting boundary conditions for exterior problems of wave equation in
two and three dimensional space by an approach based on Duhamel’s principle. Han
and Huang [13] and Han, Yin and Huang [16] derived exact nonreflecting boundary
conditions for two and three dimensional Schrödinger equations. Generally speaking,
exact boundary conditions require more computational cost.

On the other hand, one can save computational time when using the exact bound-
ary condition by using a fast evolution algorithm. Alpert, Greengard and Hagstrom
[1] constructed a fast evolution method for scalar wave equations. Lubich and Schädle
[19] constructed the fast convolution method of the nonreflection boundary conditions
for wave equations and Schrödinger equations in two dimension.

In this paper, an exact boundary condition for the Klein-Gordon equation in R
2
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and R
3 are constructed on the given artificial boundary. Moreover, a series of artificial

boundary conditions is derived. With the artificial boundary conditions, the original
problem can be reduced to a family of approximate problems on a bounded domain.
The stability of the approximate problem is proved, and numerical examples in the
2D case are given to show the effectiveness of our approach.

2. Absorbing boundary conditions for the 2D Klein-Gordon equation

In R
d, we define the artificial boundary ΓR to be:

ΓR =
{

x
∣

∣ |x|=R, R>R0

}

. (2.1)

ΓR divides R
d into a bounded interior domain Ωi =

{

x
∣

∣ |x|<R
}

and an unbounded

exterior domain Ωe =
{

x
∣

∣ |x|>R
}

. In order to reduce (1.1)–(1.2) into the problem

on bounded domain Di =Ωi× [0,T ], we must study the artificial boundary condition
at ΓR× [0,T ]. In R

2, we consider u(x,t), the restriction of the solution of problem
(1.1)-(1.2) on Ωe× [0,T ]. u(x,t) satisfies

∂2u

∂t2
−∆u+u=0, ∀ (x,t)∈Ωe×(0,T ], (2.2)

u
∣

∣

ΓR

=u(R,θ,t), 0≤ t≤T,0≤θ≤2π, (2.3)

u
∣

∣

t=0
=0, ut

∣

∣

t=0
=0, R<r<+∞. (2.4)

Since u
∣

∣

ΓR

=u(R,θ,t) is unknown, the problem (2.2)-(2.4) is an incompletely posed

problem; it can’t be solved independently. If u(R,θ,t) is given, the problem the
problem (2.2)-(2.4) is well posed, so the solution u(r,θ,,t) of (2.2)-(2.4) can be given
by u(R,θ,t).

Let the solution of (1.1)-(1.2) satisfy

u(r,θ,t)=
u0(r,t)

2
+

+∞
∑

n=1

(

un(r,t)cosnθ+vn(r,t)sinnθ
)

. (2.5)

Inserting (2.5) into (2.2) and using (2.3) and (2.4), we obtain {un(r,t), n=0,1,...}
and {vn(r,t), n=1,...}, which solve the following problems

∂2un

∂t2
−

(

∂2un

∂r2
+

1

r

∂un

∂r
− n2

r2
un

)

+un =0 R<r<+∞, 0<t≤T, (2.6)

un

∣

∣

∣

r=R
=αn(t), 0<t≤T, (2.7)

un

∣

∣

∣

t=0
=0, (un)t

∣

∣

∣

t=0
=0, R≤ r<+∞; (2.8)

∂2vn

∂t2
−

(

∂2vn

∂r2
+

1

r

∂vn

∂r
− n2

r2
vn

)

+vn =0, R<r<+∞, 0<t≤T, (2.9)

vn

∣

∣

∣

r=R
=βn(t), 0<t≤T, (2.10)

vn

∣

∣

∣

t=0
=0, (vn)t

∣

∣

∣

t=0
=0, R≤ r<+∞; (2.11)
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where

αn(t)=
1

π

∫ 2π

0

u(R,θ,t)cosnθdθ, n=0,1,... , (2.12)

βn(t)=
1

π

∫ 2π

0

u(R,θ,t)sinnθdθ, n=1,2,... . (2.13)

In order to solve problems (2.6)–(2.8) and (2.9)–(2.11), firstly, we consider the follow-
ing auxiliary problem:

∂2Gn

∂t2
−

(

∂2Gn

∂r2
+

1

r

∂Gn

∂r
− n2

r2
Gn

)

+Gn =0, R<r<+∞, 0<t≤T, (2.14)

Gn

∣

∣

∣

r=R
=1, 0<t≤T, (2.15)

Gn

∣

∣

∣

t=0
=0, (Gn)t

∣

∣

∣

t=0
=0, R≤ r<+∞. (2.16)

Let

Gn(r,t)=sin
(

(ω2 +1)1/2t
)

W (r), (2.17)

where ω >0 is an arbitrary real number.
Substituting equation (2.17) into (2.14), we find that W (r) satisfies

d2W

dr2
+

1

r

dW

dr
+

(

ω2− n2

r2

)

W =0. (2.18)

The equation (2.18) has two independent solutions: Jn(ωr),Yn(ωr) [2], where Jn(r)
and Yn(r) are Bessel functions of the first and second kind, respectively. Thus for all
ω >0, functions of the form

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

Jn(ωr)Yn(ωR)−Yn(ωr)Jn(ωR)

J2
n(ωR)+Y 2

n (ωR)

are solutions of (2.14).

Define G∗
n(r,t) to be

G∗
n(r,t)=

2

π

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

Jn(ωr)Yn(ωR)−Yn(ωr)Jn(ωR)

J2
n(ωR)+Y 2

n (ωR)
dω. (2.19)

To study the properties of G∗
n(r,t), we remember the asymptotic behavior of the

Bessel functions Jn(z) and Yn(z) and their zeros: [9]

Jn(z)=
zn

2n

+∞
∑

k=0

(−1)k z2k

22kk!Γ(ν +k+1)
, (|argz|<π), (2.20)

πYn(z)=2Jn(z)
(

ln
z

2
+C

)

−
n−1
∑

k=0

(n−k−1)!

k!

(z

2

)2k−n

−(
z

2
)n 1

n!

n
∑

k=1

1

k
−

+∞
∑

k=1

(−1)k
(

z
2

)n+2k

k!(k+n)!

[

n+k
∑

m=1

1

m
+

k
∑

m=1

1

m

]

. (2.21)
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Here, C is the Euler constant.
From (2.20) and(2.21), there exists a constant ǫ∈ (0,1) such that







































J0(ω)=1+O(ω2), ω→+0,

Y0(ω)= 2
π (lnω+C− ln2)+O(ω2−ǫ), ω→+0,

Jn(ω)= 1
n! (

ω
2 )n +O(ωn+2), ω→+0,

Yn(ω)=− (n−1)!
π (ω

2 )−n +O(ω−n+2−ǫ), ω→+∞.

(2.22)

From asymptotic expansion of Hankel functions, we obtain:

J2
n(ω)+Y 2

n (ω)∼ 2

πω

[

+∞
∑

m=0

(−1)m (n,m)

(2iω)m

][

+∞
∑

k=0

(n,m)

(2iω)m

]

=
2

πω

+∞
∑

m=0

2m
∑

k=0

(−1)k (n,k)

(2iω)k

(n,2m−k)

(2iω)2m−k

=
2

πω

+∞
∑

m=0

2m
∑

k=0

(n,k)(n,2m−k)

=
2

πω

+∞
∑

m=0

an
m

ω2m
, ω→+∞.

with

(n,k)=
Γ(n+ 1

2 +k)

k!Γ(n+ 1
2 −k)

,

an
m =

1

(−4)m

2m
∑

k=0

(−1)k(n,k)(n,2m−k).

Note that an
0 =0, and let

1
+∞
∑

m=0

an
m

ω2m

=
+∞
∑

m=0

bn
m

1

ω2m
.

Then {bn
m} can be determined by {an

m},

bn
0 =0,

bn
man

0 + bn
m−1a

n
1 + ···+bn

0an
m =0,

and

1

J2
n(ω)+Y 2

n (ω)
∼ πω

2

[

1+
+∞
∑

m=1

bn
m

ω2m

]

, ω→+∞. (2.23)

Thus G∗
n(r,t) has the following properties:
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1. G∗
n(r,t) is absolutely integrable on (r,t)∈ [R,+∞]× [0,T ], and G∗

n(r,t) is con-
tinuous in [R,+∞]× [0,T ].

2. G∗
n(r,t) is differentiable in [R,+∞]× [0,T ]\ΓR,0, and

∂G∗
n(r,t)

∂r
=

2

π

∫ +∞

0

ω2 sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

J ′
n(ωr)Yn(ωR)−Y ′

n(ωr)Jn(ωR)

J2
n(ωR)+Y 2

n (ωR)
dω,

(2.24)

∂G∗
n(r,t)

∂t
=

2

π

∫ +∞

0

ωcos
(

(ω2 +1)1/2t
)

ω2 +1

Jn(ωr)Yn(ωR)−Yn(ωr)Jn(ωR)

J2
n(ωR)+Y 2

n (ωR)
dω,

(2.25)

where ΓR,0 presents the characteristic
{

(r,t)
∣

∣

∣
r=R+ t,t≥0

}

.

3. G∗
n(R,t)=0, G∗

n(r,0)=0.

4. From equality (2.24) and (2.25), we obtain:

∂G∗
n(R,t)

∂r
= − 4

π2R

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

1

J2
n(ωR)+Y 2

n (ωR)
dω, t>0,

∂G∗
n(r,0)

∂t
=

2

π

∫ +∞

0

w

ω2 +1

Jn(ωr)Yn(ωR)−Yn(ωr)Jn(ωR)

J2
n(ωR)+Y 2

n (ωR)
dω

=− Kn(r)

Kn(R)
, r>R.

The last equality is proved in the appendix. It will play an important role in
this section.

5. G∗
n(r,t) is a weak solution of (2.14).

Note that t Kn(r)
Kn(R) is also a solution of (2.14), and let

Gn(r,t)= t
Kn(r)

Kn(R)
+G∗

n(r,t). (2.26)

Then Gn(r,t) is a solution of the initial-boundary value problem (2.14)-(2.16).

Using Duhamel’s Theorem, one can derive un(r,t), which is the solution to (2.6)–
(2.8), and vn(r,t), which is the solution to (2.9)–(2.11), from Gn(r,t):

un(r,t)=

∫ t

0

∂αn(τ)

∂τ

∂Gn(r,t−τ)

∂t
dτ

=
Kn(r)

Kn(R)
αn(t)+

∫ t

0

∂2αn(τ)

∂τ2
G∗

n(r,t−τ)dτ, (2.27)

vn(r,t)=

∫ t

0

∂βn(τ)

∂τ

∂Gn(r,t−τ)

∂t
dτ

=
Kn(r)

Kn(R)
βn(t)+

∫ t

0

∂2βn(τ)

∂τ2
G∗

n(r,t−τ)dτ. (2.28)
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On the boundary r=R

∂un(R,t)

∂r
=

K ′
n(R)

Kn(R)
un(R,t)+

∫ t

0

∂2αn(τ)

∂τ2

∂G∗
n(R,t−τ)

∂r
dτ

=
K ′

n(R)

Kn(R)
un(R,t)+

∫ t

0

∂2un(R,τ)

∂τ2

∂G∗
n(R,t−τ)

∂r
dτ, (2.29)

∂vn(R,t)

∂r
=

K ′
n(R)

Kn(R)
vn(R,t)+

∫ t

0

∂2vn(R,τ)

∂τ2

∂G∗
n(R,t−τ)

∂R
dτ. (2.30)

On the other hand,

∂G∗
n(R,t)

∂r
=− 4

Rπ2

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

1

J2
n(ωR)+Y 2

n (ωR)
dω

≡−HYn,R(t), (2.31)

with

HYn,R(t)=
4

Rπ2

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

1

J2
n(ωR)+Y 2

n (ωR)
dω. (2.32)

For arbitrary t>0, the integral in (2.32) is convergent, thus (2.32) defines new special
functions HYn,R(t). HYn,R(t) can be rewritten into the following equivalent formula:

HYn,R(t)=
4

Rπ2

∫ +∞

0

ω sin
(

(ω2 +1)
1
2 t

)

(ω2 +1)
3
2

{ 1

J2
n(ωR)+Y 2

n (ωR)
− π

2
R(ω2 +1)

1
2

}

dω

+
2

π

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

ω2 +1
dω. (2.33)

Since

2

π

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

ω2 +1
dω =

2

π

∫ +∞

1

sinξt

ξ
dξ

=
2

π

(

∫ +∞

0

sinξt

ξ
dξ−

∫ 1

0

sinξt

ξ
dξ

)

=1− 2

π

∫ t

0

sinξ

ξ
dξ, (2.34)

then if we combine (2.33)–(2.34), we obtain

HYn,R(t)=
4

Rπ2

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

{ 1

J2
n(ωR)+Y 2

n (ωR)
− π

2
R(ω2 +1)1/2

}

dω

+1− 2

π

∫ t

0

sinξ

ξ
dξ. (2.35)

From (2.35), HYn,R(t) is differentiable with respect to t in (0,+∞), and

HY ′
n,R(t)=

4

Rπ2

∫ +∞

0

ωcos
(

(ω2 +1)1/2t
)

ω2 +1

{ 1

J2
n(ωR)+Y 2

n (ωR)
− π

2
R(ω2 +1)1/2

}

− 2

π

( sint

t
−1

)

. (2.36)
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We can use (2.35)–(2.36) to calculate HYn,R(t) and HY ′
n,R(t). Substituting (2.31)

into (2.29), we have

∂un(R,t)

∂r
=

K ′
n(R)

Kn(R)
un(R,t)−

∫ t

0

∂2un(R,τ)

∂τ2
HYn,R(t−τ)dτ

=
K ′

n(R)

Kn(R)
un(R,t)−∂un(R,t)

∂t
−
∫ t

0

∂un(R,τ)

∂τ
HY ′

n,R(t−τ)dτ. (2.37)

Similarly, for vn(r,t), we obtain

∂vn(R,t)

∂r
=

K ′
n(R)

Kn(R)
vn(R,t)− ∂vn(R,t)

∂t
−

∫ t

0

∂vn(R,τ)

∂τ
HY ′

n,R(t−τ)dτ. (2.38)

Equations (2.37)–(2.38) are the exact boundary conditions for un(r,t) and vn(r,t) on
the artificial boundary ΓR× [0,T ].

From (2.5), (2.37) and (2.38), we derive the absorbing boundary condition satisfy-
ing the solution u(r,t) of Klein-Gordon equation(1.1)–(1.2) on the artificial boundary
ΓR× [0,T ]:

∂u(R,θ,t)

∂r
=−∂u(R,θ,t)

∂t
+

+∞
∑

n=0

{

K ′
n(R)

Kn(R)

(

un(R,t)cosnθ+vn(R,t)sinnθ
)

−
∫ t

0

(∂un(R,τ)

∂τ
cosnθ+

∂vn(R,τ)

∂τ
sinnθ

)

HY ′
n,R(t−τ)dτ

}

,

=−∂u(R,θ,t)

∂t
+

+∞
∑

n=0

{

K ′
n(R)

πKn(R)

∫ 2π

0

u(R,ϕ,t)cosn(ϕ−θ)dϕ

}

− 1

π

∫ t

0

∫ 2π

0

∂u(R,ϕ,τ)

∂τ
cosn(ϕ−θ)HY ′

n,R(t−τ)dτ

≡K2
(

u(R,θ,t)
)

. (2.39)

Therefore, the original problem is transformed into the following initial-boundary
value problem on the bounded domain DT

i =Di× [0,T ].

∂2u

∂t2
=∆u+u, ∀ (x,t)∈ΩT

i ,

∂u

∂r

∣

∣

ΓR

=K2
(

u(R,θ,t)
)

, 0≤ t≤T,0≤θ≤2π,

u
∣

∣

t=0
=0, ut

∣

∣

t=0
=0, R<r<+∞.

If we take the first few terms of the above summation, namely N =0,1,2,...,

∂u(R,θ,t)

∂r
=− 1

π

N
∑

n=0

∫ 2π

0

∂u(R,ϕ,t)

∂t
cosn(ϕ−θ)dϕ

+
1

π

N
∑

n=0

{

K ′
n(R)

Kn(R)

∫ 2π

0

u(R,ϕ,t)cosn(ϕ−θ)dϕ

−
∫ t

0

∫ 2π

0

∂u(R,ϕ,τ)

∂τ
cosn(ϕ−θ)HY ′

n,R(t−τ)dϕdτ

}

≡K2
N

(

u(R,θ,t)
)

. (2.40)
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If we use boundary condition (2.40) instead of (2.39), we obtain a series of approximate
problems.

3. Absorbing boundary conditions for the 3D Klein-Gordon equation

When d=3, consider the restriction of the solution U of (1.1)–(1.2) on Ωe× [0,T ],
which satisfyies the following equations in spherical coordinates:

∂2U
∂t2

−
{

∂2U
∂r2

+
2

r

∂U
∂r

+
1

r2 sinθ

(

sinθ
∂U
∂θ

+
1

r2 sin2θ

∂2U
∂ϕ2

)

}

+U =0,

R<r, −π

2
≤θ≤ π

2
, 0≤ϕ≤2π, (3.1)

U
∣

∣

∣

ΓR

=U(R,θ,ϕ,t), 0≤ t≤T, (3.2)

U
∣

∣

∣

t=0
=0, Ut

∣

∣

∣

t=0
=0, R<r<+∞. (3.3)

If U(R,θ,ϕ,t) is known, problem (3.1)-(3.3) can be solved uniquely. Giving the ex-

pansions of the solution of (3.1)-(3.3) in spherical harmonic functions
{

Y m
n (θ,ϕ), n≥

0, −n≤m≤n
}

, namely,

U(r,θ,ϕ,t)=
+∞
∑

n=0

n
∑

m=−n

Um
n (r,t)Y m

n (θ,ϕ), (3.4)

where

Um
n (r,t)=

∫

Γ1

U(r,θ,ϕ,t)Y
m

n (θ,ϕ)ds, (3.5)

where Γ1 is the surface of the unit ball.
By substituting (3.4) into (3.1) and using the initial and boundary value condi-

tions (3.2)–(3.3), one can show that {Um
n (r,t), n≥0, −n≤m≤n} satisfies

∂2Um
n

∂t2
−

{

∂Um
n

∂r2
+

2

r

∂Um
n

∂r
−n(n+1)

r2
Um

n

}

+Um
n =0,

∀(r,t)∈ (R,+∞)×(0,T ]. (3.6)

Um
n

∣

∣

∣

r=R
=Um

n (R,t), 0≤ t≤T, (3.7)

Um
n

∣

∣

∣

t=0
=0, (Um

n )
∣

∣

∣

t=0
=0, R<r<+∞. (3.8)

In order to find the solution of problem (3.6)–(3.8), we consider the following auxiliary
problem:

∂2Hn

∂t2
−

{

∂Hn

∂r2
+

2

r

∂Hn

∂r
− n(n+1)

r2
Hn

}

+Hn =0,

∀(r,t)∈ (R,+∞)×(0,T ]. (3.9)

∂Hn

∂t

∣

∣

∣

r=R
=1, 0≤ t≤T, (3.10)

Hn

∣

∣

∣

t=0
=0, (Hn)t

∣

∣

∣

t=0
=0, R<r<+∞. (3.11)
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∀ω >0, assume sin
(

(ω2 +1)1/2t
)

W (r) is a solution of (3.9). Then W (r) satisfies

d2W

dr2
+

2

r

dW

dr
+

(

ω2− n(n+1)

r2

)

W =0. (3.12)

Equation (3.12) is spherical Bessel equation; it has two independent solutions h1(ωr)
and h2(ωr), where

h1(ρ)=

√

π

2ρ
Jn+1/2(ρ), h2(ρ)=

√

π

2ρ
Yn+1/2(ρ). (3.13)

Let

H∗
n(r,t)=

2

π

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

h1(ωr)h2(ωR)−h1(ωR)h1(ωr)

h2
1(ωR)+h2

2(ωR)
dω. (3.14)

For (r,t)∈ [R,+∞)× [0,T ], the integral in 3.14 is convergent. H∗
n(r,t) is a solution of

(3.9), and

H∗
n(R,t)=0, 0≤ t≤T,

H∗
n(r,0)=0, R≤ r<+∞.

∂H∗
n(r,0)

∂t
=

2

π

∫ +∞

0

ω

ω2 +1

h1(ωr)h2(ωR)−h1(ωR)h1(ωr)

h2
1(ωR)+h2

2(ωR)
dω

=
2

π

√

R

r

∫ +∞

0

ω

ω2 +1

Jn+1/2(ωr)Yn+1/2(ωR)−Jn+1/2(ωR)Yn+1/2(ωr)

J2
n+1/2(ωR)+Y 2

n+1/2(ωR)
dω

=−
√

R

r

Kn+1/2(r)

Kn+1/2(R)
,

where the last equality is obtained from (A.3) in the appendix.

Let

Ln+1/2(r)=
Kn+1/2(r)√

r
.

Then Ln+1/2(r) satisfies the following differential equation:

d2Ln+1/2

dr2
+

2

r

dLn+1/2

dr
−

(

1+
n(n+1)

r2

)

Ln+1/2 =0. (3.15)

Thus Ln+1/2(r) is a special solution of (3.9), and

∂H∗
n(r,0)

∂t
=− Ln+1/2(r)

Ln+1/2(R)
.

Let

Hn(r,t)= t
Ln+1/2(r)

Ln+1/2(R)
+H∗

n(r,t). (3.16)
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Then Hn(r,t) is a solution of the initial-boundary value problem (3.9)–(3.11). Using
Duhamel’s theorem and Hn(r,t), we can find the solution Um

n (r,t) of (3.6)–(3.8):

Um
n (r,t)=

∫ t

0

∂Um
n (R,τ)

∂τ

∂Hn(r,t−τ)

∂t
dτ

=
Ln+1/2(r)

Ln+1/2(R)
Um

n (R,t)+

∫ t

0

∂2Um
n (R,τ)

∂τ2
H∗

n(r,t−τ)dτ. (3.17)

On the boundary r=R,

∂Um
n (R,t)

∂r
=

L′
n+1/2(R)

Ln+1/2(R)
Um

n (R,t)+

∫ t

0

∂2Um
n (R,τ)

∂τ2
H∗

n(R,t−τ)dτ. (3.18)

On the other hand

∂H∗
n(R,t)

∂r
=

2

π

∫ +∞

0

ω2 sin
(

(ω2 +1)1/2t
)

(ω2 +1)3/2

×
J ′

n+ 1
2

(ωR)Yn+ 1
2
(ωR)−Jn+ 1

2
(ωR)Y ′

n+ 1
2

(ωR)

J2
n+ 1

2

(ωR)+Y 2
n+ 1

2

(ωR)
dω

=− 4

π2R

∫ +∞

0

ω sin
(

(ω2 +1)1/2t
)

ω2 +1

1

J2
n+ 1

2

(ωR)+Y 2
n+ 1

2

(ωR)
dω

≡−HYn+1/2,R(t).

From (3.18), we obtain

∂Um
n (R,t)

∂r
=

L′
n+1/2(R)

Ln+1/2(R)
Um

n (R,t)−
∫ t

0

∂2Um
n (R,τ)

∂τ2
HYn+1/2,R(t−τ)dτ

=
L′

n+ 1
2

(R)

Ln+ 1
2
(R)

Um
n (R,t)−

∫ t

0

∂Um
n (R,τ)

∂τ
HY ′

n+ 1
2
,R(t−τ)dτ. (3.19)

Combining (3.4), (3.5) and (3.19), we get the absorbing boundary condition for the
Klein-Gordon equation:

∂U(r,θ,ϕ,t)

∂r
=

+∞
∑

n=0

n
∑

m=−n

{

L′
n+1/2(R)

Ln+1/2(R)

∫

S1

U(R,θ′,ϕ′,t)Y
m

n (θ′,ϕ′)dS′

−
∫ t

0

∫

S1

∂U(R,θ′,ϕ′,τ)

∂τ
HYn+1/2,R(t−τ)dS′

−
∫

S1

∂U(R,θ′,ϕ′,t)

∂t
Y

m

n (θ′,ϕ′)dS′

}

Y m
n (θ,ϕ)

≡K3
(

U(r,θ,ϕ,t)
)

. (3.20)

Taking N terms in the right hand side of (3.20), we obtain a series of approximate
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artificial boundary conditions:

∂U(r,θ,ϕ,t)

∂r
=

N,
∑

n=0

n
∑

m=−n

{

L′
n+1/2(R)

Ln+1/2(R)

∫

S1

U(R,θ′,ϕ′,t)Y
m

n (θ′,ϕ′)dS′

−
∫ t

0

∫

S1

∂U(R,θ′,ϕ′,τ)

∂τ
HYn+1/2,R(t−τ)dS′

−
∫

S1

∂U(R,θ′,ϕ′,t)

∂t
Y

m

n (θ′,ϕ′)dS′

}

Y m
n (θ,ϕ)

≡K3
N

(

U(r,θ,ϕ,t)
)

. (3.21)

4. Stability analysis of the reduced problems on the bounded compu-

tational domain Di

By using the absorbing boundary conditions (2.39) and (3.20), the original prob-
lem (1.1)–(1.2) on the unbounded domain R

d× [0,T ] is transformed into the following
initial-boundary value problem on the bounded domain DT

i = Di× [0,T ], for d=2,3,

∂2u

∂t2
−∆u+u=f(x,t), ∀ (x,t)∈DT

i , (4.1)

u
∣

∣

∣

t=0
=ϕ0(x), ut

∣

∣

∣

t=0
=ϕ1(x), ∀ x∈Ωi, (4.2)

∂u

∂r

∣

∣

∣

ΓR

=Kd
(

u
∣

∣

ΓR

)

, ∀t∈ [0,T ]. (4.3)

Similarly, by using approximate boundary conditions (2.40) and (3.21), we can
reduce the original problem to an approximate initial-boundary value problem on the
bounded computational domain DT

i ,

∂2uN

∂t2
−∆uN +uN =f(x,t), ∀(x,t)∈DT

i , (4.4)

uN
∣

∣

∣

t=0
=ϕ0(x),

(

uN
)

t

∣

∣

∣

t=0
=ϕ1(x), ∀x∈Ωi, (4.5)

∂uN

∂r

∣

∣

∣

ΓR

=Kd
N

(

uN
∣

∣

ΓR

)

, ∀t∈ [0,T ]. (4.6)

We have the following stability estimate:

Theorem 4.1. The initial-boundary value problem (4.1)–(4.3) ((4.4)–(4.6)) on the
bounded the computational domain DT

i has at most one solution u(x,t) (uN (x,t)), and
u(x,t) (uN (x,t)) depends continuously on the initial values ϕ0(x),ϕ1(x) and f(x,t).

Proof. We only prove the results in two dimensional case, but the three dimen-
sional case can be proved similarly.

By multiplying both sides of (4.1) by ∂u(x,t)
∂t , integrating on Ωi, and using the

initial conditions (4.5) and boundary condition (4.6), we obtain

1

2

d

dt

{
∫

Ωi

[

∣

∣

∂u

∂t

∣

∣

2
+

∣

∣∇u
∣

∣

2
+u2

]

dx

}

− ∂u

∂x
|ΓR

∂u

∂t
|ΓR

=

∫

Ωi

f
∂u

∂t
dx. (4.7)

In order to evaluate the term
∂u

∂x
|ΓR

∂u

∂t
|ΓR

, we consider the following auxiliary prob-

lem:
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∂2w

∂t2
−∆w+w=0, ∀ (x,t)∈Ωe×(0,T ], (4.8)

w
∣

∣

ΓR

=u
∣

∣

ΓR

, 0≤ t≤T, (4.9)

w
∣

∣

t=0
=0, wt

∣

∣

t=0
=0, |x|>R. (4.10)

From (2.39), we have

∂w

∂x

∣

∣

ΓR

=
∂u

∂x

∣

∣

ΓR

=K2
(

u
∣

∣

ΓR

,
∂u

∂t

∣

∣

ΓR

)

.

Multiplying both sides of (4.8) by ∂w
∂t and integrating on Ωe, we arrive at

∂u

∂x

∣

∣

∣

ΓR

∂u

∂t

∣

∣

∣

ΓR

=
1

2

{
∫

Ωe

[

∣

∣

∂w

∂t

∣

∣

2
+

∣

∣∇w
∣

∣

2
+w2

]

dx

}

. (4.11)

Combining (4.7) and (4.11), we obtain

d

dt
E(t)≤E(t)+F (t), 0≤ t≤T, (4.12)

where

E(t)=
1

2

∫

Ωi

[

∣

∣

∂u

∂t

∣

∣

2
+

∣

∣∇u
∣

∣

2
+u2

]

dx+
1

2

∫

Ωe

[

∣

∣

∂w

∂t

∣

∣

2
+

∣

∣∇w
∣

∣

2
+w2

]

dx,

F (t)=

∫

Ωi

∣

∣f(x,t)
∣

∣

2
dx.

Using Gronwall’s inequality, we arrive at

E(t)≤et
(

E(0)+F (t)
)

. (4.13)

On the other hand

E(0)=
1

2

∫

Ωi

[

∣

∣ϕ1(x)
∣

∣

2
+

∣

∣ϕ′
0(x)

∣

∣

2
+

∣

∣ϕ0(x)
∣

∣

2
]

dx. (4.14)

From (4.13), we have a stability estimate for the solution u(x,t):

1

2

∫

Ωi

[

∣

∣

∂u(x,t)

∂t

∣

∣

2
+

∣

∣∇u(x,t)
∣

∣

2
+

∣

∣u(x,t)
∣

∣

2
]

dx

≤et

{

1

2

∫

Ωi

[

∣

∣ϕ1(x)
∣

∣

2
+

∣

∣ϕ′
0(x)

∣

∣

2
+

∣

∣ϕ0(x)
∣

∣

2
]

dx+

∫

Ωi

∣

∣f(x,t)
∣

∣

2
dx

}

. (4.15)

The statement for uN (x,t) can be proved similarly.

5. The kernel functions
{

HY ′
n,R(t),n=0,1,2,...

}

The kernel functions
{

HY ′
n,R(t),n=0,1,2,...

}

are very important in the absorb-

ing boundary condition (2.39). Before discussing the numerical solution of problem
(4.4)-(4.6) we must calculate the functions

{

HY ′
n,R(t),n=0,1,2,...

}

. The integrals
possess at most two singular points 0 and +∞. But for large t>0, the integrals be-
come oscillatory. We will use a scheme similar to the one found in [14] to get their
approximate values when the parameter is not too large.

In practical computation, we introduce a large number M to divide the semi-
infinite interval (0,+∞) into two parts: (0,M) and (M,+∞). First, consider the first
integral in (2.35) on (M,+∞). By the asymptotic expansion (2.23), it holds
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4

π2

∫ +∞

M

ωcos
(

(ω2 +1)1/2t
)

ω2 +1

1

J2
n(ω)+Y 2

n (ω)
dw≈ 2

π

+∞
∑

m=0

bn
m

∫ +∞

M

cos(wt)

w2m+1
dw

≡ 2

π

∞
∑

m=0

bn
mSM (m,t),

where

SM (m,t)=

∫ +∞

M

cos(wt)

w2m+1
dw

=
cos(Mt)

2mM2m
− tcos(Mt)

2m(2m−1)M2m−1
+

t2

2m(2m−1)
SM (m−1,t),

SM (0,t)=

∫ +∞

M

cos(wt)

w
dw=

∫ +∞

Mt

cos(w)

w
=

π

2
−

∫ Mt

0

cosw

w
dw.

The function SM (0,t) can be obtained by numerical quadrature for any fixed M
and t. Secondly, consider the integral on (0,M), namely,

4

π2

∫ M

0

ωcos
(

(ω2 +1)1/2t
)

ω2 +1

1

J2
n(ω)+Y 2

n (ω)
dw.

The Simpson quadrature scheme can be applied to calculate this integral.
From Figures 5.1–5.2, we can see that

{

HY ′
n,R(t),n=0,1,2,...

}

are smooth and
decay very fast. After discretizing the boundary condition (2.40), we need to calculate
the summation

l
∑

k=1

u(R,.,tl−k)Cn(k)

with tk =k∆t,k =1,··· ,l and

Cn(k)=

∫ tk

tk−1

HY ′
n,R(λ)dλ−

∫ tk+1

tk

HY ′
n,R(λ)dλ. (5.1)

As k→∞, Cn(k) goes like O(( 1
k +∆t)

√

∆t
k ) (see FIG. 5.3 )

6. Numerical examples

In this section, we perform numerical examples for the 2D Klein-Gordon equation.

Example 6.1. First we consider a simple example:

∂2

∂t2
u(x,y,t)−∆u(x,y,t)+u(x,y,t)=0,

u(x,y,t)
∣

∣

t=0
=g(x,y), ut(x,y,t)

∣

∣

t=0
=h(x,y),

where

g(x,y)=

{

sin
(

2π(x2 +y2)
)

, 0≤x2 +y2≤1,
0, x2 +y2 >1;
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Fig. 5.1. HY ′
0,2(t) and HY ′

1,2(t)
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Fig. 5.2. HY ′
2,2(t) and HY ′

3,2(t)
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Fig. 5.3. The graph of |C2(k)| in logarithmic scales. Here ∆t=1/2000.

h(x,y)=

{

2πcos
(

2π(x2 +y2)
)

, 0≤x2 +y2≤3/4,
0, x2 +y2 >3/4.

Thus, the initial condition only depends on r.

Since it is hard to find the exact solution of this problem, a highly-accurate
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numerical solution is needed to play this role, which is called “the accurate solution”
in the following discussion. This solution is obtained by a standard second-order,
centered difference discretization in space and time with mesh size h=1/1024, time
step τ =h/2 and a N-order ABC—with N =8 in (2.40).

Next, we introduce an artificial boundary Γ2×(0,T ] and consider the problem in
the bounded domain {(r,t)|0≤ r≤2,0<t≤3}. A linear finite element scheme with
a lumping technique for the space directions is employed with a third order ABC in
the numerical implementation at each time step. A second order centered difference
with τ =h/2 is used to approximate the time derivatives, and the integral term for
HYn,2(t) is approximated with a numerical quadrature scheme.

FIG. 6.1 shows the maximal error on t=2 and t=3 with different meshes.
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Fig. 6.1. Maximal error on time points, left is t=2, right is t=3

The relative error and convergence rates are shown in the TABLE 6.1. It can be
observed that the errors decay with a nearly-optimal convergence rate of 4 when the
mesh is refined by a factor 2.

Table 6.1. The relative error and convergence rate of Example 1.

Node t=1 t=2 t=3
32 3.3104E-2 ··· 3.4321E-2 ··· 3.4509E-2 ···
64 8.1243E-3 4.541 8.1428E-3 4.231 8.2046E-3 4.212
128 2.0123E-3 4.121 2.0314E-3 4.102 2.0218E-3 4.089
256 5.0022E-4 3.986 5.0321E-4 3.954 5.0428E-4 4.002
512 1.2132E-4 4.014 1.1254E-4 3.988 1.2318E-4 4.012

Next, we consider the following Klein-Gordon equation

Example 6.2.

∂2

∂t2
u(x,y,t)−∆u(x,y,t)+u(x,y,t)=0,

u(x,y,t)
∣

∣

t=0
=g(x,y), ut(x,y,t)

∣

∣

t=0
=h(x,y),

with

g(x,y)=

{

(1−x2)(1−y2), 0≤|x|,|y|≤1,
0, otherwise,
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h(x,y)=

{

sin4π
(

(1−|x|)(1−|y|)
)

, 0≤|x|,|y|≤1,
0, otherwise.

The centered difference scheme is used to approximate the time derivatives. A
Linear triangular finite element scheme with a lumping technique for the space direc-
tions at each time step is used with τ/h=0.5, where h denotes the mesh size. Figure
6.2 demonstrates the type of mesh used in our examples. The “accurate solution” is
obtained with a mesh size of h=1/1024 and a twelfth order ABC.

Fig. 6.2. Mesh plot with h=1/16

Figure 6.3 demonstrates the maximal error on t=2 and t=3 with different meshes
along the line y =0.
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Fig. 6.3. Maximal error on t=2,3 along line y =0

Figure 6.4 shows the convergence rates of artificial boundary conditions with
different accuracy, namely, with N =1,2,4,6,7. In FIG. 6.4, when N is small, the
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accuracy of the numerical solutions can’t be improved by refining the meshes because
the artificial boundary conditions are not very accurate. When N becomes large, the
numerical solution approximates the “accurate solution” very well. When N =7, the
convergence rate is almost two, which means the artificial boundary coundition with
N =7 is a good approximation of the exact boundary condition.
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Fig. 6.4. The convergence rate of the artificial boundary conditions with different accuracy

In practical computation, the error of numerical solutions depends on the location
of the artificial boundaries. To investigate the relation between the errors and the
location of the artificial boundaries, we select different artificial boundaries, namely
R=2,3,4,5 and N =5. The numerical error of at (x,y)=(1.5,1.5) is shown in TABLE

6.2. We can see that the location of artificial boundaries has little effect on the
accuracy of our artificial boundary conditions.

Table 6.2. The numerical results for different artificial boundaries

mesh size R=2 R=3 R=4 R=5
1/16 5.2602E-2 4.8267E-2 4.5481E-2 4.3968E-2
1/32 1.3104E-2 1.2102E-2 1.1208E-2 1.0682E-2
1/64 3.2368E-3 3.0172E-3 2.7149E-3 2.5127E-3
1/128 7.9138E-4 7.4873E-4 6.7148E-4 6.3163E-4
1/256 1.9143E-4 1.8123E-4 1.7032E-4 1.5932E-4

There are two ways to improve the accuracy of the artificial boundary conditions;
one way is to extend the computational domain. Another way is to increase N ,
the number of terms in the truncated artificial boundary conditions. For the same
numerical accuracy, we compared the computational time of the two approaches. The
mesh size was chosen to be h=1/256 and t=3. From the numerical results we can
see that in order to save computational cost one can choose a smaller computational
domain and bigger N , which is an advantage of our high accuracy artificial boundary
conditions.
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Table 6.3. Computational time of different R and N

accuracy R N CPU time R N CPU time R N CPU time
1.0e-3 2 4 2s 3 2 6s 4 1 19s
1.0e-4 2 5 4s 3 3 13s 4 2 19s
1.0e-5 2 7 9s 3 5 28s 4 4 70s

7. Conclusion

The numerical simulation for the multidimensional Klein-Gordon equation is con-
sidered. By introducing an artificial boundary and giving either the exact or a fam-
ily of approximate artificial boundary conditions, the original problem is reduced to
an equivalent problem or a sequence of approximate problems, respectively, on the
bounded computational domain. Furthermore, stability analysis of the approximate
problem on a bounded computational domain is established. The performance of the
numerical examples shows that the given method is feasible and effective.

Appendix A. Proof of the formula used in ABCs.

Lemma A.1. When a>0,b>c,R>0,ν≥0, we have the following equalities

∫ +∞

R

Jν(aξ)Kν(bξ)ξdξ =
a2 +b2

R

{

bJν(aR)Kν+1(bR)−aJν+1(aR)Kν(bR)
}

, (A.1)

∫ +∞

R

Yν(aξ)Kν(bξ)ξdξ =
R

a2 +b2

{

bYν(aR)Kν+1(bR)−aYν+1(aR)Kν(bR)
}

, (A.2)

− 2

π

Kν(r)

Kν(R)
=

∫ +∞

0

ω

ω2 +1

Jν(ωr)Yν(ωR)−Jν(ωR)Yν(ωr)

J2
ν (ωR)+Y 2

ν (ωR)
dω. (A.3)

Proof.

1. From the formula 6.521 in [9], we obtain

∫ +∞

R

Jν(aξ)Kν(bξ)ξdξ

=

∫ +∞

0

Jν(aξ)Kν(bξ)ξdξ−
∫ R

0

Jν(aξ)Kν(bξ)ξdξ

=
( b

a

)ν 1

a2 +b2
−

1

a2 +b2

{

( b

a

)ν
+aRJν+1(aR)Kν(bR)−bRJν(aR)Kν+1(bR)

}

=
R

a2 +b2

{

bJν(aR)Kν+1(bR)−aJν+1(aR)Kν(bR)
}

.

Thus, (A.1) is proved.
2. Let

F1(R)=

∫ +∞

R

Yν(aξ)Kν(bξ)ξdξ,

F2(R)=
R

a2 +b2

{

aYν(aR)Kν+1(bR)−aYν+1(aR)Kν(bR)
}

.
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If we differentiate F1(R) and F2(R) with respect to R, we have

dF1

dR
=−RYν(aR)Kν(bR),

dF2

dR
=

1

a2 +b2

{

bYν(aR)Kν+1(bR)−aYν+1(aR)Kν(bR)
}

+
R

a2 +b2

{

abY ′
ν(aR)Kν+1(bR)+b2Yν(aR)K ′

ν+1(bR)

−a2Y ′
ν+1(aR)Kν(bR)−abYν+1(aR)K ′

ν(bR)
}

=
1

R(a2 +b2)

{

[

RbYν(aR)+R2abY ′
ν(aR)

]

Kν+1(bR)

−
[

RaYν+1(aR)+R2a2Y ′
ν+1(aR)

]

Kν(bR)

−R2abYν+1(aR)K ′
ν(bR)+R2b2Yν(aR)K ′

ν+1(bR)
}

.

Using the formula [2]

xY ′
ν(x)=xYν−1(x)−νYν(x),

xY ′
ν+1(x)=xYν(x)−(ν +1)Yν+1(x),

xK ′
ν(x)=vKν(x)−xKν+1(x),

xK ′
ν+1(x)=−(ν +1)Kν+1(x)−xKν(x),

xYν−1(x)+xYν+1(x)−2νYν(x)=0,

we arrive at

dF2

dR
=−RYν(aR)Kν(bR)=

dF1

dR
,

and

lim
R→+∞

F1(R)= lim
R→+∞

F2(R)=0.

Thus, (A.2) is proved.

3. From Weber-Orr’s formula ([6], P.74), we obtain

f(r)=

∫ +∞

0

Jν(ωr)Yν(ωR)−Jν(ωR)Yν(ωr)

[Jν(ωR)]2 +[Yν(ωR)]2
ωdω

×
∫ +∞

0

[

Jν(ξω)Yν(R)−Yν(ξω)Jν(R)
]

ξf(ξ)dξ. (A.4)

(A.4) is correct for ν and f(ξ) satisfying
∫ +∞

0
ξ

1
2 |f(ξ)|dξ <+∞. For a con-

tinuous point ξ = r of f(ξ), the right hand side of (A.4) is f(r). If f(ξ) is dis-
continuous at ξ = r , then the left side of (A.4) becomes 1

2

(

f(r−0)+f(r+0)
)

.
Choose f(ξ) as:

f(ξ)=







Kν(ξ), ξ≥R,

0, 0≤ ξ <R.
(A.5)

Obviously, f(ξ) satisfies the conditions for
∫ +∞

0
ξ1/2|f(ξ)|dξ <+∞.
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Combining (A.1) and (A.2), we obtain

∫ +∞

0

[

Jν(ξω)Yν(ωR)−Yν(ξω)Jν(ωR)
]

ξf(ξ)dξ

=Yν(ωR)

∫ +∞

R

Jν(ξω)Kν(ξ)ξdξ−Jν(ωR)

∫ +∞

R

Yν(ξω)Kν(ξ)ξdξ

=Yν(ωR)
R

ω2 +1

[

Jν(ωR)Kν+1(R)−ωJν+1(ωR)Kν(R)
]

−Jν(ωR)
R

ω2 +1

[

Yν(ωR)Kν+1(R)−ωYν+1(ωR)Kν(R)
]

=
Rω

ω2 +1

[

−Yν(Rω)Jν+1(ωR)+Jν(RωR)Yν+1(ωR)
]

Kν(R)

=
Rω

ω2 +1

[

Yν(ωR)J ′
ν(ωR)−Jν(ωR)Y ′

ν(ωR)
]

Kν(R)

=− Rω

ω2 +1

2

π

1

Rω
=− 2

π

1

ω2 +1
. (A.6)

The second to last formula is a consequence of the Wronskian determination
of Jν(x),Yν(x) [2].
By substituting (A.6) into (A.5), the formula (A.3) is proved.
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