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ON STABILITY OF THE CRANK-NICOLSON SCHEME WITH
APPROXIMATE TRANSPARENT BOUNDARY CONDITIONS FOR

THE SCHRÖDINGER EQUATION, PART I∗
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Abstract. We consider initial-boundary value problems for a generalized time-dependent
Schrödinger equation in 1D on the semi-axis and in 2D on a semi-bounded strip. For Crank-Nicolson
finite-difference schemes, we suggest an alternative coupling to approximate transparent boundary
conditions and present a condition ensuring unconditional stability. In the case of discrete trans-
parent boundary conditions, we revisit the statement and the proof of stability together with the
derivation of the conditions.
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1. Introduction
The time-dependent Schrödinger equation is the fundamental equation in quan-

tum mechanics and it has also a lot of applications in classical wave physics including
optics, acoustics, etc. (where similar equations are called by other names: Fres-
nel’s equation, parabolic wave equation, paraxial approximation, etc.). Our interest
comes from long-term studies of microscopic description of low-energy nuclear fission
dynamics (see in particular [8, 12]). Generally all these problems are described by
initial-boundary value problems in unbounded domains (or the Cauchy problem in the
whole space); in particular, for nuclear fission dynamics, a generalized 2D Schrödinger
equation (with variable coefficients) in a semi-bounded strip is of interest.

To treat numerically such problems for the Schrödinger equation, finite-difference
of finite element approximations are mainly applied but in bounded domains restricted
by additional artificial boundaries, where artificial boundary conditions are imposed.
For original initial-boundary value problems, transparent boundary conditions (TBCs)
have been developed which are supposed to be satisfied by exact solutions; the TBCs
are integro-differential relations, non-local in time and space (along the artificial
boundaries). The natural and mathematically correct types of artificial boundary
conditions are approximate TBCs (either non-local or local). It is well-known that
their construction is not trivial since such approximate TBCs should ensure both sta-
bility of the resulting method in the bounded domain and small numerical reflections
from the artificial boundary, see [1]-[4], [7, 9, 10, 13], [15]-[17], [19, 20].

Another approach, suggested in [5] and essentially developed in [11], consists
in deriving directly discrete TBCs satisfied by solutions of the corresponding finite-
difference schemes for the original initial-boundary value problem in an unbounded
domain thus avoiding any explicit treatment of the integro-differential TBC (though,
of course, the discrete TBCs are their mesh counterparts and non-standard approx-
imations). This approach is proved to be very efficient in the sense that, whenever
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742 TRANSPARENT BOUNDARY CONDITIONS

applicable, it guarantees both unconditional stability and complete absence of numer-
ical reflections from the artificial boundary, what has been studied theoretically and
confirmed by numerical experiments. For the related spatially discretized case, see
also [21, 23].

For completeness, we should also mention some other approaches such as absorb-
ing boundary conditions, absorbing and perfectly matching layers, complex absorbing
potentials, etc.

The stability of the 1D Crank-Nicolson finite-difference scheme coupled to the dis-
crete TBC is considered in the literature as established result, see [11]. Unfortunately,
its statement is not completely satisfying (as containing a semi-norm rather than a
norm of solutions) and the proof should be corrected (see details below). Moreover,
the derivation of the discrete TBC in [11] gives rise to questions on the treatment of
analytic branches of

√
w, and the resulting formulas have to be slightly corrected to

hold for the whole range of parameters, which is especially significant for 2D exten-
sions.

In this paper, we have tried to remove all these drawbacks, thus confirming more
the value of the discrete TBCs. In Section 2, we first consider initial-boundary value
problem for a generalized Schrödinger equation in 1D on the semi-axis. For the Crank-
Nicolson finite-difference scheme on a non-uniform mesh, we suggest an alternative
coupling to general (abstract) approximate TBC and present a condition on an opera-
tor in approximate TBC ensuring the unconditional stability of the resulting method
with respect not only to initial data (as usual) but with respect to perturbations in
the Crank-Nicolson equation and in the approximate TBC as well. This coupling is
based on the symmetric (with respect to space and time) approximation of the space
derivative appearing in the integro-differential TBC and involves the Crank-Nicolson
equation at the same node in contrast to known one-sided approximations completely
independent of the Crank-Nicolson equation.

The key Section 3 is devoted to revisiting the proof of stability in the case of
discrete TBC together with its derivation. We begin with the Crank-Nicolson finite-
difference scheme on an infinite mesh on the semi-axis, prove its unique solvability and
stability with respect to initial data and and clarify the sense of the stability condition
for the solution. We apply the method of reproducing functions to derive and to study
the discrete TBC in the form suggested in Section 2. We present two distinct proofs of
the stability condition in the case of the discrete TBC. The first proof is implicit, since
this does not deal with any explicit expression for the operator in the discrete TBC
and leads to the theoretically important conclusion that the discrete TBC (among
all approximate TBCs) automatically yields the unconditionally stable scheme on the
finite mesh. Note that this proof exploits the results for the Crank-Nicolson equation
with the perturbation. The second proof is explicit since it exploits a suitable (though
not genuinely explicit) expression for this operator; such a proof is also important
since it can serve as a reference when considering various similar approximate TBC
(including a simplified discrete TBC developed in [6]). We also derive the explicit
expression for the operator in the discrete TBC (in the form suggested in Section
2) which only unessentially differs from one indirectly derived in [11] for the stable
implementation of the discrete TBC and actually corrects the latter expression in
order to make it valid in the whole range of parameters.

For applications in low-energy nuclear fission dynamics, 2D model is much more
relevant than the oversimplified 1D one. That is the reason why finally in Section 4 we
extend the listed results on the Crank-Nicolson scheme with approximate or discrete



B. DUCOMET AND A. ZLOTNIK 743

TBCs to the case of generalized Schrödinger equation in 2D on a semi-bounded strip.
In the case of the discrete TBC, we show that a mesh Fourier expansion with respect
to the additional space variable is successfully applicable in order both to derive the
discrete TBC and to prove the stability condition by reducing to the 1D situation
that have been previously studied.

2. 1D Schrödinger equation and the Crank-Nicolson scheme with an
approximate TBC

We first consider the simplified 1D version of the microscopic description of low-
energy nuclear fission dynamics that can be written in term of the generalized time-
dependent Schrödinger equation

i~
∂ψ

∂t
=Hψ for x>0 and t>0, (2.1)

involving the 1D Hamiltonian operator

Hψ :=−~
2

2
∂

∂x

(
B

∂ψ

∂x

)
+V ψ,

for the unknown complex-valued wave function ψ =ψ(x,t). Hereafter, i is the imag-
inary unit, ~>0 is a physical constant (its value is not important in this study), B
and V are given real-valued functions and B(x)>B0 >0.

We impose the following boundary condition and condition at infinity

ψ|x=0 =0 and ψ(x,t)→0 as x→∞, for any t>0, (2.2)

together with the initial condition

ψ|t=0 =ψ0(x) for x>0. (2.3)

We assume that, for some X0 >0

B(x)=B1∞>0, V (x)=V∞ and ψ0(x)=0 for x>X0. (2.4)

An integro-differential TBC for this problem can be written in the form, for any
X >X0 (for example see [11])

∂ψ

∂x
(X,t)=− 1− i√

~B1∞
e−i(V∞/~)t

× 1√
π

d

dt

∫ t

0

ψ(X,θ)ei(V∞/~)θ dθ√
t−θ

, (2.5)

for t>0, which clearly is non-local in time; other equivalent forms are also available.
Recall that the involved operator

D1/2
0+ f(t) :=

1√
π

d

dt

∫ t

0

f(θ)
dθ√
t−θ

for t>0,

defines the classical left-hand Riemann-Liouville time derivative of order 1/2 on the
semi-axis [0,∞).
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We fix some X >X0 and introduce a non-uniform mesh ωh,∞ in x on [0,∞) with
the nodes 0=x0 < ···<xJ =X <... and the steps hj :=xj−xj−1 such that hJ 6X−
X0 and hj =h≡hJ for j >J . We also introduce a non-uniform mesh in t on [0,∞) with
the nodes 0= t0 < ···<tm <..., tm→∞ as m→∞, and the steps τm := tm− tm−1. Let
ωh,∞ :=ωh,∞\{0}, hmin :=min16j6J hj and ωτ :=ωτ\{0}.

We define the backward, the modified forward and the central difference quotients
with respect to x

∂xWj :=
Wj−Wj−1

hj
, ∂̂xWj :=

Wj+1−Wj

hj+1/2
,
◦
∂xWj :=

Wj+1−Wj−1

2hj+1/2
,

where hj+1/2 := hj+hj+1
2 , together with the backward difference quotient, an averaging

and the backward shift in time

∂tΦm :=
Φm−Φm−1

τm
, stΦm :=

Φm−1 +Φm

2
, Φ̌m :=Φm−1.

The standard 1D Crank-Nicolson finite-difference scheme for the generalized
Schrödinger equation (2.1) is written as follows

i~∂tΨ=HhstΨ, (2.6)

with the 1D mesh Hamiltonian operator

HhW :=−~
2

2
∂̂x

(
Bh∂xW

)
+VhW,

where Bhj =B
(
xj−1/2

)
with xj−1/2 :=xj−hj/2 and Vhj =V (xj) (for definiteness).

In the literature, the standard way to deduce finite-difference schemes on a
finite mesh ωh :={xj}J

j=0 consists in exploiting discretization (2.6) on the mesh
ωh :={xj}J−1

j=1 and coupling it to an approximation of the TBC (2.5) at the node xJ in
order to obtain a closed problem for the values of Ψ on ωh×ωτ . The approximation
can be deduced explicitly or implicitly but usually this is written independently from
discretization (2.6) (see in particular [5, 6, 11, 13]).

We propose another approach which is first presented and studied for general
(abstract) approximation of the TBC (2.5) in this section and is then analyzed in
more detail for the discrete TBC in the next section. Let the relation

(◦
∂xstΨ

)m

J

=Sm
{
Ψ1

J ,.. .,Ψm
J

}
for any m>1, (2.7)

be an approximate TBC (2.5) at the node xJ . Notice that we suggest to exploit an
approximation of ∂ψ

∂x in (2.5) that is symmetric both in x (instead of usual backward
ones) and in t. Using initially the Crank-Nicolson discretization (2.6) on the mesh
ωh∪{xJ}, we apply it at the node xJ only in order to eliminate the values stΨJ+1

involved in the left-hand side of (2.7). Namely since ∂̂x∂xWJ = 2
h

(◦
∂xWJ−∂xWJ

)
,

from (2.6) at the node xJ we get

~2

2

(◦
∂xstΨ

)

J

=
~2

2
(
∂xstΨ

)
J
− h

2B1∞

(
i~∂tΨ−V∞stΨ

)
J
. (2.8)
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This leads us to the following complete finite-difference scheme that couples the Crank-
Nicolson discretization to the approximate TBC

i~∂tΨ=HhstΨ on ωh×ωτ , (2.9)

Ψm
0 =0 for m>1, (2.10)

[
∂xstΨ− h

~2B1∞

(
i~∂tΨ−V∞stΨ

)]m

J

=Sm
{
Ψ1

J ,.. .,Ψm
J

}
for m>1, (2.11)

Ψ0 =Ψ0
h on ωh, (2.12)

where Ψ0
hj =ψ0(xj) (for definiteness) and thus Ψ0

hJ =0; we assume that Ψ0
h0 =0.

Notice that the boundary condition (2.11) has the form of the well-known 4−point
second order approximation to the non-homogeneous Neumann boundary condition
(that would be the TBC (2.5) provided that its right-hand side were given), for ex-
ample see [18].

We intend to study the important problem of stability of the finite-difference
scheme (2.9)–(2.12) with respect to the initial data Ψ0

h and to perturbations in equa-
tion (2.9) and the boundary condition (2.11). To this end we replace (2.9) and (2.11)
by their generalized versions

i~∂tΨ=HhstΨ+F on ωh×ωτ , (2.13)
[
∂xstΨ− h

~2B1∞

(
i~∂tΨ−V∞stΨ+G

)]m

J

=Sm
{
Ψ1

J ,.. .,Ψm
J

}
for m>1,

(2.14)

where the perturbations F and G are given functions defined on ωh×ωτ and ωτ . Note
that it is also important to consider non-zero F for purely mathematical reasons (for
example see the first proof of Proposition 3.6 below).

To state our result, we need to introduce two mesh counterparts of the inner
product in the complex space L2(0,X):

(U,W )ωh
:=

J−1∑

j=1

UjW
∗
j hj+1/2,

and

(U,W )ωh
:= (U,W )ωh

+UJW ∗
J

h

2
,

together with the associated mesh norms ‖·‖ωh
and ‖·‖ωh

(of course, for mesh func-
tions respectively defined on ωh or defined on ωh and equal zero at x0 =0). Hereafter
z∗, Rez and Imz denote the complex conjugate, the real and the imaginary parts of
z∈C.

Proposition 2.1. Let Ψ0
h be a given function defined on ωh (such that Ψ0

h0 =Ψ0
hJ =

0) and Ψ be a solution of the finite-difference scheme (2.13), (2.10), (2.14), (2.12).
Assume that the operator S satisfies the inequality

Im
M∑

m=1

Sm
{
Φ1,.. .,Φm

}
(stΦm)∗ τm >0 for any M >1, (2.15)
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for any function Φ defined on ωτ such that Φ0 =0. Then the following stability bound
holds

max
06m6M

‖Ψm‖ωh

6‖Ψ0
h‖ωh

+
2
~

M∑
m=1

‖Fm‖ωh
τm +

√
2h

~

M∑
m=1

|Gm|τm for any M >1. (2.16)

Proof. Proceeding in a standard manner, we take the (·, ·)ωh
-inner-product of

equation (2.13) and a function W defined on the mesh ωh such that W0 =0 and sum
the result by parts (using the first assumption (2.4))

i~
(
∂tΨm,W

)
ωh

=
~2

2

J∑

j=1

Bhj(∂xstΨm
j )∂xW ∗

j hj +(VhstΨm +Fm,W )ωh

−~
2

2
B1∞

(
∂xstΨ

)m

J
Wm

J
∗. (2.17)

Then applying the boundary condition (2.14), we obtain the identity

i~
(
∂tΨm,W

)
ωh

=
~2

2

J∑

j=1

Bhj(∂xstΨm
j )∂xW ∗

j hj +(VhstΨm,W )ωh

+(Fm,W )ωh
− h

2
GmW ∗

J −
~2B1∞

2
Sm

{
Ψ1

J ,.. .,Ψm
J

}
W ∗

J for m>1. (2.18)

Now choosing W =stΨm and separating the imaginary part of the result, we get
the equality

~
2

(
∂t‖Ψ‖2ωh

)m
=Im

{
(Fm, stΨm)ωh

− h

2
Gm(stΨm

J )∗
}

−~
2B1∞

2
Im

(Sm
{
Ψ1

J ,.. .,Ψm
J

}
(stΨm

J )∗
)
. (2.19)

Multiplying this by 2τm/~, summing up the result over m=1,... ,M and applying
condition (2.15), we obtain the inequality

‖ΨM‖2ωh
6‖Ψ0‖2ωh

+
1
~

M∑
m=1

(
‖Fm‖ωh

+

√
h

2
|Gm|

)
(‖Ψm‖ωh

+‖Ψ̌m‖ωh

)
τm,

which implies the stability bound (2.16).

Corollary 2.2. Let condition (2.15) be valid. Then the finite-difference scheme
(2.13), (2.10), (2.14), (2.12) is uniquely solvable at least provided that Sm is a linear
operator for any m>1.
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In particular, the scheme (2.9)-(2.12) is uniquely solvable, and its solution satis-
fies the equality

max
m>0

‖Ψm‖ωh
=‖Ψ0

h‖ωh
. (2.20)

The equality ensures an important physical property that the total mass at each
time level is not greater than the total initial one. Notice that, for F =0 and G=0,
equality (2.19) implies that

‖ΨM‖2ωh
−‖Ψ0

h‖2ωh
=−~B1∞ Im

M∑
m=1

Sm
{
Ψ1

J ,.. .,Ψm
J

}
(stΨm

J )∗ τm for any M >1,

(2.21)
and thus, for validity of (2.20), it is necessary that condition (2.15) is valid at least for
Φ=ΨJ . We clarify more the sense of the latter condition in the case of the discrete
TBC in Corollary 3.3 below.

In [11], a bound similar to (2.20) is announced but containing only the level
semi-norm ‖·‖ωh

instead of the level norm ‖·‖ωh
(in the case of the discrete TBC,

Bh≡ const and the uniform mesh ωh). In generally accepted sense, such a simplified
bound does not guarantee the stability of the finite-difference scheme with respect to
initial data, for example see [18]. Moreover, taking ‖·‖ωh

instead of ‖·‖ωh
allows

to establish neither the unique solvability (at least straightforwardly) nor a stability
with respect to the boundary perturbation G.

For implementation, it is convenient to rewrite the boundary condition (2.11) in
the equivalent form

Ψm
J−1 +Ψm−1

J−1 =(1+a0− ia1)Ψm
J +(1+a0 + ia1)Ψm−1

J

−2hSm
{
Ψ1

J ,.. .,Ψm
J

}
for m>1, (2.22)

where the real parameters a0 and a1 are given by the formulas

a0 :=
h2V∞
~2B1∞

, a1 :=
2h2

τ~B1∞
>0. (2.23)

3. The Crank-Nicolson scheme on the infinite mesh and the discrete
TBC

In order to construct and to study discrete TBCs, we first turn to the Crank-
Nicolson scheme on the infinite mesh for the original problem (2.1)–(2.3) on the semi-
axis

i~∂tΨ=HhstΨ+F on ωh,∞×ωτ , (3.1)

Ψm
0 =0 for m>1, (3.2)

Ψ0 =Ψ0
h on ωh,∞. (3.3)

The given perturbation F is added to the right-hand side of (3.1) once again to analyze
the stability of the scheme.

Let Hh be a Hilbert space consisting of complex-valued functions W defined
on the mesh ωh,∞ such that

∑∞
j=1 |Wj |2 <∞ and W0 =0, equipped with the inner
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product (U,W )Hh
:=

∑∞
j=1UjW

∗
j hj+1/2. Since hj =h for j >J , clearly the conditions∑∞

j=1 |Wj |2 <∞ and ‖W‖2Hh
=

∑∞
j=1 |Wj |2hj+1/2 <∞ are equivalent.

Proposition 3.1. Let Fm∈Hh for any m>1 and Ψ0
h∈Hh. Then there exists a

unique solution to the scheme (3.1)-(3.3) such that Ψm∈Hh for any m>0, and the
following stability bound holds

max
06m6M

‖Ψm‖Hh
6‖Ψ0

h‖Hh
+

2
~

M∑
m=1

‖Fm‖Hh
τm for any M >1. (3.4)

Moreover, in the particular case F =0, the mass conservation law holds

‖Ψm‖2Hh
=‖Ψ0

h‖2Hh
for any m>1. (3.5)

Proof. We extend Hh to an operator in Hh by setting

◦
HhWj :=HhWj , for j >1, and

◦
HhW0 :=0.

Since hj =h for j >J and

sup
j>1

(∣∣Bhj

∣∣+ ∣∣Vhj

∣∣)<∞, (3.6)

see (2.4), the operator
◦
Hh is bounded in Hh. Moreover,

◦
Hh is self-adjoint since

( ◦
HhW,U

)

Hh

=
~2

2

∞∑

j=1

Bhj

(
∂xWj

)
∂xU∗

j hj +(VhW,U)Hh
for any W,U ∈Hh. (3.7)

To establish this equality, one can first transform the finite sum∑j1
j=1 (HhW )j U∗

j hj+1/2 by summing by parts (compare with (2.17)) and sec-
ond pass to the limit as j1→∞, using properties (3.6) and Wj→0 as j→∞, for
W ∈Hh.

Now we rewrite equation (3.1) together with the boundary condition (3.2) as an
operator equation in Hh

i~∂tΨ=
◦
HhstΨ+F on ωτ . (3.8)

Another form of this equation is as follows
(

I + i
τ

2~
◦
Hh

)
Ψm =

(
I− i

τ

2~
◦
Hh

)
Ψ̌m− i

τ

~
Fm for m>1. (3.9)

Hereafter I denotes the identity operator. Since
∥∥∥∥
(

I + i
τ

2~
◦
Hh

)
W

∥∥∥∥
2

Hh

=‖W‖2Hh
− τ

~
Im

( ◦
HhW,W

)

Hh

+
∥∥∥∥

τ

2~
◦
HhW

∥∥∥∥
2

Hh

>‖W‖2Hh
,

by virtue of the self-adjointness of
◦
Hh, the inverse operator

(
I + i

τ

2~
◦
Hh

)−1

,
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exists, and its norm is not greater than 1. Thus, taking into account that, for Ψ̌m∈Hh,
the right-hand side of (3.9) is in Hh, we obtain that (3.9) has a unique solution
Ψm∈Hh. The unique solvability of the scheme (3.1)-(3.3) with Ψm∈Hh, for any
m>0, is established.

Finally, exploiting the self-adjointness property (3.7) it is a simple matter to derive
from (3.8) the equality

~
2

∂t

(‖Ψ‖2Hh

)
=Im(F, stΨ)Hh

on ωτ , (3.10)

compare with (2.19). This clearly implies the stability bound (3.4) and, for F =0, the
conservation law (3.5).

Remark 3.1. Proposition 3.1 remains valid for any real-valued coefficients Bh and
Vh satisfying (3.6).

Remark 3.2. Relations (3.4) and (3.5) also follow from (3.9) by virtue of the well-
known unitarity of the operator (I + iA)−1(I− iA) for any bounded self-adjoint oper-
ator A.

Corollary 3.2. Bound (3.4) implies the uniform-norm bound

sup
m>0

max
j>0

∣∣Ψm
j

∣∣6 1√
hmin

(
‖Ψ0

h‖Hh
+

2
~

∞∑
m=1

‖Fm‖Hh
τm

)
,

which is non-trivial provided that the series in the right-hand side is convergent, in
particular, for F =0.

Corollary 3.3. Let Fm
j =0 and Ψ0

j =0 for j >J and m>1. If the solution to the
scheme (3.1)-(3.3) such that Ψm∈Hh, for any m>0, satisfies relation (2.7) with
some operator S, then we have, for any M >1

~B1∞ Im
M∑

m=1

Sm
{
Ψ1

J ,.. .,Ψm
J

}
(stΨm

J )∗ τm =‖ΨM‖2ωh,∞\ωh

:=
h

2
|ΨM

J |2 +
∞∑

j=J+1

|ΨM
j |2h>0. (3.11)

Actually, by virtue of equation (3.1) at the node xJ with Fm
J =0, relation (2.7)

is equivalent to the boundary condition (2.11); thus the solution to the scheme (3.1)-
(3.3) solves the scheme (2.13), (2.10)-(2.12) too. Subtracting equalities (3.10) and
(2.19) (with G=0) we obtain, for any m>1

~
2

∂t

(
‖Ψ‖2ωh,∞\ωh

)m

=
~2B1∞

2
Im

(Sm
{
Ψ1

J ,... ,Ψm
J

}
(stΨm

J )∗
)
,

which yields (3.11).

Clearly, the identity holds

‖W‖2Hh
=‖W‖2ωh

+‖W‖2ωh,∞\ωh
for any W ∈Hh,
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and therefore the latter corollary clarifies the sense of condition (2.15) in the case of
the discrete TBC for Φ=ΨJ .

Now we turn to the explicit construction of the discrete TBC of the form (2.7)
and proofs of property (2.15) for this.

To construct the discrete TBC, following [11] we consider the auxiliary finite-
difference problem on the uniform part of the infinite mesh

i~∂tΨ=Hh,∞stΨ on (ωh,∞\ωh)×ωτ , (3.12)

ΨJ−1 is given, |ΨJ−1|∞ := sup
m>0

|Ψm
J−1|<∞, (3.13)

sup
j>J−1,m>0

|Ψm
j |<∞, (3.14)

Ψ0
j =0 for j >J−1, (3.15)

which involves the limiting mesh Hamiltonian operator

Hh,∞W :=−~
2

2
B1∞∂̂x∂xW +V∞W on ωh,∞\ωh.

Hereafter in this section we assume that the time mesh ωτ is uniform as well, that
is, τm = τ for any m>1. Clearly, condition (3.14) on the uniform boundedness of the
solution is implied by Corollary 3.2.

Since the coefficients are constants and the meshes are uniform, it becomes pos-
sible to solve explicitly this auxiliary problem.

To this end, we apply the method of reproducing functions (for example see
[14, 22]); this is close to but simpler than the Z−transform based on the Laurent
series and used in [5, 11]. Namely, for a sequence {Φm}∞m=0 (that is, a complex-
valued function on the mesh ωτ ), we consider the power series

Φ̃(z)≡T [Φ](z) :=
∞∑

m=0

Φmzm,

in a neighborhood of the point z =0 on C. In particular, if |Φ|∞<∞, this series
converges for |z|<1, the bound holds

|Φ̃(z)|6 |Φ|∞
1−|z| for |z|<1, (3.16)

and Φ̃(z) is analytic for |z|<1.
Conversely, for a function p analytic in a disk {|z|<r0}, the inverse transform

Φ=T −1[p] that maps p into the sequence {Φm}∞m=0 of its Taylor coefficients

Φm =
1
2π

∫ 2π

0

p(z)
zm

∣∣∣∣
z=reiϕ

dϕ, (3.17)

for any 0<r <r0, is well-defined.
Taking into account conditions (3.14) and (3.15), for |z|<1, we calculate

T [
i~∂tΨj−Hh,∞stΨj

]
(z)= i~

1−z

τ
Ψ̃j(z)− 1+z

2
Hh,∞Ψ̃j(z)

=
1+z

2
~B1∞
2h2

(
Ψ̃j+1(z)−2γ(z)Ψ̃j(z)+Ψ̃j−1(z)

)
for j >J, (3.18)
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where the coefficient γ(z) is expressed by the formula

γ(z) :=1+a0− ia1
1−z

1+z
,

and a0 and a1 have been introduced in (2.23). Hereafter, for j >J−1, we extend
Ψm

j

∣∣
m=−1

:=0 so that ∂tΨ0
j =stΨ0

j =0. Equation (3.12) implies the difference equa-
tion

Ψ̃j+1(z)−2γ(z)Ψ̃j(z)+Ψ̃j−1(z)=0 for j >J. (3.19)

The corresponding characteristic equation has the form

ν2(z)−2γ(z)ν(z)+1=0, z 6=−1; (3.20)

its roots are

ν1,2(z)=γ(z)+
√

γ2(z)−1,

where
√· is a two-valued function. We choose ν1(z) such that 0< |ν1(z)|61 and then

|ν2(z)|>1 since ν1(z)ν2(z)=1.
Since ν1 +ν2 =2γ, it is easy to see that |ν1(z)|=1 (and thus |ν2(z)|=1 too) if and

only if γ(z) is real and |γ(z)|61. The formula

γ(z)=1+a0−2a1
Imz

|z+1|2 + ia1
|z|2−1
|z+1|2 ,

yields that

0< |ν1(z)|<1, |ν2(z)|>1 for |z| 6=1.

Consequently the general solution to the difference equation (3.19) has the form

Ψ̃j(z)= c1(z)νj−J+1
1 (z)+c2(z)νj−J+1

2 (z) for j >J−1,

with arbitrary c1(z) and c2(z). By virtue of (3.14) and (3.16) we find that c2(z)≡0
and thus recalling (3.13) we obtain

Ψ̃j(z)=Ψ̃J−1(z)νj−J+1
1 (z) for j >J−1. (3.21)

We need to study properties of ν1 and ν2 in more detail. Let −√w be the analytic
branch of

√
w in C with the cross-cut along the semi-axis Rew>0, Imw=0 such that

−√−1= i.

Lemma 3.4. The functions ν1 and ν2 are analytic in the open unit disk {|z|<1} and
are expressed there by the formulas

ν1(z)=γ(z)+ −
√

γ2(z)−1, ν2(z)=γ(z)− −
√

γ2(z)−1.

Proof. The above defined linear-fractional function ζ =γ(z) establishes a one-
to-one correspondence between the unit circumference {|z|=1} with the punctured
point z =−1 and the axis {Im ζ =0} as well as between the open unit disk and the
lower semi-plane {Im ζ <0}.
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The function Z−1(ζ) := ζ +
√

ζ2−1 is the two-valued inverse of the elementary
Zhukovskii function Z(z) := 1

2

(
z+ 1

z

)
, for example see [14]. Its branches

Z−1
1 (ζ) := ζ + ∗

√
ζ2−1 such that |Z−1

1 (ζ)|<1,

and

Z−1
2 (ζ) := ζ− ∗

√
ζ2−1=

1
Z−1

1 (ζ)
such that |Z−1

2 (ζ)|>1,

are well-defined for any ζ excepting real ζ with |ζ|61. [For the exceptional values
of ζ, obviously Z−1(ζ)= ζ for ζ =±1 and Z−1(ζ)= ζ± i|ζ2−1|1/2 for |ζ|<1, Im ζ =0,
with |Z−1(ζ)|=1.]

Moreover, assume that arg(ζ2−1)∈ [0,2π). Then clearly arg ∗
√

ζ2−1 is selected
from two values 1

2 arg(ζ2−1)+πk, k =0,1, by the condition

cos
(
arg ∗

√
ζ2−1−argζ

)
<0.

Straightforwardly we check that

arg ∗
√

ζ2−1=
1
2

arg(ζ2−1)∈




(
0, π

2

]
for argζ ∈ (

π, 3π
2

]
,

(
π
2 , π

)
for argζ ∈ (

3π
2 , 2π

)
.

(3.22)

Clearly, the function w= ζ2−1 establishes a one-to-one correspondence between the
lower semi-plane {Imζ <0} and the whole complex plane with the cross-cut along the
ray Rew>−1, Imw=0. In the image, ∗

√
ζ2−1= −

√
ζ2−1. Therefore the functions

∗
√

ζ2−1 and Z−1
l (ζ) are analytic in the lower semi-plane {Imζ <0}, and the functions

νl(z)=Z−1
l (γ(z)) are analytic in the open unit disk {|z|<1}, for l=1,2.

We now turn to consequences of formula (3.21).

Proposition 3.5.
1. The solution to the problem (3.12)-(3.15) is given by the formula

Ψj =T −1
[
νj−J+1
1 (z)Ψ̃J−1(z)

]
for j >J−1. (3.23)

In the case where condition (3.13) is replaced by the more general one

Ψj0 is given, |Ψj0 |∞<∞,

with some j0 >J−1, the following generalized formula for the solution holds

Ψj =T −1
[
νj−j0
1 (z)Ψ̃j0(z)

]
for j >J−1. (3.24)

2. Conversely, for any function Φ defined on ωτ such that Φ0 =0 and |Φ|∞<∞,
the function

Ψj :=T −1
[
νj−j0
1 (z)Φ̃(z)

]
for j >J−1, (3.25)

with j0 >J−1, satisfies equation (3.12), the boundary condition Ψ|j=j0
=Φ

and the initial condition (3.15) as well as satisfies
∞∑

j=J−1

|Ψm
j |2 <∞ for m>1.
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Proof. 1. Formula (3.21) together with Lemma 3.4 immediately lead to formula
(3.23). Formula (3.24) is proved quite similarly (recall that ν1(z) 6=0).

2. Function (3.25) is well-defined and satisfies (3.15) (since Φ̃(0)=0). By relations
(3.18) and (3.20), this also satisfies the equality

T [
i~∂tΨj−Hh,∞stΨj

]
(z)=0 for j >J and |z|<1,

and thus equation (3.12) too.
By the Cauchy bound (following from formula (3.17)) and bound (3.16), we ob-

tain, for any j > j0 and m>1

|Ψm
j |6

max|z|=r |νj−j0
1 (z)Φ̃(z)|
rm

6 q(r)j−j0 |Φ|∞
rm(1−r)

for any 0<r <1,

where q(r) :=max|z|=r |ν1(z)|<1. [For J−16 j <j0, the same estimate with q(r) :=
min|z|=r |ν1(z)| holds.] Consequently

∞∑

j=j0

|Ψm
j |2 6

( |Φ|∞
rm(1−r)

)2 1
1−q2(r),

which completes the proof.

Let us return back to the derivation of the discrete TBC. From formula (3.21) we
obtain

Ψ̃j+1(z)−Ψ̃j−1(z)=
(

ν1(z)− 1
ν1(z)

)
Ψ̃j(z),

and thus

T
[(◦

∂xstΨ
)

J

]
=

1
2h

(ν1−ν2)(z) s̃tΨJ(z)=
1+z

4h
(ν1−ν2)(z)Ψ̃J(z). (3.26)

By the well-known formula for the product of two power series, this leads us to the
discrete TBC of type (2.7) in the first form

(◦
∂xstΨ

)

J

=
1
2h

Q∗stΨJ , (3.27)

where Q :=T −1 [ν1−ν2] and

(Q∗T )m :=
m∑

q=0

QqTm−q for m>0,

is the convolution of sequences {Qm}∞m=0 and {Tm}∞m=0. The sequence Q is well-
defined according to Lemma 3.4 and could be calculated explicitly following [11]. But
we omit such an explicit expression since it will be not required neither theoretically
nor computationally; in particular, for implementation we rewrite (3.27) in the more
suitable form (3.31) below.

We are in a position to prove inequality (2.15) in the case of the discrete TBC
(3.27). We present two distinct proofs for this crucial result. The first proof is implicit
since this exploits only the fact that the solution Ψm∈Hh, for any m>0, to the scheme
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(3.1)-(3.3) on the infinite mesh, with any F such that Fm
j =0 for j >J and m>1 and

with Ψ0≡0, satisfies a relation of form (2.7) without using any explicit expression
for Sm

{
Ψ1

J ,.. .,Ψm
J

}
. Thus we see that the discrete TBC (among all approximate

TBCs of form (2.7)) automatically yields the unconditionally stable scheme on the
finite mesh.

The second proof is explicit in the sense that this exploits the expression
Sm

{
Ψ1

J ,.. .,Ψm
J

}
=(Q∗stΨ)m with Q given above. Such a proof is also important

since can serve as the reference one while considering other similar approximate TBC
(for example, a simplified discrete TBC developed in [6]).

Proposition 3.6. For the discrete TBC (3.27), inequality (2.15) holds.

Proof. 1. The first (implicit) proof. Let us fix any M >1 and values Φ0 =
0,Φ1,... ,ΦM . We extend Φ to the whole of ωτ by any way such that |Φ|∞<∞. For
j >J−1, we define the function Ψ by formula (3.25) for j0 =J . For 06 j <J−1 and
m>0, we set Ψm

j :=0 (actually the values of Ψ on (ωh\{xJ−1})×ωτ could be defined
arbitrarily) and then F := i~∂tΨ−HhstΨ.

By virtue of Claim 2 in Proposition 3.5, the constructed function Ψ satisfies the
problem (3.12)-(3.15) and therefore the scheme (3.1)-(3.3) with F =0 on (ωh,∞\ωh)×
ωτ and Ψ0

h =0. Finally Corollary 3.3 implies inequality (2.15) since Ψm
J =Φm for

06m6M .
2. The second (explicit) proof. Let us fix any M >1 and values Φm|m=−1,0 =0,

Φ1,... ,ΦM . We extend Φ by the formula

Φm := (−1)m−MΦM for m>M +1. (3.28)

Then stΦm =0 for m=0 and m>M +1 and

S :=
M∑

m=1

(Q∗stΦ)m(stΦm)∗=
∞∑

m=0

(Q∗stΦ)m(stΦm)∗. (3.29)

Clearly, also

p(z) :=T [stΦ](z)=
1+z

2

M−1∑
m=1

Φmzm +
1
2

ΦMzM ,

is simply a polynomial with degree not greater than M .
According to the formula expressing the product of two sequences in terms of

their T −transforms (for example see Chapter II, Section 2 in [22]), we have, for any
0<r <1

S =
1
2π

∫ 2π

0

T [Q∗stΦ]
(
reiϕ

)
(T [stΦ])∗

(
r−1eiϕ

)
dϕ,

that is,

S =
1
2π

∫ 2π

0

(ν1−ν2)
(
reiϕ

)
p
(
reiϕ

)
p∗

(
r−1eiϕ

)
dϕ.

For |z|<1, by Lemma 3.4 we obviously have

(ν1−ν2)(z)=2 −
√

γ2(z)−1; (3.30)
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therefore

|(ν1−ν2)(z)|62(|γ(z)|+1) and Im(ν1−ν2)(z)>0,

see also (3.22). Consequently we get, for 1
2 6 r<1

S =
1
2π

∫ 2π

0

(ν1−ν2)
(
reiϕ

)∣∣p(
eiϕ

)∣∣2 dϕ+O(ρ(r)),

with

ρ(r) :=
∫ 2π

0

(|γ(reiϕ)|+1
)
dϕ(1−r)>0,

and then ImS >O(ρ(r)).
Let 0<ε<1. By definition of γ(z), the estimates hold

|γ(z)|6Cε for
1
2

6 |z|<1, 06argz 6π−ε and π+ε6argz 62π,

and

sup
|z|<1

|γ(z)(1+z)|6C0.

Applying them (preliminarily dividing the integral over [0,2π] in the definition of ρ(r)
over [0,2π] into two corresponding summands) and the inequality 1−|z|6 |z+1|, we
find

ρ(r)62(π−ε)(Cε +1)(1−r)+2ε(C0 +1).

Passing to the (upper) limit first as r→1− and second as ε→0+, we obtain that
ρ(r)→0 as r→1−. This implies the desired property ImS >0.

Note that in [11] in a similar situation the zero extension of Φ instead of (3.28)
was applied; but clearly the zero extension does not ensure the validity of formula
(3.29).

For implementation, we rewrite the discrete TBC (3.27) in the second form, see
the right-hand equality (3.26)

(◦
∂xstΨ

)

J

=
1
2h

R∗ΨJ , (3.31)

where R :=T −1
[
1+z
2 (ν1−ν2)(z)

]
, that is, in form (2.7) with

Sm
{
Ψ1

J ,... ,Ψm
J

}
:=

1
2h

(R∗ΨJ)m =
1
2h

m−1∑
q=0

RqΨm−q
J for any m>1.

Now we calculate the sequence R (notice that we accomplish that directly rather
than base on an explicit expression for Q in (3.27) as in [11]). Preliminarily rewriting
γ(z) in the form

γ(z)=1+
az+a∗

z+1
with a :=a0 + ia1,
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we get

γ2(z)−1=
αz2 +2βz+α∗

(z+1)2
,

where the parameters α and β are given by the formulas

α :=a(2+a)=
[
a0(2+a0)−a2

1

]
+ i2(1+a0)a1, β :=2a0 + |a|2 =a2

0 +2a0 +a2
1. (3.32)

Furthermore, we rewrite

αz2 +2βz+α∗=α∗
[
(κz)2−2µκz+1

]
,

where

µ :=
β

|α| ∈ (−1,1), κ :=−eiargα with argα∈ (0,2π); (3.33)

here the property µ∈ (−1,1) follows from the elementary inequality β2 < |α|2. Thus

γ2(z)−1=α∗
(κz)2−2µκz+1

(z+1)2
,

and since γ2(z)−1→α∗=γ2(0)−1 as z→0, we obtain, for sufficiently small z

−
√

γ2(z)−1= −√
α∗

+
√

(κz)2−2µκz+1
z+1

, (3.34)

where now +
√

w is another analytic branch of
√

w, say, in the disk {|w−1|<1} such
that +

√
1=1. The formula

−√
α∗= −

√
γ2(0)−1=−|α|1/2e−i(argα)/2,

is valid, see (3.22) (here the choice argα∈ (0,2π) is applied).
Formulas (3.30) and (3.34) imply that

z+1
2

(ν1−ν2)(z)= −√
α∗

(κz)2−2µκz+1
+
√

(κz)2−2µκz+1
.

The well-known formula for the reproducing function of the Legendre polynomials
{pm}∞m=0 holds, for any |µ|61 and sufficiently small ζ

∞∑
m=0

pm(µ)ζm =
1

+
√

ζ2−2µζ +1
,

for example see Chapter VII, Section 2 in [14]. Consequently, for any integer l, κ∈C
and sufficiently small z (with κz 6=0 for l<0)

∞∑

m=l

κmpm−l(µ)zm =
(κz)l

+
√

(κz)2−2µκz+1
.

Thus

1+z

2
(ν1−ν2)(z)= −√

α∗
∞∑

m=0

κm [pm(µ)−2µpm−1(µ)+pm−2(µ)]zm,
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where pm(µ)≡0 for m<0. Applying the recurrence relation for the Legendre poly-
nomials

µpm−1(µ)=
m−1
2m−1

pm−2(µ)+
m

2m−1
pm(µ) for m>0, (3.35)

we find

1+z

2
(ν1−ν2)(z)=− −√

α∗
∞∑

m=0

κm

2m−1
(pm−pm−2)(µ)zm.

Therefore the following result has been proved.

Proposition 3.7. The sequence R in the discrete TBC (3.31) is given by the formula

Rm := |α|1/2e−i(argα)/2 κm

2m−1
(pm−pm−2)(µ) for m>0,

where the parameters α, µ and κ are given by formulas (2.23), (3.32) with a=a0 + ia1

and (3.33). Recall that {pm}∞m=0 are the Legendre polynomials and pm≡0 for m<0.

Note that, in particular, the initial elements of R are expressed by the formulas

R0 =−|α|1/2e−i(argα)/2, R1 = |α|1/2ei(argα)/2µ.

Recall that the recurrence relation for the elements of R is known [11] (based on
relation (3.35)).

One can verify that formula (2.22) together with those from the last proposition
are equivalent to and only slightly differ from the corresponding formulas derived in
[11] for the stable implementation of the discrete TBC but only in the case Reα<0
(since in [11] the choice arg(−Re α

4 + iIm α
4 )=arctan Imα

−Reα is adopted). In the case
Reα>0 the formulas from [11] have to be corrected. Note that even in the simplest
case V∞=0 (that is, a0 =0), we have Reα<0 in 1D case but in general we need to
cover the case of Reα of arbitrary sign in 2D case below. We should also mention
that the treatment of the analytic branches of

√
w in [11] (for example, concerning

the counterpart of formula (3.34)) gives rise to questions.

4. 2D Schrödinger equation and the Crank-Nicolson scheme with ap-
proximate or discrete TBC

For applications in low-energy nuclear fission dynamics, 1D model is oversimplified
and 2D model is much more relevant, see [8, 12]. In this section, we show that the
above 1D results and ideas can be rather easily extended to a 2D situation of physical
interest.

So we turn to the generalized time-dependent 2D Schrödinger equation

i~
∂ψ

∂t
=Hψ for (x,y)∈Ω and t>0, (4.1)

involving the 2D Hamiltonian operator

Hψ :=−~
2

2

[
∂

∂x

(
B11

∂ψ

∂x

)
+

∂

∂x

(
B12

∂ψ

∂y

)
+

∂

∂y

(
B21

∂ψ

∂x

)
+

∂

∂y

(
B22

∂ψ

∂y

)]
+V ψ,

where Ω :=(0,∞)×(0,Y ) is a semi-bounded strip, the real matrix {Bjk(x,y)}2j,k=1 is
symmetric and positive definite uniformly in Ω and V (x,y) is real in Ω.
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We impose the following boundary condition and condition at infinity

ψ|∂Ω =0 and ‖ψ(x,·,t)‖L2(0,Y )→0 as x→∞, for any t>0, (4.2)

together with the initial condition

ψ|t=0 =ψ0(x,y) in Ω. (4.3)

We assume that for some X0 >0

B11(x,y)=B1∞>0, B12(x,y)=B21(x,y)=0, B22(x,y)=B2∞>0,

V (x,y)=V∞ and ψ0(x,y)=0 for x>X0, y∈ [0,Y ]. (4.4)

Expanding the solution for x>X0 with respect to the orthonormalized sys-

tem
{√

2
Y sin πly

Y

}∞
l=1

on (0,Y ), for the corresponding Fourier coefficients, we get

disjoint 1D Schrödinger equations of the form (2.1) with the auxiliary potentials

V∞l :=V∞+
~2

2

(
πl

Y

)2

B2∞ replacing V∞. Therefore the 2D integro-differential TBC

can be represented in the form of the expansion, for any X >X0

∂ψ

∂x
(X,y,t)=− 1− i√

~B1∞

√
2
Y

∞∑

l=1

e−i(V∞l/~)t

× 1√
π

d

dt

∫ t

0

ψ(l)(X,θ)ei(V∞l/~)θ dθ√
t−θ

sin
πly

Y
, (4.5)

for 0<y <Y and t>0, with the Fourier coefficients

ψ(l)(X,θ) :=

√
2
Y

∫ Y

0

ψ(X,y,θ)sin
πly

Y
dy.

This TBC is non-local with respect to both y and t. In what follows, the similar
approach will be applied to derive a discrete 2D TBC.

We continue to exploit the meshes, the mesh operators and the mesh norms in
x and t introduced in Section 2 and in addition define two mesh averaging operators
with respect to x

sxWj =
Wj−1 +Wj

2
, ŝxWj :=

hjWj +hj+1Wj+1

2hj+1/2
;

they are related by the identity

(ŝxW,U)ωh
=

J∑

j=1

WjsxUjhj− 1
2

(W1U0h1 +WJUJhJ). (4.6)

We also introduce the mesh ωδ in y on [0,Y ] with the nodes 0=y0 < ···<yK =Y and
the steps δk :=yk−yk−1. Let ωδ :=ωδ \{0,Y } and δmin :=min16k6K δk. We define
the backward and the modified forward difference quotients together with two mesh
averaging operators with respect to y

∂yUk :=
Uk−Uk−1

δk
, ∂̂yUk :=

Uk+1−Uk

δk+1/2
, syUk =

Uk−1 +Uk

2
,
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and

ŝyUk :=
δkUk +δk+1Uk+1

2δk+1/2
,

where δk+1/2 := (δk +δk+1)/2.

Let
◦
H(ωδ) be the space of the complex-valued functions defined on the mesh ωδ

and equal zero at the nodes y =0,Y , equipped with the inner product

(U,W )ωδ
:=

K−1∑

k=1

UkW ∗
k δk+1/2,

and the associated norm ‖·‖ωδ
.

We define the product meshes ωh,∞ :=ωh,∞×ωδ on Ω=[0,∞)× [0,Y ], ωh :=ωh×
ωδ on [0,X]× [0,Y ] and also ωh,∞ :=ωh,∞×ωδ and ωh :=ωh×ωδ.

We exploit the 2D mesh Hamiltonian operator

HhW :=

−~
2

2

{
∂̂x

(
B11h∂xW + ∂̂xŝy(B12hsx∂yW )

)
+ ŝx∂̂y(B21h∂xsyW )+ ∂̂y

(
B22h∂yW

)}

+VhW,

where the coefficients are given by the formulas

B11hjk = ŝyB11(xj−1/2,yk−1/2), B22hjk = ŝxB22(xj−1/2,yk−1/2),

B12hjk =B21hjk =B12(xj−1/2,yk−1/2),

with yk−1/2 :=yk−δk/2, and Vhjk = ŝxŝyV (xj−1/2,yk−1/2). Actually this finite-
difference discretization is a simplification of the finite element one based on the
bilinear elements for the rectangular mesh ωh (conserving, in particular, its L2(Ω)
and H1(Ω) optimal error estimates), see [24]. Other operators Hh can be also ex-
ploited.

Let the relation
(◦

∂xstΨ
)m∣∣∣∣

j=J

=Sm
{
Ψ1

J ,... ,Ψm
J

}
on ωδ, (4.7)

be an approximate 2D TBC (4.5) at the node xJ for m>1. Here Ψp
J is the collection

Ψp
J ={Ψp

Jk}K
k=0, 16p6m, so that in general the relation is non-local not only in time

(as in 1D case) but in y as well.
The approach described in Section 2 leads us to the following complete finite-

difference scheme on the finite mesh ωh×ωτ which couples the Crank-Nicolson dis-
cretization to the approximate TBC

i~∂tΨ=HhstΨ on ωh×ωτ , (4.8)

Ψm|j=0 =0, Ψm|k=0,K =0 for m>1, (4.9)
[
∂xstΨ− h

~2B1∞

(
i~∂tΨ+

~2

2
B2∞∂̂y∂ystΨ−V∞stΨ

)]m∣∣∣∣
j=J

=Sm
{
Ψ1

J ,.. .,Ψm
J

}
on ωδ for m>1, (4.10)

Ψ0 =Ψ0
h on ωh, (4.11)
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where Ψ0
hjk =ψ0(xj ,yk) (for definiteness) and thus Ψ0

h

∣∣
j=J

=0; we assume that the
two conjunction conditions Ψ0

h

∣∣
j=0

=0 and Ψ0
h

∣∣
k=0,K

=0 are valid. Notice once more
that the boundary condition (4.10) has the form of the well-known 2D second order
approximation (exploiting an 8-point stencil in all the directions x, y and t) to the
non-homogeneous Neumann boundary condition, for example see [18].

To study the stability problem for this finite-difference scheme, we replace (4.8)
and (4.10) by their generalized versions

i~∂tΨ=HhstΨ+F on ωh×ωτ , (4.12)
[
∂xstΨ− h

~2B1∞

(
i~∂tΨ+

~2

2
B2∞∂̂y∂ystΨ−V∞stΨ+G

)]m∣∣∣∣
j=J

=Sm
{
Ψ1

J ,.. .,Ψm
J

}
on ωδ for m>1, (4.13)

where the perturbations F and G are given functions defined on ωh×ωτ and ωδ×ωτ .
To state the result, we need to introduce two mesh counterparts of the inner

product in the complex space L2((0,X)×(0,Y )):

(U,W )ωh
:=

J−1∑

j=1

K−1∑

k=1

UjkW ∗
jkhj+1/2δk+1/2,

(U,W )ωh
:= (U,W )ωh

+
K−1∑

k=1

UJkW ∗
Jk

h

2
δk+1/2,

together with the associated mesh norms ‖·‖ωh
and ‖·‖ωh

.

Proposition 4.1. Let Ψ0
h be any function defined on ωh (satisfying Ψ0

h

∣∣
j=J

=0 and
the above conjunction conditions) and Ψ be a solution of the finite-difference scheme
(4.12), (4.9), (4.13), (4.11). Assume that the operator S satisfies the inequality

Im
M∑

m=1

(Sm
{
Φ1,.. .,Φm

}
, stΦm

)
ωδ

τm >0 for any M >1, (4.14)

for any function Φ defined on ωδ×ωτ such that Φ0 =0 and Φ|k=0,K =0. Then the
following stability bound holds

max
06m6M

‖Ψm‖ωh
6‖Ψ0

h‖ωh
+

2
~

M∑
m=1

‖Fm‖ωh
τm +

√
2h

~

M∑
m=1

‖Gm‖ωδ
τm for any M >1.

(4.15)

Proof. We take the (·, ·)ωh
-inner-product of equation (4.12) with any function W

defined on the mesh ωh such that W |j=0 =0 and W |k=0,K =0. Then we sum the
result by parts (using assumption (4.4)), apply identity (4.6) (and a similar identity
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with respect to y), exploit the boundary condition (4.13) and obtain the identity

i~
(
∂tΨm,W

)
ωh

=
~2

2

J∑

j=1

K∑

k=1

{
B̃11sy

[
(∂xstΨm)∂xW ∗]+B̃12(sx∂ystΨm)∂xsyW ∗

+B̃21(∂xsystΨm)sx∂yW ∗+B̃22sx

[
(∂ystΨm)∂yW ∗]}

jk
hjδk +(VhstΨm,W )ωh

+(Fm,W )ωh
− h

2
(Gm,WJ)ωδ

− ~
2B1∞

2
(Sm

{
Ψ1

J ,.. .,Ψm
J

}
,WJ

)
ωδ

for m>1,

(4.16)

where B̃jk :=B(xj−1/2,yk−1/2). The rest of the proof is similar to one for Proposition
2.1 and thus is omitted.

Corollary 4.2. Let condition (4.14) be valid. Then the finite-difference scheme
(4.12), (4.9), (4.13), (4.11) is uniquely solvable at least provided that Sm is a linear
operator for any m>1.

In particular, the scheme (4.8)-(4.11) is uniquely solvable, and its solution satis-
fies the equality

max
m>0

‖Ψm‖ωh
=‖Ψ0

h‖ωh
. (4.17)

Clearly, this corollary is the 2D counterpart of Corollary 2.2, and also similarly
to (2.21), for F =0 and G=0, the equality holds

‖ΨM‖2ωh
−‖Ψ0

h‖2ωh
=−~B1∞ Im

M∑
m=1

(Sm
{
Ψ1

J ,.. .,Ψm
J

}
, stΨm

J

)
ωδ

τm for any M >1.

We introduce the auxiliary mesh eigenvalue problem

−∂̂y∂yE =λE on ωδ, E|k=0,K =0, E 6≡0.

We denote by {El,λlδ}, 16 l6K−1, the eigenpairs such that the functions {El}K−1
l=1

are real-valued and form an orthonormalized basis in
◦
H(ωδ); recall that λlδ >0 for all

l. Clearly, for any U ∈
◦
H(ωδ), the expansion holds

U =F−1U (·) :=
K−1∑

l=1

U (l)El,

with the coefficients

U (l) =(FU)(l) := (U,El)ωδ
for 16 l6K−1.

We also recall the identity

(U,W )ωδ
=

K−1∑

l=1

U (l)
(
W (l)

)∗
for any U,W ∈

◦
H(ωδ). (4.18)
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In the case of the uniform mesh ωδ, that is, if δk = δ for any 16k 6K, the
eigenpairs can be represented explicitly by the well-known formulas, for 16 l6K−1

(El)k :=

√
2
Y

sin
πlyk

Y
for 06k 6K, λlδ :=

(
2
δ

sin
πδl

2Y

)2

,

and the transforms F and F−1 can be effectively implemented by applying the discrete
fast Fourier transform (FFT) with respect to sines.

For implementation of the scheme, it can be convenient to apply the transform
F to the boundary condition (4.10) and thus rewrite this in the equivalent form for
the Fourier coefficients Ψ(l), for 16 l6K−1

Ψ(l),m
J−1 +Ψ(l),m−1

J−1 =(1+a0l− ia1)Ψ
(l),m
J +(1+a0l + ia1)Ψ

(l),m−1
J

−2h
(FSm

{
Ψ1

J ,.. .,Ψm
J

})(l)
, (4.19)

where the real parameters a0l and a1 are given by the formulas

a0l :=
h2V∞lδ

~2B1∞
with V∞lδ :=V∞+

~2

2
B2∞λlδ, a1 =

2h2

τ~B1∞
>0, (4.20)

compare with formulas (2.22) and (2.23); a1 is the same as above.
Now we consider the Crank-Nicolson scheme on the infinite mesh for the original

problem (4.1)–(4.3)

i~∂tΨ=HhstΨ+F on ωh,∞×ωτ , (4.21)

Ψm|j=0 =0, Ψm|k=0,K =0 for m>1, (4.22)

Ψ0 =Ψ0
h on ωh,∞. (4.23)

The given perturbation F is added to the right-hand side of (4.21) once again in order
to analyze the stability of the scheme.

Let Hh be a Hilbert space consisting of complex-valued functions W defined on the

mesh ωh,∞ such that W |j=0 =0, W |j=j0
∈
◦
H(ωδ) for any j0 >1 and

∑∞
j=1‖Wjk‖2ωδ

<
∞, equipped with the inner product

(U,W )Hh
:=

∞∑

j=1

K−1∑

k=1

UjkW ∗
jkhj+1/2δk+1/2.

Proposition 4.3. Let Fm∈Hh for any m>1 and Ψ0
h∈Hh. Then there exists a

unique solution to the scheme (4.21)-(4.23) such that Ψm∈Hh for any m>0, and
the following stability bound holds

max
06m6M

‖Ψm‖Hh
6‖Ψ0

h‖Hh
+

2
~

M∑
m=1

‖Fm‖Hh
τm for any M >1. (4.24)

Moreover, in the particular case F =0, the mass conservation law holds

‖Ψm‖2Hh
=‖Ψ0

h‖2Hh
for any m>1. (4.25)
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Proof. We extend Hh to an operator in Hh by setting

◦
HhW :=HhW on ωh,∞ and

◦
HhW :=0 on ωh,∞\ωh,∞.

The operator
◦
Hh is bounded in Hh by taking account of assumption (4.4). Moreover,

◦
Hh is self-adjoint since, for any W,U ∈Hh

( ◦
HhW,U

)

Hh

=
~2

2

∞∑

j=1

K∑

k=1

{
B̃11sy

[
(∂xW )∂xU∗]+B̃12(sx∂yW )∂xsyU∗

+B̃21(∂xsyW )sx∂yU∗+B̃22sx

[
(∂yW )∂yU∗]}

jk
hjδk +(VhW,U)Hh

, (4.26)

compare with equalities (3.7) and (4.16). The rest of the proof is similar to one for
Proposition 3.1.

Corollary 4.4. Bound (4.24) implies the uniform-norm bound

sup
m>0

max
j>0,06k6K

∣∣Ψm
jk

∣∣6 1√
hminδmin

(
‖Ψ0

h‖Hh
+

2
~

∞∑
m=1

‖Fm‖Hh
τm

)
.

Corollary 4.5. Let Fm =0 and Ψ0 =0 on ωh,∞\ωh for m>1. If the solution to
the scheme (3.1)-(3.3) such that Ψm∈Hh, for any m>0, satisfies relation (4.7) with
some operator S, then we have, for any M >1

~B1∞ Im
M∑

m=1

(Sm
{
Ψ1

J ,.. .,Ψm
J

}
, stΨm

J

)
ωδ

τm

=‖ΨM‖2ωh,∞\ωh
:=

h

2
‖ΨM

J ‖2ωδ
+

∞∑

j=J+1

‖ΨM
j ‖2ωδ

h>0.

Clearly, Corollaries 4.4 and 4.5 are counterparts of Corollaries 3.2 and 3.3, and
also the identity holds

‖W‖2Hh
=‖W‖2ωh

+‖W‖2ωh,∞\ωh
for any W ∈Hh.

To construct the discrete 2D TBC, we consider the auxiliary finite-difference
problem on the uniform in x part of the infinite mesh

i~∂tΨ=Hh,∞stΨ on (ωh,∞\ωh)×ωτ ,

Ψ|j=J−1 is given, sup
m>1

max
06k6K

|Ψm
(J−1)k|<∞,

Ψm|k=0,K =0 on ωh,∞\ωh for m>1,

sup
j>J−1,06k6K,m>0

|Ψm
jk|<∞,

Ψ0
jk =0 for j >J−1, 06k 6K,
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which involves the limiting 2D mesh Hamiltonian operator

Hh,∞W :=−~
2

2

(
B1∞∂̂x∂xW +B2∞∂̂y∂yW

)
+V∞W on ωh,∞\ωh.

Hereafter we assume that the time mesh ωτ is uniform as well.
Following an idea from [6], we apply the transform F to the last problem and

decompose this into the equivalent collection of the disjoint 1D problems for the
Fourier coefficients Ψ(l), 16 l6K−1

i~∂tΨ(l) =Hh,∞stΨ(l) +
~2

2
B2∞λlδstΨ(l) on (ωh,∞\ωh)×ωτ ,

Ψ(l)
J−1 is given, sup

m>1
|Ψ(l),m

J−1 |<∞,

sup
j>J−1,m>0

|Ψ(l),m
j |<∞,

Ψ(l),0
j =0 for j >J−1.

These are the same problems as the above 1D problem (3.12)-(3.15) but with the
auxiliary potentials V∞lδ, see (4.20), replacing V∞.

By virtue of the 1D discrete TBC in the second form (3.31) we obtain
(◦

∂xstΨ(l)

)

J

=
1
2h

Rl ∗Ψ(l)
J ,

where the sequence Rl is described by the same formulas as R in Proposition 3.7 but
with the parameter a0l (see (4.20)) replacing the parameter a0 (see (2.23)).

Applying the inverse transform F−1, we finally get the 2D discrete TBC of form
(4.7)

(◦
∂xstΨ

)∣∣∣∣
j=J

=
1
2h
F−1

(
Rl ∗Ψ(l)

J

)
, (4.27)

that is, with

Sm
{
Ψ1

J ,.. .,Ψm
J

}
=

1
2h
F−1

(
Rl ∗Ψ(l)

J

)m

for any m>1. (4.28)

Thus the system of equations (4.19) takes the form of disjoint equations, for 16 l6
K−1

Ψ(l),m
J−1 +Ψ(l),m−1

J−1 =(1+a0l− ia1)Ψ
(l),m
J +(1+a0l + ia1)Ψ

(l),m−1
J −

m∑
q=1

Rm−q
l Ψ(l),q

J ,

which are non-local only in time similarly to (2.22) in 1D case. These can be effectively
coupled to a chosen iterative (or direct) method to compute Ψm.

Proposition 4.6. For the 2D discrete TBC (4.27), inequality (4.14) holds.

Proof. We can reduce 2D case to 1D one studied in the previous section. For any
M >1 and for any function Φ defined on ωδ×ωτ such that Φ0 =0 and Φ|k=0,K =0,
we have

M∑
m=1

(
F−1

(
Rl ∗Φ(l)

)m

, stΦm
)

ωδ

τ =
M∑

m=1

K−1∑

l=1

(
Rl ∗Φ(l)

)m(
stΦ(l),m

)∗
τ,
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where identity (4.18) has been applied. Consequently by rearranging the sums and
applying Proposition 3.6, for operator (4.28) we obtain

2hIm
M∑

m=1

(Sm
{
Φ1,... ,Φm

}
, stΦm

)
ωδ

τ =
K−1∑

l=1

Im
M∑

m=1

(
Rl ∗Φ(l)

)m(
stΦ(l),m

)∗
τ >0.

Thus the stability condition (4.14) for the 2D discrete TBC is verified.
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