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NON MARKOVIAN BEHAVIOR OF THE BOLTZMANN-GRAD
LIMIT OF LINEAR STOCHASTIC PARTICLE SYSTEMS
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Abstract. We will review some results which illustrate how the distribution of obstacles and
the shape of the characteristic curves influence the convergence of the probability density of linear
stochastic particle systems to the one particle probability density associated with a Markovian process
in the Boltzmann—Grad asymptotics.
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1. Introduction

The rigorous derivation of kinetic transport equations from particle systems has
relevance in many problems, for applications and from a basic point of view. The
easiest systems which we can analyze in this respect are the linear stochastic particle
systems, namely stochastic particle systems where the particles under consideration
(test particles) move among particles of different type (obstacles) interacting with
the obstacles only (linear collisions). This kind of systems can be modelized through
a Lorentz gas type model, where a test particle moves among obstacles which are
stochastically distributed.

Linear particle systems can be described, under suitable conditions, by kinetic
transport equations which are associated with a Markovian process. The Markovian
behavior emerges in specific asymptotics, such as the Boltzmann—Grad limit, and
corresponds to the fact that the obstacles are not too regularly distributed and that the
probability of having recollisions (i.e. more than one collision with a given obstacle)
for the test particle vanishes in this asymptotics.

In this paper we will give a general survey of results which describe how the
non—Markovian character of a linear stochastic particle system may disappear in the
Boltzmann—Grad asymptotics: in this case, the particle system is described by a
kinetic equation of linear Boltzmann type. We will then discuss a relevant situation
in which this may not happen; that is the case of the stochastic Lorentz gas in the
presence of a force field. The present work is based on previously published results,
therefore we will present only the main ideas and theorems, with references to the
bibliography for more details on the subject.

In the first two sections we will review the derivation from particle systems of
the linear Boltzmann equation from the Lorentz gas in the case of continuous and
periodic distributions of obstacles; in the third section we will discuss the case of a
system of absorbing obstacles in the presence of a force field.

2. Validity proof for the linear Boltzmann equation: obstacles with
Poisson distributed positions

The dynamics of light particles moving in a medium can be described through the
evolution of their single particle probability density in the phase space in a suitable
asymptotics.
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96 BOLTZMANN-GRAD LIMIT OF LINEAR STOCHASTIC PARTICLE SYSTEMS

We consider here one of the possible evolution equation for the probability density,

the linear Boltzmann equation
atf +v- vwf =p fS‘i’l an(’U? n)(f(t’ z, U,(U, n)) - f(t7 z, U)) (2 1)
F(0,2,v) = fin(z,v) € L} (R? x §971), '

which describes a cloud of light particles noninteracting among themselves and inter-
acting with the medium through a collision process such that the kinetic energy of
the light particles is preserved. In (2.1) 2 € R? and v € S9! are the position and the
velocity variables, ¢t € [0, 7] C R is the time variable, f is the one particle probability
density of the light particles in the phase space, n € g1 — {we Sd_1|w ~v < 0} is
a unit vector, which we will call impact parameter, the integral operator on the right
hand side represents the interaction of the particles with the medium, the positive
function I' € C(S97! x §971) is the cross section associated with the collision process
(we will consider collision processes described by a central potential), v = v’ (v, n) is
the post—collisional velocity (and v'(-,n) is invertible).

We want to derive (2.1) from a particle system with minimal level of random-
ness, and in particular such that the interaction of the particles with the medium is
deterministic.

A particle system which can be associated with (2.1) is the so called Lorentz gas,
which is defined as follows.

We consider a test point particle, having initial position (z,v) € R? x §471; the
test particle moves among fixed obstacles, interacting with them through a positive,
compactly supported potential V.(z) = V(|z|/¢), z € R%, of size of the support r = ¢.
V is the potential associated with the cross section I' and we will not go into further
details in this general introduction. The obstacles positions ¢ = (c1,...,¢n,...),
c; € R, are distributed according to a given probability distribution P(dc), with
mean density pi.

The flow T (z,v) = (Ti(z,v))1, (TL(z,v))2) = (xc(t),ve(t)) associated with the
equation of motion of the test particle

{ fe = Ve (2.2)

i}c - Fc(t; Tc, vc)

(Fe is the force which acts on the particle during the interaction with the obstacles
and we will consider the flow to be well-defined outside a set of vanishing measure
w.r.t. P(dc). This is the case in all situations we will consider.) induces an evolution
on probability densities through the following definition on test functions ¢:

/dxdvfe(t,:v,v)qﬁ(x,v) = /dzdvfo(a:,v)Ec[gb(Tg(x,v))] (2.3)

where fj is an initial probability density and E° denotes the expectation with respect
to P(dc).

We say that equation (2.1) can be derived from the Lorentz gas dynamics in a
suitable topology if lim._.q fo = f in that topology, where f is the unique solution of
(2.1).

The asymptotics in which this derivation is allowed, under suitable conditions
on P(dc), is the so called Boltzmann—Grad limit, a low density asymptotics such
that & — 0, pe — oo, ¥ 'y, — p > 0, where p is a constant proportional to the
inverse of the mean free path. Since (2.1) describes the evolution in time of the
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one particle probability density of a Markov process ([11]), this derivation is possible
only if in the limit the process associated with the Lorentz gas dynamics (2.2) loose
the non—-Markovian character of the process for finite €. In order to describe how
this may happen, we start by illustrating the general procedure to validate (2.1) from
particle systems for obstacles which are distributed according to a Poisson repartition,
which has been performed first in [9] for hard-spheres obstacles. A derivation for more
general potentials and distributions can be found in [13], while convergence for typical
configurations is proved in [1]. In what follows, we will denote by B, (r) the sphere
centered in = and with radius 7 and by x(A) the characteristic function of the set A;
we will call trajectory the trajectory in the position space associated with (2.2).

Let us then consider a Lorentz gas in which the scatterers are distributed accord-
ing to a Poisson law with parameter . = pe (4~ namely such that the probability
distribution of finding exactly N obstacles in a bounded measurable set A C R? is
given by:

N
P(dey) = eelAl %dq .. den, (2.4)

Since the collision process (and the intercollisional dynamics) preserves |v|, the
trajectory of the test particle is entirely contained in a ball of radius R(T') = |v|T =T.
Moreover, equation (2.2) is reversible, so that we can express the evolved probability
density as

N
fol@,v,t) = E°fun(T H(z,0))] = Y et \Bo(R(T))ILf'
= N
<[ de [ dewx(en f Bl son # Ba@)fin(T (10)
Bo(R(T))  JBo(R(T)

or, defining!
0S(t,x,v) ={y € R?, 3s € [0,t],ly — (T, °(z,v))1] < e} (2.5)

the tube of width € around the trajectory, and denoting by
Cy(z;e) ={c1 ¢ By(e),...,cn & By(e)} and Co(t, x,v;¢) = {c1 € 6S,...,¢, € 05}

foltz,0) = Z/(BO(R(T)))N dey..dey e 2 \‘]‘\; COX(C) Fin(T=H (@ 0)) (2.6

N>0

We want to compare (2.6) with the semi-explicit form of the solution of (2.1)

tN—1
ft,x,v) /dt1 / dtn dn1 / dnpy HF Vk—1, k)
N>0 !

P
- NN (teo1— tk) gd—1 dnpl'(vk_1,

we : "N (T v) (2.7)

where t = (¢t1,...,tn), t; <ti—1,i=1,....,N+1,n=(ny,...,ny),v=(v1,...,0n)
are resp. sequences of collision times, impact parameters and (pre—collisional) veloci-
ties (recall that v, = vy (Nn,vn-1)), to =&, tn+1 = 0, vg = v. Here thr’i(x,v) = (z —

IThe notation (Tg °(x,v))1 designates the first component (i.e. the position) in the couple
Te *(z,v).
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v(t—t1)—vi(t1 —t2) —...—untn,vN) is the backward flow associated with the Boltz-
mann process described by (2.1). We need therefore to express the expectation value
in (2.6), or part of it, in the same variables used in (2.7), i.e., collision times and impact
parameters. Notice that ||fEHL1(Rd><Sd—1) = ||fHL1(]Rd><Sd—1) = ||meL1(Rd><Sd71) =1.

We observe that one of the reasons why (2.6) cannot be associated in general
to a Markov process is that the measure of the flow tube |#¢| does depend on the
configuration of obstacles in a “non—factorizable” way; namely, assuming that c is
ordered in such a way that c; is the first obstacle hit by the test particle, co the
second one, c3 is the third (without counting recollisions with ¢1), and so on, |6¢]
is not the sum of contributions coming from segments of the trajectory connecting
¢; with ¢;41. The main source of correlations comes from recollisions with a given
obstacle and it is related, besides the mean density of P(dc), to the topology of the
trajectory in the space variable; less relevant effects are those due to the finite size
of the obstacles (for instance, given that collisions are stochastic only because of the
stochastic positions of the obstacles, at finite £ two consecutive intercollisional laps of
the trajectory are not independently distributed). These factors do affect the measure
of the tube [0¢].

Having in mind to compare (2.6) with (2.7) we proceed in the following way. First
of all we notice that, on the set of configurations C(¢,x,v;e) of non—superimposing
obstacles ¢, ¢; € 62,4 =1,..., N, such that the test particle collides just once with
each obstacle of the configuration, it is possible to define in a unique way, for each
obstacle ¢;, the entrance time t; of the test particle in the ball B, (¢) and its impact
parameter n;, as the unit exterior normal vector to 0B, (¢) at the collision point. We
can therefore define on this set the application ([9], [6], [7])

Cla"',cN<—)tlan17"'7tN7nNa (28)

(c = c(t,n)) where ¢; is the i-th obstacle hit by the trajectory, with jacobian J =
(gd-H)N Hfj:l I'(vg_1,nk), and express f. as

fo= £ N

where
(z,v,t) Z/ dcl deye HelO ”j\’; xX(C1 N Cy N O) fin (T, (,v))
N>0” (Bo
tN-1
= Z /dtl / dtN/ dn1 /d 1an HF Uk 1,nk)(€d71M€)N
N>0 k=1

xe < 2 ({(8m) € e H(CL N Ca N O fin Tk (2, 0)

(and fNM = f. — fM)_ Since it is fM which, in suitable conditions, can eventually be
associated with a Markov process in the Boltzmann—Grad asymptotics, we will denote
it in what follows as the Markovian part of f. (in opposition to the non-Markovian
part fVM: the denomination has no a priori relationship with the mathematical
properties of the two components as densities associated with a stochastic process).
The function fM reflects the effect of recollisions because of the forbidden volume
associated with the characteristic function which defines the set where the change of
variables (2.8) is one-to—one: in order to obtain a Markov process, we would like
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this forbidden volume to vanish in the Boltzmann—Grad limit. In the case of ob-
stacles with Poisson distribution, this is in fact what happens, as a direct conse-
quence of the structure of P(dc) and of the trivial intercollisional dynamics. The
convergence of fM follows, through Lebesgue’s dominated convergence theorem, from
pe |08 =~ uzfj;ll j;t:’l dr fsd—l dni T (vk—1,n1), on x(c~1(C1NCaNC)) = 1, and from

lim._o E°[x(c™"(C1 N Co N O))] = 1. Since [fM |11 axsa-1)) = [ finllL@axsi-1),
the validity of (2.1) is proved (see [9] for the hard—sphere case).

The Markovian behavior emerging in the Boltzmann—Grad asymptotics can be
explained as follows: since the intercollisional trajectories of the test particle are
straight lines, the test particle can recollide with a given obstacle only after having
suffered a collision with a different obstacle in the medium. The probability of this
kind of event vanishes in the Boltzmann—Grad limit for the repartition P(dc) given
by (2.4) and therefore the correlations due to recollisions disappear when ¢ — 0.

Remark In this particularly simple case, since the L'-norm of (2.6) and (2.7) is

preserved, proving fM L f implies fNM z, 0, so that no explicit evaluation of
the non-Markovian part is required. This is not the case when in (2.1) the linear
operator on the right-hand side is such that no semi-explicit form for the solution for
the corresponding equation is available, like in the case of long range potentials ([6])
or of Fokker—Planck’s type equations ([7]): in such cases, an explicit bound on fN¥#
is required.

3. Proof of validity for the linear Boltzmann equation: obstacles on a
lattice

When we consider a probability distribution of obstacles such that the centers of
the obstacles ¢; lie on a lattice, the situation changes. In this case there is one more
source of non—-Markovianity, namely the fact that we are working on a discrete space:
even though we would consider random collision laws in the absence of recollisions,
the particle process at finite £ cannot be Markovian, as a process in continuous time.
Indeed,time intervals between collision times are now correlated, due to the constraint
that the centers of the obstacles have to lie on the lattice. These correlations can
remain in the Boltzmann—Grad asymptotics, as a memory effect due to the regularity
of the distribution of obstacles.

In order to understand what may happen for periodic distributions of obstacles,
we will analyze the following particle system in R? (lattice gas, see [5], [12]).

Let consider the two-dimensional lattice Z3 = {(j1\,j2\)|ji € Z, i = 1,2}
with cells of size A\ = /279 0 < § <1, and C = {((j1 + 1/2)\, (j2 + 1/2)N)|js €
Z, i =1,2}, the lattice formed by the centers. On each site of the lattice we define a
random variable n., the occupation number, taking the value 1 or 0 with probability
p = %9 and 1 — p respectively, independently for all ¢ € C; in each ¢ s.t. n, = 1
we place a disk of radius e. For a given scatterer configuration {n.}.cc, we denote by
Ac = U, Be(e) the region occupied by the set of scatterers.

The relationship among the parameters (p, A, ) corresponds to the Boltzmann—
Grad scaling.

We consider then a test point particle with initial position x € R?\ dA., and
with an initial velocity v € St (as a matter of convenience, we allow particles to start
inside a scatterer, since, in the limit as € goes to zero, the fractional volume of the
scatterers vanishes). The particle moves with velocity v until the time ¢ = min{r >
0] z+v7 € OAe, v-w < 0} at which it encounters an obstacle and interacts with it
through an hard-sphere interaction (elastic collision). The post—collisional velocity is
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given by v' = v — 2(v - n)n, where n is the unit exterior normal to the surface of the
obstacle at the point met by the test particle. The procedure is then iterated. We
denote by z.(t) = T!(z,v) the flow constructed in this way.

As usual, we want to compare the evolved probability density for the particle
system, f.(z,v,t), defined through the flow T for a given f;, by (2.3), with the
semi-explicit solution of (2.1) given by (2.7), but in this case no expression similar
to (2.6) is available. We therefore proceed in the following way: we first define a
process Z. which is Markovian as a discrete time process; we prove the convergence
of the probability density associated with this Markovian process, fm to the solution
of (2.1); we prove finally the equivalence, in the Boltzmann—Grad limit, between Z.
and the original process z..

The Markovian process Z. is defined considering again the lattice C and assuming
now that the occupation number n, = 1, ¥¢ € C (in each site of the lattice we
have an obstacle of radius £ with center on the site); a test particle moves freely
among the obstacles and, each time it encounters an obstacle, it performs an elastic
collision with probability p = £%/(2=9) or goes ahead with probability 1 — p. We will
denote by T*(z,v) the corresponding flow. The probability of realization of a given
trajectory is p¥(1 — p)*, where k is the number of collisions and A the number of
times that the trajectory crosses an obstacle. The process Z. is not reversible, but
the collision law is, so that it is possible to write f.(x,v,t) = E[(Rfin) (T (z, —v))],
where (Rf)(x,v) = f(z,—v) and E denotes the expectation value with respect to Z.
Since for the process Z. recollisions are absent (each collision is independent from the
others), the only relevant source of non-Markovian behavior (as a continuous time
process) is now the discretization of the space. Moreover, the evolution induced on
functions by Z., as in the case of the evolution associated with (2.1), is described by a
linear semi—group. More precisely, we define the sets S; of possible times for the i-th
scattering for a trajectory starting at (x,v) as

Si1(t) ={r€(0,t) |z +vr € OA¢, v-w < 0},

Sp(ttr . tn1) ={7 € (tn1,t) [t; €8s, i=1...n—1,
THtve -+ (T —tp—1)vp—1 € OAc, Uy - w < 0}
Spg1(t,ty .. ty) ={7 € (tn,t) | t; €8s, i=1...n,
T+tv-+ (T —ty)vy € O, Uny1 - w §O},
where v9 = v and v; = v]_; is the postcollisional velocity with incoming velocity
v;—1. We denote then by s, := [S,(¢,¢1...t,—1)| the cardinality of the set S, and
by k) =S, 1 (t,ty ... t,)] + > i1 [8j(tist1 ... tj—1)| the number of encounters with

an obstacle which do not correspond to a scattering event, given that scattering did
occur at ty...t,. With these definitions, we have, for a function g,

gs($7v7t) = Z(V;g)n(x,v,t) = de,n(m,v,t)
n>0 n>0
where g. o(z,v,t) = (1 — €)' g(z + vt,v) and, for n > 1,

ge,n(l', v, t) = Z - Z p"(l o p)k(")

£1€51(t)  tn€Sn(tt1..tn_1)
gl +tiv+ (ta—t1)vr+ -+ (E — tno1)Vn, Un) -
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Notice that here the quantity —k(™ log(1 — p) is somehow analogous to . |0¢| for the
continuous model in (2.6).
For this particle system it is possible to prove the following theorem ([12]).

THEOREM 3.1. Let f;, : Rf x 81 — RT be the initial probability density. Then, for any
t>0,0<6<1:lim.gf-(-,t) = f(-, ) weakly in measure, where f(-,t) € L*(R? x
S1) is the unique solution of the transport equation (2.1) with p =1, T'(v,n) = L{v-n]
and f(IC,U70+) = fin(z,v).

The proof of the theorem is obtained by estimating the number of crossings with
the obstacles of a line segment of length L starting from (z,v), s(z,v, L): when e — 0,
we get €9/ (=9 s(x, v, L) ~ L (with an error bounded in L*(S*; L>°(R?)); we then use
this estimate to evaluate the distance between the two semi—groups associated re-
spectively with the evolution of the Markovian particle system and with the evolution
associated with (2.1). Since for both semi—groups the part of the two evolved func-
tions associated with trajectories which have two or more collisions (up to the time )
is bounded by 2 (see Prop. 3 in [12]), it is sufficient to prove that in the & — 0 limit
geo(x,v,t) = e tg(x+vt,v) and g 1(x,v,t) = Ztlesl(t) p(1 —p)srtszg(a+tiv+ (t —
t1)vy,v1) & % fg dty [g g(@ +t1v + (t —t1)vr,v1)|v - n|dn in L', for small enough
t, i.e. that the distribution of trajectories with at most one jump for the Markovian
process and for the linear Boltzmann process are near when observed on small time
intervals; then, using the semi-group property of the evolutions, we get an L' estimate
of the distance between two evolved functions at a generic time t. The fact that the
behavior of s(z,v, L) is asymptotically s(x,v, L) ~ Lp~! is one of the key ingredient
of the proof: it means that in the £ — 0 limit the regularity of the lattice does not
prevent the limit process to have an exponential distribution for the free path lengths
(or equivalently for the free times).

Then, since Z. and z. differ only on the set of trajectories s. t. there are obstacles
which are met more than once, the equivalence between the two processes is proved
by showing that the measure of this set (both with respect to z. and z.) vanishes in
the & — 0 limit (see sec. 5 in [12]). We get finally the convergence theorem for the
original particle system [12]:

THEOREM 3.2. Let fi, : R? x 81 — RT be the initial probability density. Then, for
anyt>0,0<d <1:limeo fe(-,t) = f(-, 1) in D, where f(-,t) is the unique solution
of the transport equation (2.1) with p =1 and T'(v,n) = |v-n| and f(z,v,07) =
fin (xv U)'

As in the case of the Poisson distributed obstacles, we see that the stochasticity
in the positions of the obstacles is relevant to get a vanishing measure for the set of
trajectories with recollisions. We notice, by the way, that the distribution of obstacles
for the lattice gas is asymptotically equivalent to the Poisson distribution. In addition
to that, we need to have an estimate for s(x,v, L) of the kind we mentioned in the
Boltzmann-Grad limit, namely not strongly depending on v (and therefore on the
structure of the lattice): this is trivial in the case 6 = 1, where the lattice s.t. n. =1
for all ¢ € C is a finite horizon billiard, but it is not in the case 0 < § < 1, when the
associated billiard has an infinite horizon.

This convergence result for the lattice gas is no more valid when we consider the
limit § = 0, that is the deterministic particle system in which n, = 1 for each lattice
site and p = 1. This case has been studied in [3], [10], [4], for a periodic Lorentz gas
with absorbing obstacles: for such a system, the first collision time is not exponentially
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distributed because the structure of the lattice allows very long free trajectories which
do influence in a relevant way the free times distribution. Notice that for a lattice gas
with absorbing obstacles, z. = Z..

4. Proof of validity for the linear Boltzmann equation: obstacles with
Poisson distributed positions and force field

As we saw in the previous sections, the linear Boltzmann equation can be derived
from linear particle systems such that the distribution of the positions of the obstacles
is stochastic: this is sufficient in many cases to obtain a Markovian limit. This is
no more the case when a force field is present. An example of deviation from the
Markovian behavior is given in [2], where the authors analyze the motion in d = 2 of
charged particles in a medium under the action of a constant magnetic field B and
derive heuristically in the Boltzmann-Grad asymptotics an equation which has a non—
Markovian collision term. This is a consequence of the high probability of recollision
with a given obstacle, which originates from the peculiar shape of the trajectory of
the test particle in the dynamics defined by the Lorentz force.

In fact, when the trajectories are no more straight lines, recollisions may occur
even in the presence of just one single obstacle (this is for instance the case in [2], where
the intercollisional trajectories are arcs of a circle), so that a good stochasticity in the
distribution of the positions of the obstacles may no more be enough to guarantee the
Markovianity of the Boltzmann—Grad limit.

We will illustrate here how such a non—Markovian behavior of the Boltzmann—
Grad limit can be rigorously derived for stochastic particle systems in which the
random medium is modeled through fixed obstacles and under the action of a force
field; we will show moreover how, adding some stochasticity in the distribution of the
velocity of the obstacles, it is possible to recover a Markovian limit.

We consider a Lorentz gas with Poisson distributed, absorbing obstacles and a
force field F = F(t,z), F € C(R;WHt°°(R?)) acting on the test particle: P(dc)
is given then by (2.4) and the test particle, with initial position x € R? and initial
velocity v € R?, moves according to the equation of motion

LTl ) = Tilw0), S (Ti(e0) = Pt Tia,v) (41)
up to the first time 7.(z,v) when the particle enters an obstacle; then the particle
disappears. The flow T, which does not depend on the configuration of obstacles, is
well-defined for all ¢ and for ¢ € [0, 7] the trajectory Ty *(x,v) is included in some
ball Bo(R(T)) depending on the initial datum (z,v).
This particle system is particularly easy to study because recollisions are absent
_ M

and f. = f2* can be calculated explicitly, being

Felt,2,0) = B[ fin(T~"(2,0)) Lipgro(oany] = e #1000 £, (T 0) - (42)

for a given initial datum f;,, € L'(R? x R?). The behavior in the Boltzmann—Grad
limit of such a particle system would be Markovian if the limit density would satisfy
the following (generalized) linear Boltzmann equation:

Of+v-Vof + F -Vof ==2plv|f (4.3)
whose solution is

Rt —s
ft,z,v) = e~ 2k o Ty " (wv)lds fin (T~ (z,v)). (4.4)
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In order to have lim._o fe = f, the asymptotic behavior for the tube (2.5) when
€ — 0 should be given by:

t
e 0. (t, x,v)| ~ 2 / |T5 % (z,v)|ds. (4.5)
0
Yet the best we can hope for actually is to get:
1102 (t, 2, 0)| ~ 21(7) (4.6)

where [(7) is the 1-dimensional measure of the set v = {y € R*,y € Uye(o{T7 7 (z,v)}}.
In (4.6) we have the length of the trajectory of the particle up to time ¢, while in (4.5)
it appears the distance travelled by the particle along the trajectory up to time ¢, and
the two quantities in general do not coincide; whenever I(v) # fot |75 °(z,v)|ds, (4.2)
does not converge in the ¢ — 0 limit to (4.4), and this is for instance what happens in
[2] for ¢t > 27 /constB. In more pathological cases, e 1|0 (t,z,v)| may not follow at
all the behavior described by (4.6). These two situations correspond to the fact that
after a time smaller than the considered time ¢, the particle comes sufficiently near to
a space point it already visited in the past, and therefore it is possible to predict if
it will suffer or not a collision, and this happens for a set of times whose closure has
non-vanishing measure in the limit.

What actually can be proved for this particle system is the following theorem

([8)):

THEOREM 4.1. Let ¢ be distributed according to the Poisson’s repartition (2.4) on R?
and F = F(t,z) € C(R; WHH°°(R?)) such that for a. e. initial data (z,v) € R? x R?,
T5(z,v) # 0 for s € R, where T is the flow defined (for t € R) by (4.1). Then for

1 2 2
in € X , we have, when € — 0, f. — or a > 0, where
fin € L (R2 x R2), we h h 0, f. 1 UOTLEED e ol T > 0, where f

is the unique solution in L*([0,T] x R? x R?) of the equation

{ Wf+v - Vof + F-Vof ==2p[0| f 1 q-s0) sejoy

f(0,2,v) = fin(z,v). (4.7)

The proof of the theorem is based on a lemma which states the validity of (4.6) for
the class of forces considered: for this class in fact the radius of curvature of the space
trajectory is bounded from below, a condition which prevents accumulation points of
self—crossing of the trajectory and allows to obtain estimates of the measure of the
flow tube by using a convenient set of coordinates (see [8]).

Equation (4.7) differs from (4.3) whenever the trajectories cross themselves, for
a set of times of nonzero measure, for a nonzero measure set of initial data, and in
this case the behavior of the solution is non-Markovian. This may happen for very
common force fields (for instance, we have such a kind of behavior for the harmonic
oscillator, F'(z) = —x), and of course for forces depending on the velocity, as the
Lorentz force in [2], since it is a consequence of the topological properties of the
trajectories associated with (2.2).

In order to recover a Markovian behavior, we need to impose some additional
stochasticity.

We do it by considering a system of absorbing obstacles in a force field F(t,x),
with initial position c still distributed according to the Poisson law (2.4), but now
moving with a (fixed) velocity w = (w1, .., wy) which is distributed according to a
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centered Gaussian law with variance 1. The velocities of the obstacles are independent
from each other and independent of c. We denote the expectation with respect to
the measure we just described by E>" and the density associated with this particle
system as gs(t7 €, U) = Ec,w[gin(T_t(x’ U)) 1{t§‘rc,w(a:,v)}]

Using a procedure analogous to the one used to prove theorem (4.1), we get the
following theorem

THEOREM 4.2. Let c,w be given by a repartition as described above, and F =
F(t,x) be a given force in C(R; WH+°(R?)). Then for a given g;, € L'(R? x R?),

1 2 2
e L0 TIx B xR g for all T > 0, where g is the unique solution in L*([0, T] x R? x R?)

of the equation

w\2

Qg +v-Veg+F -Vyg=—2pg [, palv—wl ¢ 2 dw (4.8)
g(O7$,U) = gin(‘rav)

Equation (4.8) describes now a Markov process, and it is reasonable to think that
the same result is valid for other kinds of stochasticy as the one we chose. Notice
that in this case, the only hypothesis we make on the force field is that F' is Lipschitz;
the theorem is therefore very general and gives a way to recover a Markovian limit
for linear particle systems in a wide class of force fields. Moreover, it suggests that
the non-Markovianity arising in the linear case may not occur in the non-linear case
(Vlasov—Boltzmann equation).

In conclusion, we did review some results about the derivation from particle sys-
tems of the linear Boltzmann equation (2.1) and of its generalized form (4.3). We did
show that, while for the free Lorentz gas a good stochasticity in the positions of the
obstacles allows to derive in the Boltzmann—Grad limit a Markovian equation for the
probability density, when a force field is present we need an additional stochasticity
(in the velocity of the obstacles) in order to get a Markovian behavior in the limit.
This is due to the high probability of the set of trajectories with recollisions which
may derive from the topology of the trajectories associated with the equation of mo-
tion (4.1) even for nice probability distributions for the localization of obstacles in the
medium.
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