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SMOOTH SOLUTIONS TO THE RELATIVISTIC
VLASOV-MAXWELL SYSTEM

CHRISTOPHE PALLARD∗

Abstract. We focus on the existence of classical solutions to the relativistic Vlasov-Maxwell
system of equations. We discuss an alternative proof of the result by Glassey and Strauss showing that
smooth solutions do not develop singularities as long as the momentum support remains bounded.
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1. Introduction

1.1. The relativistic Vlasov-Maxwell system. It is a kinetic mean-field
model for a collisionless plasma, that is, a gas of charged particles which is sufficiently
hot and dilute to consider collisional effects as negligible. The particles are thus
supposed to interact only through electromagnetic forces. For a discussion of the
physical meaning of these assumptions, see [5] section 5.1 and references therein. We
assume that the plasma is made of n different kind of particles (electrons, ions) with
masses mα and charges eα. As is customary in the framework of statistical physics, the
set of all particles of this species is described by a distribution function fα≡fα(t,x,ξ)
which gives at time t≥0 a probability density on the phase space R3

x×R3
ξ . The motion

of particles is then governed by Vlasov’s equation:

∂tfα +vα(ξ) ·∇xfα +eα(E +
vα

c
∧B) ·∇ξfα =0 , (1.1)

where c is the speed of light and

vα(ξ)=
ξ√

m2
α + |ξ|2/c2

is the relativistic speed of a particle of species α and momentum ξ. Besides, the electric
field E≡E(t,x) and the magnetic field B≡B(t,x) satisfy Maxwell’s equations:

∂tE−c∇x∧B =−j , ∇x ·E=ρ

∂tB+c∇x∧E =0 , ∇x ·B =0. (1.2)

The density of charge ρ and current j are computed by:

ρ=4π
∑
α

∫
eαfαdξ , j =4π

∑
α

∫
eαfαvαdξ . (1.3)

These equations are supplemented with initial data

fα

∣∣∣
t=0

=f in
α , E

∣∣∣
t=0

=Ein , B
∣∣∣
|t=0

=Bin, (1.4)

which are supposed to satisfy the compatibility condition

∇x ·Ein =ρin and ∇x ·Bin =0 (1.5)
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and the global neutrality assumption
∫

ρindx=0.
In the sequel we shall consider the case where there is only one species of particles,

since the results we discuss here can be easily extended to the case of a plasma made
of several species. Also, we set all physical constants equal to one. We obtain:

∂tf +v(ξ) ·∇xf +K ·∇ξf =0 , (1.6)

with Lorentz force K =E +v(ξ)∧B and relativistic velocity v(ξ)= ξ√
1+|ξ|2 ,

∂tE−∇x∧B = j , ∇x ·E=ρ

∂tB+∇x∧E =0 , ∇x ·B=0 . (1.7)

where ρ=
∫

fdξ and j =
∫

fvdξ. The initial data are given by

f
∣∣∣
t=0

=f in , E
∣∣∣
t=0

=Ein , B
∣∣∣
|t=0

=Bin, (1.8)

such that ∇x ·Ein =ρin and ∇x ·B =0. Hereafter, we designate by relativistic Vlasov-
Maxwell system the set of equations (1.6-1.7-1.8).

1.2. A priori estimates. The characteristic curves of the Vlasov equation
are defined by equations

Ẋ(t)=v(Ξ(t)), Ξ̇(t)=E(t,X(t))+v(Ξ(t))∧B(t,X(t)), (1.9)

and initial conditions X(0)=x0 and Ξ(0)= ξ0. The distribution function f should be
constant along (X,Ξ):

f(t,X(t),Ξ(t))=f in(x0,ξ0), (1.10)

which leads to the useful estimate

‖f(t,·,·)‖L∞(R3×R3) =‖f in‖L∞(R3×R3). (1.11)

Also, since ∇ξ ·(E +v∧B)=0, we have mass preservation as well:

‖f(,·,·)‖L1(R3×R3) =‖f in‖L1(R3×R3). (1.12)

Another estimate is available through the conservation of the total energy E(t) defined
as

∫ ∫
(
√

1+ |ξ|2−1)f(t,x,ξ)dξdx+
1
2

∫
|E(t,x)|2 + |B(t,x)|2dx. (1.13)

See proposition 1.6 in [3] for a proof of this claim.

2. Smooth solutions to RVM

2.1. Glassey-Strauss’ theorem. We recall that the existence of global-in-
time weak solutions to the RVM system was derived in the late eighties by DiPerna
and Lions in [4]. See also [3, 19]. Less is known as far as classical solutions are
concerned. The major result obtained in this respect is the one by Glassey and
Strauss. In [8], they showed that classical solutions do not develop singularities as
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long as the particles’ speed remains bounded away from the speed of light. Let us
denote by R(t) the size of the momentum support of the distribution function f :

R(t)=sup{|ξ|,∃x∈R3 f(t,x,ξ) 6=0}.

We are interested here in the following theorem.

Theorem 2.1. Let f ∈C1([0,T )×R6) and E,B∈C1([0,T )×R3) be a solution to
(RVM) with initial distribution f in∈C1

c (R6) and initial fields Ein,Bin∈C2
c (R3) satis-

fying the compatibility condition. Assume that

r∗= sup
t∈[0,T )

R(t)<∞. (2.1)

Then we have

‖f(t,·,·)‖W 1,∞
x,ξ

+‖(E,B)(t,·)‖W 1,∞
x

≤C(r∗).

More recently, Klainerman and Staffilani suggested another viewpoint, using
Fourier analysis methods and the regularizing effect provided by integrating the fields
along the characteristic curves. We refer the interested reader to [14]. In the next
sections, we shall discuss at length a proof of theorem 2.1 that can be found in [2].

2.2. The issue of high velocities. The problem with theorem 2.1 is that
there is no result so far proving — or disproving — that R does not blow up in finite
time for the initial data considered here. Note, however, that such a result is known
in the case of the nonrelativistic Vlasov-Poisson system. See [5, 13, 17, 20].

Some efforts have been made to weaken this existence criterion. In [9], Glassey
and Strauss have been able to replace it by a condition on moments

Mθ(t,·)=
∫

f(t,·,ξ)|ξ|θdξ .

Namely, they proved that it is enough to assume M1(t,·)∈L∞(R3). In [16], the author
showed that R remains bounded as long as Mθ(t,·)∈Lp(R3) for the range of values
θ>4/p and p≥6. This should be compared to the a priori estimate following from
the conservation of (1.13): M1(t,·)∈L1(R3).

We end this section with some special cases where the global existence of smooth
solutions is known:

• Small initial data: Glassey-Strauss [11, 12], Schaeffer [21].
• Perturbations of global solutions: Rein [18].
• Small dimensions: Glassey-Schaeffer [6, 7].

Unfortunately, it seems that none of the methods used in those specific cases can be
extended to the full three-dimensional problem.

3. RVM as a non-resonant coupling

3.1. Kinetic formulation. The main difficulty when dealing with the reg-
ularity issues in the RVM system is the hyperbolic nature of the fields equations. It
looks as if one derivative were ‘lost’ when evaluating E and B from the distribution
function f in Maxwell’s equations. This problem was first addressed by Glassey-
Strauss in their paper [8] by using rather tricky computations on the expressions of
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the fields. We describe here a more intrinsic approach used in [2]. A first step is to
recast the equations as a coupling between a wave equation and Vlasov equation. Let
us introduce a function u≡u(t,x,ξ) solving

¤t,xu=f , u|t=0 =0 , ∂tu|t=0 =0 .

This function should be considered as a microscopic electromagnetic potential. Indeed,
let A0≡A(t,x) be a vector-valued function verifying

¤t,xA0 =0 , A0
|t=0 =Ain , ∂tA

0
|t=0 =−Ein ,

where Ain is chosen such that ∇x ·Ain =0 and ∇x∧Ain =Bin. One is then able to
compute the electromagnetic potentials in the Lorentz gauge by

φ(t,x)=
∫

u(t,x,ξ)dξ , A(t,x)=A0(t,x)+
∫

u(t,x,ξ)v(ξ)dξ .

The expressions for the fields follow:

E =−∂tA
0−

∫
∂tuv(ξ)dξ+

∫
∇xudξ , (3.1)

B =∇x∧A0 +
∫
∇x∧uv(ξ)dξ . (3.2)

As a consequence, the RVM system can be rewritten as

¤t,xu=f ,

∂tf +v(ξ) ·∇xf =−(E +v∧B) ·∇ξf ,

with fields given by (3.1), (3.2).

3.2. Non-resonant coupling. Using the terminology of [1, 15], this coupling
is called non-resonant, because |v(ξ)|<1 holds for any ξ∈R3. That is, the particles’
speeds in the transport operator are strictly less that the propagation speed in the
wave operator, i.e. 1. The point is that under this hypothesis, a regularizing phenom-
ena occurs for moments of u against test functions χ≡χ(ξ)∈C∞c (R3). But in view
of the expressions above, the fields can be written essentially as a linear combina-
tion of derivatives of such moments, provided that f — and hence u — is compactly
supported in the ξ variable. This is precisely the assumption (2.1) in the statement
of theorem 2.1. The next section explains how regularity issues are treated in this
framework.

4. Division lemma

4.1. Statement of the lemma. Let Y ∈D′(R4) be the forward fundamental
solution of the wave operator:

Y (t,x)=
1t>0

4πt
δ(|x|− t). (4.1)

Notice that the distribution Y is homogeneous of degree −2 in R4. Let Mm be the
space of C∞ homogeneous functions of degree m on R4 \0. Below, we use the notation

x0 := t, and ∂j :=∂xj
, j =0,... ,3. (4.2)

With each v∈R3 is associated the streaming operator T =∂t +v ·∇x. The following
lemma is the cornerstone of [2].

Lemma 4.1 (Division lemma). For each v∈R3 such that |v|<1,
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• there exists functions ak
i ≡ak

i (t,x) where i=0,.. .,3 and k =0,1, such that
ak

i ∈M−k and

∂iY =T (a0
i Y )+a1

i Y , i=0,... ,3; (4.3)

• there exists functions bk
ij≡ bk

ij(t,x) with i,j =0,.. .,3, k =0,1,2, such that bk
ij ∈

M−k and

∂2
ijY =T 2(b0

ijY )+T (b1
ijY )+b2

ijY , i,j =0,.. .,3; (4.4)

• moreover, the functions b2
ij satisfy the conditions

∫

S2
b2
ij(1,y)dσ(y)=0 , i,j =0,.. .,3, (4.5)

where dσ(y) is the rotation invariant surface element on the unit sphere S2

of R3. In both formulas (4.3) and (4.4), a0
i Y , a1

i Y , b0
ijY and b1

ijY designate,
for each i,j =0,... ,3, the unique extensions as homogeneous distributions on
R4 of those same expressions — which are a priori only defined on R4 \0.
Likewise, b2

ijY designates, for i,j =0,.. .,3 the unique extension as a homoge-
neous distribution of degree −4 on R4 of that same expressions for which the
relation (4.4) holds in the sense of distributions on R4.

4.2. Remarks. The proof is to be found in [2]. Let us give a few comments.
1. The proof is based on the commutation properties of the wave operator with

the Lorentz boosts. In particular, the lemma holds almost verbatim in a
two-dimensions space. As a result, the approach considered here leads to
an equivalent of theorem 2.1 in the two-dimensional case, which required a
different proof in [7].

2. Another benefit from this method is to obtain the property (4.5) on coef-
ficients bk

ij as a natural consequence when dealing with the homogeneous
distributions that appear in the construction.

3. A crucial point in lemma 4.1 is the non-resonant condition |v|<1. Of course,
in the sequel v will be the relativistic velocity v(ξ) which satisfies the assump-
tion for any ξ∈R3.

4. We claim that the coefficients ak
i and bk

ij depends smoothly on the vector v,
see [2]. As a result, for any multi-index α∈N3, we have ∂α

ξ ak
i ∈M−k and

∂α
ξ bk

ij ∈M−k.

5. Estimates

5.1. Estimates on the fields. With lemma 4.1 at our disposal, we are able
to derive L∞ estimates for the derivatives of moments of u. Assume that f satisfy the
assumption (2.1) of theorem 2.1 and let θ∈C∞c (R3) be a cut-off function such that
θ(ξ)=1 for any |ξ|≤ r∗ and θ(ξ)=0 when |ξ|>2r∗. Then for any m∈C1(R3), we have

∫
u(t,x,ξ)m(ξ)dξ =

∫
u(t,x,ξ)m(ξ)θ(ξ)dξ .

Differentiating this equality, we find for any i=0,... ,3,
∫

∂iu(t,x,ξ)m(ξ)dξ =
∫

∂iu(t,x,ξ)m(ξ)θ(ξ)dξ .
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By definition of Y , we have1 u=Y ?(f1t>0). Using lemma 4.1, it comes
∫

um(ξ)dξ =
∫

(mθa1
i Y )?(f1t>0)dξ+

∫
(mθa0

i Y )?T (f1t>0)dξ , (5.1)

where the coefficients a1
i ≡a1

i (t,x,ξ) and a0
i ≡a0

i (t,x,ξ) are given by lemma 4.1 with
v≡v(ξ). The first term is readily bounded by

∣∣∣∣
∫

(mθa1
i Y )?(f1t>0)dξ

∣∣∣∣≤
4
3
πr∗3‖m‖L∞‖tθa1

i ‖L∞

∫ t

0

‖f(s,·,·)‖L∞ds.

With the a priori estimate (1.11), we infer that it is bounded by a constant. For the
second term in (5.1), we use the transport equation (1.6). It comes

T (f1t>0)=∇ξ ·(f(E +v∧B))1t>0 +f inδt=0 .

Integrating by parts in the ξ variable,
∫

(mθa0
i Y )?T (f1t>0)dξ =

∫
∇ξ(mθa0

i Y )?(f1t>0(E +v∧B))dξ

+
∫

(mθa0
i Y )?x f indξ . (5.2)

The last term depends only on the initial data and is easily estimated. The first one
is bounded above by:

4
3
πr∗3‖m‖W 1,∞‖mθa1

i ‖L∞t,xW 1,∞
ξ

‖f‖L∞

∫ t

0

‖(E,B)(s,·,·)‖L∞ds. (5.3)

Let us define the following quantity

Im(t)= sup
i=0,...,3

‖
∫

∂iu(t,·,ξ)m(ξ)dξ‖L∞(R3) .

The inequalities above lead to

Im(t)≤C(r∗)
(

1+
∫ t

0

‖(E,B)(s,·)‖L∞ds

)
.

But we know from (3.1) and (3.2) that E and B are derivatives of moments of u up to
a term that depends only on the initial data. Thus, one can apply Gronwall’s lemma
which shows that for any m, Im(t)≤C(r∗) and hence

‖(E,B)(t,·)‖L∞ ≤C(r∗).

5.2. Estimates on the gradient of the fields. The same line can be applied
to derive bounds on the second order derivatives of moments of u. We shall omit the
whole computations and only study the scheme of the proof. As above, the division
lemma is used to exchange any arbitrary derivative with the transport operator:

∫
∂ijumdξ =

∫
(mb2

ijY )?(f1t>0)dξ+
∫

(mb1
ijY )?T (f1t>0)dξ

+
∫

(mb0
ijY )?T 2(f1t>0)dξ . (5.4)

1? denotes the convolution in the (t,x) variables, while ?x is the convolution in x only.
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The second term is very similar to (5.2) and is managed similarly. It can be bounded
by a constant C(r∗). The third one requires an additional treatment, as can be seen
by computing

T 2f =T∇ξ ·(fK)= [T,∇ξ·](fK)+∇ξ ·(∇ξ ·(fK)K +fTK).

Since we aim at avoiding differentiating f , an additional use of lemma 4.1 is needed to
deal with the first order operator [T,∇ξ·]. It leads eventually to the following upper
bound:

C(r∗)
(

1+
∫ t

0

‖(∇xE,∇xB)(s,·)‖L∞ds

)
.

It remains to consider the more singular term in the decomposition (5.4). The key
point here is the property (4.5) satisfied by the coefficients b2

ij which allows by a
principal value argument to estimate it by

C(r∗)
(
1+ln(1+‖∇xf‖L∞([0,t]×R6))

)
.

Bringing together the estimates for the three parts, and applying Gronwall’s lemma
shows that

‖(∇xE,∇xB)(t,·)‖L∞(R3)≤C(r∗)
(
1+ln(1+‖∇xf‖L∞([0,t]×R6))

)
.

5.3. Estimates on f . Differentiating Vlasov’s equation, then integrating in t
gives

‖∇x,ξf(t,·,·)‖L∞ ≤‖∇x,ξf
in‖L∞ +C

∫ t

0

1+‖(∇xE,∇xB)(s,·)‖L∞ds.

Using the bound derived earlier, we get

‖∇x,ξf‖L∞([0,t]×R6)≤C(r∗)+C(r∗)
∫ t

0

φ
(‖∇x,ξf‖L∞([0,s]×R6)

)
ds,

with an almost linear growth rate φ(t)=(1+ t)ln(1+ t). Thus the use of Gronwall’s
lemma is allowed, and we infer a bound on the gradient of f . The bound on the
gradient of the fields follows, which ends the proof of theorem 2.1.
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