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FAST COMMUNICATION

INSTABILITY OF VARIABLE MEDIA TO LONG WAVES WITH
ODD DISPERSION RELATIONS∗

DANIEL HODYSS† AND TERRENCE R. NATHAN‡

Abstract. The instability of variable media to a broad class of long waves having dispersion
relations that are an odd function of wavenumber is examined. For Hamiltonian media, new necessary
conditions for the existence and structure of global modes are obtained. For non-Hamiltonian media,
an analysis of the complex WKB branch points yields explicit expressions for the frequency and
structure of the global modes, which manifest as spatially oscillatory wave packets or smooth envelope
structures. These distinct modes and their locations within the media can be predicted by simply
examining the local convergence or divergence of the group velocity in the long wave limit.
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1. Introduction
Linear instabilities are often the crucial first stage in the evolution to fully finite-

amplitude states and the transition to turbulence [1]. In variable media this first stage
may be carried out by self-sustained oscillations resulting from the local resonant
tuning by the media. This local tuning serves to partition the media into regions
defined by their local stability properties, which are identified by either absolute
instability (AI) or convective growth (CG). A medium is said to exhibit AI if a local
wave source produces perturbations that grow in time at the source, even after the
source is turned off. However, if AI is absent, a medium is said to exhibit CG if a
local wave source produces perturbations that locally amplify due to the variations in
the medium; but if the wave source is turned off, the medium returns to its original
state. Therefore, the existence of a local region of AI is a necessary condition for the
media to produce a self-sustained oscillation - termed global mode [2].

The linearized complex Ginzburg-Landau equation (LCGL) has been widely used
as a model equation to study AI and CG in spatially developing media (e.g., [2], [3],
[4]). In a fluid dynamical context, the LCGL equation represents a simple system
that describes the local growth of perturbations in spatially developing media whose
spatially uniform far field is marginally stable with respect to the classic Rayleigh
stability criterion. The appeal of the LCGL equation rests largely on its ability to
describe qualitatively, and often quantitatively, the linear stability properties of a
vast array of wave phenomena whose dispersion relations are second order in wave
number. Here we introduce another model equation which, like the LCGL, describes
the local growth of perturbations in spatially developing media; but in contrast to
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the LCGL, the spatially uniform far field is deeply stable with respect to the Rayleigh
criterion. Moreover, the model equation also describes the dynamics of a vast array of
distinctly different wave phenomena, all of which share an underlying commonality:
their dispersion relations are an odd function of wavenumber in the long wave limit.
Examples of such wave phenomena include magnetoacoustic waves in the solar wind
[5], Rossby waves in geophysical fluids [6], and buoyancy waves in water [7].

The main objective of this study is to derive new stability criteria for long waves
with odd dispersion relations in spatially developing media and to examine the CG
that occurs in response to a local wave source. In addition, we will carefully examine
the mode structures and their relationship to the properties of the medium.

The paper is organized as follows. In Section 2 we develop, via a heuristic ap-
proach, a model wave equation that we postulate governs the dynamics of long waves
in variable media. As we point out below, this model equation can also be rigor-
ously derived using multiple space and time scales. In Section 3 we obtain several
conservation laws which, for variable media characterized by Hamiltonian structure,
yield necessary conditions for the existence and structure of the global mode insta-
bilities that can exist in the system. Section 4 presents a WKB analysis, valid for
non-Hamiltonian media, that details the structural characteristics of the two distinct
types of global mode instabilities that can emerge. In Section 5 we close with a brief
summary of our most important results.

2. Long wave equation
We begin by considering linear waves of amplitude A that have the following

properties: ∂A/∂t=−iωA and ∂A/∂x= ikA. These waves propagate in the stream-
wise (x) direction in a medium translating at constant velocity U, with well-defined
phase frequency ω(k;U) and wavenumber k. We expand the frequency in a Taylor
series about long-waves (k = 0) to obtain

ω =ω0 +c0
gk+

1
6

d2ĉ0
g

dk2
k3..., (2.1)

where we have used the fact that for odd dispersion relations (dcg/dk)|k=0 =0. In
(2.1) ω0 =ω(k =0;U) and c0

g =U + ĉ0
g is the group velocity in the limit k→0, where

ĉ0
g is the intrinsic group velocity in the same limit. Multiplying (2.1) by iA yields

∂A

∂t
− 1

6
d2ĉ0

g

dk2

∂3A

∂x3
+c0

g

∂A

∂x
+ iω0A=0. (2.2)

Equation (2.2) describes the propagation and dispersion of long waves in a medium
moving at constant velocity. Our goal, however, is to develop an equation that de-
scribes the propagation, dispersion, and local instability of long waves in spatially and
temporally developing media, i.e., media for which U =U(x,t). To account for such
media and the instabilities that may ensue, we define the phase frequency to have an
imaginary part at k = 0, i.e., ω0 = iσ(x,t) in (2.1). In addition, we will assume that
ĉ0
g is independent of U(x,t). This assumption is valid for waves whose restoring force

is largely independent of the translation speed of the medium. Therefore, paralleling
(2.2), we assert the following heuristic model equation for long waves in spatially and
temporally varying media:

∂A

∂t
− 1

6
d2ĉ0

g

dk2

∂3A

∂x3
+c0

g(x,t)
∂A

∂x
−σ(x,t)A=0. (2.3)
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Equation (2.3) is simply a linearized form of the Korteweg-deVries equation with vari-
able coefficients. It is important to emphasize that (2.3) can also be formally derived
using the method of multiple space and time scales (e.g., [6],[8]). However, such an
approach tends to obscure the relationship of the coefficients to the dispersion rela-
tion, particularly the group velocity. Thus (2.3) highlights the fundamental physics
of the wave dynamics in a way that is not only conceptually appealing, but, as shown
below, also makes explicit the connection between the variations of the media and the
wave dynamics.

3. Stability criteria for Hamiltonian media: conservation laws
Before proceeding to the detailed solutions of (2.3), it is instructive to obtain gen-

eral stability criteria for media characterized by Hamiltonian structure. By defining
the Hamiltonian as

H =
1
2

∫ ∞

−∞

[
c0
gA

2 +
1
6

d2ĉ0
g

dk2

(
∂A

∂x

)2
]
dx (3.1)

and writing its functional derivative as δH/δA, we can write (2.3) as the non-canonical
Hamiltonian system

∂A

∂t
+

∂

∂x

δH

δA
=0, (3.2)

provided σ =−∂c0
g/∂x, a condition that relates the local growth to the convergence of

the group velocity in the long wave limit. This condition is consistent with systems
that conserve wave action [9].

We exploit the symmetry properties of the Hamiltonian evolution equation to
obtain, via Noether’s theorem [10], conserved quantities that yield necessary condi-
tions for the global instability of variable media. If the Hamiltonian (3.1) possesses
translational symmetry in α, a functional Θ that satisfies

∂A

∂α
− ∂

∂x

δΘ
δA

=0 (3.3)

is time invariant. For example, if the Hamiltonian is invariant to translations in space
(α=x), we obtain the pseudomomentum, P , where

Θ=P ≡ 1
2

∫ ∞

−∞
A2dx (3.4)

is conserved for any dispersion relation for which c0
g varies only with time. Because

the pseudomomentum is positive definite, a time varying, spatially uniform medium
is stable. Thus a necessary condition for global instability is a spatially developing
medium. With this stability condition as a basis, we hereafter focus attention on
steady, spatially developing media.

If the Hamiltonian is invariant to translations in time (α= t), for which c0
g varies

only in space, we obtain conservation of pseudoenergy E, where Θ=E≡−H. Conser-
vation of E provides a constraint on the type of dispersion relations that can support
linear global mode instabilities: a necessary condition for a global mode in Hamilto-
nian media is

c0
g

d2ĉ0
g

dk2
<0. (3.5)
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Fig. 3.1. Possible configurations for the local group velocity. Dashed lines represent stable
configurations, whereas solid lines represent configurations that may lead to instability.

Thus instability may occur when there exists at least one point in the medium
where the group velocity and its curvature at k = 0 have opposite signs (see Fig.
3.1). This constraint requires the existence of a wavenumber for which the group
velocity vanishes. As we show below, the local vanishing of the group velocity is also
a requirement for global mode instability in non-Hamiltonian media.

In steady, streamwise uniform media, global mode instability requires that pseu-
doenergy and pseudomomentum both vanish. However, in steady, spatially developing
media, only the pseudoenergy must vanish for instability. In this case, the pseudomo-
mentum is non-zero and modulated by the spatial variations in the medium, i.e.,

dP

dt
=−1

2

∫ ∞

−∞

dc0
g

dx
A2dx. (3.6)

Thus in regions where the long wave limit of the group velocity is convergent (di-
vergent), the long wave amplitude increases (decreases). This means that an unstable
global mode must be anchored to regions for which dc0

g/dx<0. If the pseudoenergy
does not vanish, the medium is globally stable. In this case, variations in the pseudo-
momentum state that traveling long waves exhibit local convective growth in regions
where dc0

g/dx<0.
In addition to the conservation of pseudomomentum and pseudoenergy, other

conservation laws can be obtained by identifying the Casimir invariants C that satisfy
∂/∂x[δC/δA]=0. Here we only consider the Casimir invariant mass,

M =
∫ ∞

−∞
Adx. (3.7)

Because M is conserved, the integrated amplitude must vanish. Thus, global
instability in Hamiltonian media implies oscillatory wave structure. As we show in
the following section, along with these oscillatory modes, another class of modes exist
in general media that are characterized by a smooth, envelope structure.
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4. Stability criteria for general media

4.1. WKB solutions. The general stability criteria obtained for Hamiltonian
media will now be extended to general media. In so doing we will use WKB methods
to obtain explicit expressions for the global mode growth rates and structures. Our
formulation hinges on assuming that the medium is slowly varying, which pivots on
introducing X = δx, where δ¿1 measures the ratio of the long wave variation to that
of the medium. We seek solutions of the form A(X,t)=a(X)exp[−i(ω0 +δω1 + ...)t]+
c.c., where the ωj are the contributions to the complex frequency and c.c. denotes
the complex conjugate of the preceding term. We expand the amplitude a(X) in
standard WKB form [11], a(X)=exp[S0(X;ω0)/δ+S1(X;ω1)+ ...], where the local
wavenumber, k0(X,ω0), is defined by dS0/dX = ik0. Insertion of a(X) into (2.3) yields
the following dispersion relation

D(k0,ω0;X)≡ 1
6

d2ĉ0
g

dk2
k3
0 +c0

gk0−ω0 + iσ =0. (4.1)

The leading order (complex) frequency of the global mode is determined by ex-
amining the branch points in the complex X plane and subsequently identifying the
location of the complex saddle point, X0, where ∂ω0/∂x=0 [2]. Consider the cubic
dispersion relation (4.1), where k0,ω0,X ∈C. A point X0 that is both a square root
branch point and a complex saddle point is defined by

D(k0,ω0;X0)=0,
∂D

∂k0

∣∣∣∣∣
X=X0

=0,
∂D

∂X

∣∣∣∣∣
X=X0

=0. (4.2)

From these expressions we obtain the following equation whose roots are the
branch points:

Fbr(X0)= c0
g

(
dU

dX

)2

− 1
2

d2ĉ0
g

dk2

(
dσ

dX

)2

=0. (4.3)

At the branch point the local wavenumber is

k0(X0,ω0)=−i
dσ/dX

dU/dX
, (4.4)

and the leading order approximation to the global mode frequency is

ω0(X0)= i

(
σ+

1
6

d2ĉ0
g

dk2

[
dσ/dX

dU/dX

]3

−c0
g

dσ/dX

dU/dX

)
. (4.5)

4.2. Global mode instability. As shown below, the spatial variations in
the media lead to two distinct types of global mode structures: oscillatory modes
and envelope modes. To illustrate these two types of global mode structures, we first
calculate the branch points and the corresponding global mode frequencies. To sim-
plify the analysis, we assume Gaussian variation in the medium, which is perhaps the
simplest way to represent local variations in a variety of media. To simplify the co-
efficients in (2.3), we choose: d2ĉ0

g/dk2
0 =±6,c0

g =1−2e−X2/9, and σ =4αX/9e−X2/9,
where the free parameter α will be set to ±1. For this choice of coefficients, the
medium is non-Hamiltonian, which implies σ 6=−∂c0

g/∂x. We note that irrespective
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Fig. 4.1. Branch points in the complex plane, which are denoted by the circled +. The contours
are the function Fbr.

of the choice of media variation or model parameters, there are only two possible
global mode structures − oscillatory and envelope.

Figure 4.1 shows the spatial configuration of the real and complex branch points
found in the system. Figure 4.1a shows, for d2ĉ0

g/dk2
0 =6 and α=−1, two pairs of

branch points that are located symmetrically about the Xr axis. The branch points on
the left are associated with equal growth rates Im(ω0)=1.3 but opposite frequencies;
Re(ω0)=0.067 for the point where Xi >0 and Re(ω0)=−0.067 for the point where
Xi <0. Because this wave-pair has opposite frequencies, their linear superposition
produces a standing oscillation or stationary global mode. The waves associated
with the branch points on the right are conjugates of those on the left; thus they
exponentially decay with time and are physically irrelevant to the stability problem.

Figure 4.1b shows for, d2ĉ0
g/dk2

0 =−6 and α=−1, two pairs of real branch points
situated symmetrically about the imaginary axis. For the left pair of branch points
we have, from left to right, [Re(ω0)=0, Im(ω0)=1.5] and [Re(ω0)=0, Im(ω0)=1.4],
respectively. Similar to Fig. 4.1a, the waves associated with the right pair of branch
points are the conjugates of the left pair.

Figure 4.2 shows, for d2ĉ0
g/dk2

0 =6, that the leading order WKB solution yields
two distinct types of global modes: oscillatory mode [α=−1] and envelope mode
[α=1]. For d2ĉ0

g/dk2
0 =6, (2.3) yields oscillatory and envelope modes on complex

branch points. Other parameter choices lead to both global mode types on real
branch points (see Fig. 4.1b). The oscillatory mode (Fig. 4.2a) is characterized by
a slowly modulated oscillatory structure, which is anchored to the left-hand side of
the Gaussian well, where the group velocity in the long wave limit is convergent.
This is consistent with the predictions for Hamiltonian media derived in Section 3.
The envelope mode is characterized by a broad, non-oscillatory structure (Fig. 4.2b),
which, in contrast to the oscillatory mode, is anchored to the right-hand side of the
Gaussian well, where the group velocity is divergent.

4.3. Convective growth. In globally stable media, waves originating in the
far field may undergo local CG. The local CG rate is simply the local temporal growth
rate obtained from (4.1), i.e., ωi =σ. As shown in [12], CG can be interpreted as either
local temporal growth or as local spatial growth, which are related by ωi≈−k0icgr,
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Fig. 4.2. The lowest order WKB solution for the two types of global modes that arise due to
spatial variations in the medium: (a) oscillatory mode and (b) envelope mode. Plotted in (c) and
(d) are the lowest order wavenumbers corresponding to (a) and (b), respectively. The vertical line
denotes the location of the projection of the branch point onto the real axis.

where cgr =Re(c0
g). Thus the net CG at position X for a wave train originating at

infinity can be written as

G(X)=exp

(
− 1

δ

∫ X

−∞
k0idX ′

)
≈exp

(
1
δ

∫ X

−∞

σ

cgr
dX ′

)
. (4.6)

Equation (4.6) clearly shows that within the growth region (σ/cgr >0), the slowest
moving waves experience the largest CG. In addition, if the growth rate distribution
σ/cgr is symmetric (anti-symmetric), the wave train will (will not) retain energy upon
exiting the growth region. Thus, a necessary condition for convective instability is

∫

D

σ

cgr
dx>0, (4.7)

where D denotes integration over the entire domain, either open or periodic. The net
CG that occurs for symmetric growth rate distributions depends on whether radia-
tion (decay) or periodic boundary conditions are imposed. For radiation boundary
conditions, a finite amount of CG will occur as the wave makes a single traverse of
the growth region, whereas for periodic boundary conditions there will be continual
CG (i.e., convective instability) as the wave periodically enters and exits the growth
region.

5. Conclusions
We have examined the instability of variable media to a broad class of long waves
having dispersion relations that are an odd function of wavenumber. We have found
that by examining the convergence or divergence of the group velocity in the long wave
limit [i.e., dc0

g/dx], we can predict the structures of the instabilities that emerge. If
instability exists where the group velocity field is convergent, oscillatory wave packets
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emerge. If, on the other hand, instability exists where the group velocity field is
divergent, smooth envelope modes emerge. Because these linear instabilities are the
first stage in the evolution to finite amplitude states and the transition to turbulence,
it will be of interest to see to what extent the group velocity field still serves as a
predictor of the structure and location of the global modes as they evolve to weakly
nonlinear or perhaps fully nonlinear regimes.
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