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STABILITY OF 2D FDTD ALGORITHMS WITH LOCAL MESH
REFINEMENT FOR MAXWELL’S EQUATIONS∗

A. R. ZAKHARIAN† , M. BRIO‡ , C. DINEEN§ , AND J. V. MOLONEY¶

Abstract. We perform stability analysis on the finite-difference time domain method (FDTD)
when extended to incorporate local space-time adaptive mesh refinement (AMR). The neutrally
stable Yee algorithm becomes extremely sensitive to perturbations introduced by the interpolation
schemes employed at grid refinement interfaces. In this paper we investigate the stability of a
range of interpolation schemes using Gustafsson-Kreiss-Sundstrom-Trefethen (GKS-T) mode and
reflection/transmission coefficients analysis on the infinite domain with a single interface. This
analysis allows detection of trapping instabilities, exponentially growing modes, mode resonances
with the interface and mode-mode resonances. We also apply matrix stability analysis for more
complicated computational domains containing multiple grid refinement interfaces.
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1. Introduction
Current technological advances illuminate the critical need for accurate Maxwell

solvers beyond the standard Yee scheme capabilities [27]. In the last two decades there
have been numerous investigations of local grid refinement strategies [1, 3, 6, 5, 26,
15, 22]. The main advantages of such methods are reduced computational resource re-
quirements and increased computational efficiency over methods using uniform mesh
size when the region of interest occupies a small portion of the domain. The effec-
tive application of AMR produces results comparable to that of using the finest mesh
uniformly over the whole domain. AMR algorithms are designed to resolve fine geo-
metrical details and/or resolve singularities in the solution. The trade off is additional
code for grid management, more complicated data structures for grid representation
and a need for interface boundary conditions. The adaptive mesh refinement algo-
rithm, originally developed by Berger et. al. [3] for systems of hyperbolic conservation
laws, has been successfully applied to applications in fluid dynamics, magnetohydro-
dynamics and astrophysics [13].

In AMR FDTD algorithms the original Yee scheme is applied throughout the
domain with the exception of the grid interfaces. At grid interfaces various interpo-
lation schemes may be employed to provide the missing boundary data for nested
refinement domains. The motivation for a particular interpolation scheme is often
of physical origin aiming at enforcing one or more constraints such as conservation
of a discrete energy or divergence-free fields. The Yee FDTD algorithm by itself is
second order accurate and neutrally stable. Deviation from these properties may only
come about due to the interaction of the inner scheme with the interface interpola-
tion algorithm. Therefore, the prime objective of this paper is the development of
a grid interface interpolation algorithm that preserves the second-order accuracy of
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the original Yee scheme and is stable for long time integration. We would like to
emphasize that we are interested here in long time stability in contrast to classical
(Lax) stability for vanishing discretization parameters. For example, if the reflection
coefficient at the interface is R=1+O(∆t)2 as ∆t→0, convergence is not prohibited
according to Lax convergence theory. In practice, however, if R>1 instability may
result for fixed, but small ∆t when the number of iterations is sufficiently large. The
mode with Nyquist wavenumber is often the fastest growing mode is such a situation.

The Yee algorithm is neutrally stable, due to staggering in space and time, how-
ever, this symmetry is easily broken by the space-time interpolations required to
produce the boundary conditions for the refined patches. At present there are no
neutrally stable AMR FDTD algorithms, nor is it known if such a construction
is even possible. The rigorous mathematical analysis of the stability of the AMR
FDTD algorithms in the presence of the boundaries, interfaces and sources relies on
Gustafsson-Kreiss-Sundstrom, and Trefethen’s seminal contributions [9, 23, 24, 25].
The GKS theory investigates the stability of discrete initial boundary value prob-
lems using the Laplace-Fourier transform in time and space, respectively. It provides
sufficient stability conditions only in certain one dimensional cases, but allows one
to detect exponentially growing and possibly resonant mode instabilities. The GKS
definition of “generalized” stability that allows for exponentially growing numerical
solutions in time, with constant growth rate, is not applicable to the long time in-
tegration of Maxwell’s equations in physical regimes containing no temporal growth.
Trefethen’s work has contributed a physical interpretation of the GKS theory in terms
of boundary resonances and associates the trapping instability with a reflection coef-
ficient being larger than unity. Combining both theories together leads to a series of
tests to detect trapping instabilities, growing modes, mode-mode and mode-boundary
resonances.

In [2] an AMR algorithm for a scalar advection equation in one space dimen-
sion was investigated for GKS-type instability without investigating for Trefethen’s
trapping instability. In this paper, it was pointed out that in contrast to the contin-
uous case, the discrete solution should take into account that a single wave on the
coarse grid generates two waves on the fine grid. In multidimensional applications
GKS-Trefethen theory was applied by Higdon to a multidimensional wave equation
[10, 11] in order to study modes that manifest themselves by an infinite reflection
coefficient. An algorithm to detect possible GKS-unstable modes that require further
investigation for systems in several space dimensions was presented in [21].

The stability of AMR algorithms in previously published papers is addressed us-
ing numerical tests rather than theoretical stability analysis. For example, [22, 16, 26]
discuss 3D AMR FDTD algorithms. For semi-discrete approximation with continuous
time and discrete space, [22, 15], showed that it is possible to produce an interpo-
lation algorithm such that the resulting ODE preserves the symplectic structure of
the original Maxwell method, and thus conserves the energy. No such construction is
known for the fully discrete case.

Here we present a series of stability tests that involve reflection and transmission
and a mode analysis of the solution on the infinite domain with a single interface and
matrix stability analysis on finite domains. The analysis allows detection of trapping
instabilities, exponentially growing modes, mode resonances with the interface and
mode-mode resonances.

This paper is organized as follows. In section one, we briefly overview the basic
properties of the Yee algorithm including discrete energy conservation. AMR algo-
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rithms for 2D Maxwell equations, describing both (TM) and (TE) mode propagation
are presented in the next section. In section three we perform trapping and interface
stability tests by computing reflection/transmission coefficients as well as mode anal-
ysis of the infinite domain with a single grid interface, and matrix stability analysis
on finite domains with one refinement level. In section four, we present numerical ex-
amples that produce various trapping and interface instabilities for two dimensional
domains.

2. The Yee scheme dispersion relation
Consider non-dimensional linear vector Maxwell’s equations in isotropic, homo-

geneous non-dispersive media. For transverse magnetic (TM) mode propagation (ig-
norable z-coordinate) the equations are:

∂Hx

∂t
=−∂Ez

∂y
,

∂Hy

∂t
=

∂Ez

∂x
,

∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
.

The (TE) mode propagation equations may be obtained by swapping electric and
magnetic field variables. Numerical discretization on each level of refinement is done
using the standard Yee scheme that is staggered in space and time and applied on a
uniform mesh,
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where the Courant numbers νx and νy are defined as ∆t/∆x and ∆t/∆y, respectively.
In one space dimension, (dropping the y-dependence and Hx component of the

magnetic field), the numerical dispersion relation of the Yee scheme is

sin
(

ω∆t

2

)
=±ν sin

(
k∆x

2

)
, (2.4)

where ∆t and ∆x describe the grid size on the level of refinement considered. For an
initial value problem the wave number k is given and the frequency ω(k) is determined
by the dispersion relation. The stability, defined as uniform boundedness of the
numerical solution with respect to number of iterations, initial condition and the grid
size, implies that ν <1 [20]. The Yee algorithm is dispersive and non-dissipative since
ω(k) is real function for real wavenumber k. The phase velocity ω/k and group velocity
ω′(k) approximate the exact dispersion relation ω =±k to second order accuracy near
k =0 [20].

On the other hand, for a boundary value problem or a problem with a forcing
term, the frequency ω is given or obtained by solving an eigenvalue problem and
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the corresponding wavenumber k(ω) is determined from the dispersion relation. The
wavenumber k becomes complex for values of ω larger than the cutoff frequency ωc,
sin

(
ωc∆t

2

)
=±ν, obtained by substituting the Nyquist wavenumber (k∆x=π) into the

dispersion relation.
On the fine grid the dispersion relation normalized by the coarse space and time

grid spacing is

sin
(

ω∆t

4

)
=±ν sin

(
k∆x

4

)
. (2.5)

The dispersion relation (2.4) implies that in terms of the coarse grid, the fine cutoff
frequency is double that on the coarse grid, if the grid size ratio is 1:2. Therefore
on the fine grid the relevant frequencies, up to the fine cutoff frequency, include
both propagating and non-propagating modes of the coarse grid. Another important
observation for the forthcoming discussion is that two indistinguishable frequencies
on the coarse grid, ω∆t and ω̃∆t=ω∆t+2π, correspond to two distinct wavenumbers
on the fine grid, k defined by equation (2.4) and k̃ defined by the modified dispersion
relation,
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4

)
. (2.6)

In the two dimensional case the Yee dispersion relation is as follows,
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For given real ky∆y and real ω∆t, kx∆x is real only in the range
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≤1, (2.8)
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Total internal reflection results when the plane wave becomes non-propagating in
x-direction, and is defined by the relation
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)
<ν2 sin2

(
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2

)
. (2.10)

Note that the highest frequency for total internal reflection corresponds to the Nyquist
transverse wavenumber, ky∆y =π, and is determined by the same relation as the
cutoff frequency in the one dimensional case, sin(ω∆t/2)=±ν. Similarly to the one
dimensional case, a single wave on the coarse grid in two dimensions will generate
four waves on the fine grid, obtained by substituting ω by ω+2π and ky by ky +2π
into the dispersion relation on the fine grid side,
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For a given grid frequency ω∆t and transverse wavenumber ky∆y, this dispersion
relation determines four fine wavenumbers normal to the interface, kp,q

x , p,q =0,1.
This observation will be used in a later section to obtain exact analytical solutions of
the reflection/transmission problem as well as mode amplitudes on an infinite domain
with a single coarse-fine grid interface. The sign of the real and imaginary parts of
the wavenumber kp,q

x are chosen as follows. For the propagating mode, kp,q
x is real

and the sign is chosen so that the wave travels away from the interface. If the mode
is evanescent, kp,q

x is complex, and the sign of the imaginary part of kp,q
x is chosen so

that the mode decays to zero away from the interface.

2.1. Discrete energies for Yee algorithm. Consider a one dimensional
Maxwell wave equation on a domain with periodic or Dirichlet boundary conditions:
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∂t
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∂x
,

∂E

∂t
=

∂H

∂x
.

The energy defined as E(t)=
1
2

∫
(|E|2 + |H|2)dx is conserved. In the discrete case

the following approximations were introduced in [6, 17, 22],
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The first expression is a true system invariant valid for an arbitrary Courant num-
ber even in unstable situations when the magnetic part of E1(n) becomes negative.
Therefore, its conservation cannot guarantee that the high frequency modes will not
be amplified. The second expression is positive and if it can be established that it
remains uniformly bounded the stability of the algorithm will follow [17, 7]. When the
method is convergent, E2(n) is only an approximate invariant as its value oscillates
around E2(0) [18, 17, 22, 29].

3. Design of AMR FDTD algorithms
A key step in AMR FDTD algorithm design is the construction of interface bound-

ary conditions preserving the accuracy and stability properties of the original Yee
algorithm. In our discussion we only consider a coarse-fine refinement ratio of 1:2 and
treat the electric field as a primary variable.

The FDTD AMR algorithm consists of the following steps that are applied recur-
sively at each refinement level:

(1) update coarse field values;
(2) provide ghost boundary values using space-time interpolation of nearby coarse

and fine values;
(3) update fine field values;
(4) repeat steps 2 and 3 for the second update on the fine grid;
(5) update coarse E fields parallel and adjacent to fine interfaces using newly

updated fine H fields.
Note that the ghost boundary conditions have to be provided for each time refinement
level. A detailed pseudo-code of the (TM) algorithm is provided in [29] and the table
of interpolation schemes used in each algorithm is given at the end of this section.
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Unlike algorithms with overlapping grids [4], where different levels of refinement
are updated independently, each fine grid patch in our nested grid construction over-
laps with the coarser grid region by one fine (ghost) grid computational cell.

In the context of material interfaces, second- and higher-order accuarate embed-
ded FDTD methods ([31] and references therein) can be combined with our grid-
refinement approach to account for the proper treatment of the material interfaces.
Local modification of the update stencil can be applied on any given level of refine-
ment, as long as it is away from grid refinement interfaces.

3.1. One dimensional interpolation algorithms. The one dimensional
case requires spatial interpolation normal to the interface, to provide the ghost value
at time level n, and an update to advance the ghost value to time level n+1/2. In the
direction normal to the interface we applied linear, quadratic or cubic interpolations,
abbreviated as Lin, Qu and Cu respectively,

en
z i−1/4 =

2
3
En

z i−1/2 +
1
3
en
z i+1/4,

en
z i−1/4 =

8
15

En
z i−1/2 +

2
3
en
z i+1/4−

1
5
en
z i+3/4,

en
z i−1/4 =− 2

63
En

z i−3/2 +
2
3
En

z i−1/2 +
10
21

en
z i+1/4−

1
9
en
z i+3/4.

An alternative linear interpolation often used in AMR algorithms [2, 29], denoted here
as Lin1,
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We also examined two additional quadratic interpolants, denoted as Qu1 and Qu2
respectively,
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For the second sub-cycling step, ghost values have to be provided at time level n+1/2.
For this task we have used the following four approaches for time interpolation.

The first approach, called here Lift, is based on Taylor expansion in time at the
nearest coarse grid value En

z i−1/2 [2],

e
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,

where the Ẽn+1
z i−1/2 was obtained during the step (1) of the AMR algorithm. This

coarse value is corrected during the last step, using the Yee scheme, when the updated
fine interface values become available [29].

The second approach, called here Hav, is based on applying the standard Yee
scheme to update the ghost value from time n to time n+1/2,

e
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where the necessary magnetic field values are determined by using the following space-
time interpolations. Quadratic interpolation along the y-axis is used to determine
H

n±1/2
y i−1 and H

n±1/2
y i . Then linear interpolation in time with weights 3/4 and 1/4

gives values at time level n+1/4. Finally, H
n+1/4
y i−1/2 is defined as the arithmetic average

between H
n+1/4
y i−1 and H

n+1/4
y i .

The third approach applies the same spatial interpolation algorithms during each
sub-cycling time step with the coarse values needed at time level n+1/2 computed
as the arithmetic average between the coarse values at time levels n and n+1.

The fourth approach we have examined is the previously published Collino algo-
rithm [6]. It defines a global invariant E2(n) over the whole domain including the grid
interface. This single identity involves three unknown values h

n+1/2
y i , hn+1

y i and Hn+1
y i ,

without enforcing that the space-time collocated values hn+1
y i and Hn+1

y i are identical.
These three unknown variables are denoted for short as h1, h2 and H1. The global
invariant is as follows

0.5∗(h1 +hn
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To determine the three unknowns the global invariant is arbitrarily split into a system
of three linear equations eq0=0, eq1=eq2 =eq3. Many other choices for splitting are
possible. For example, a “natural” choice would be to enforce the consistency of
magnetic fields by setting h2 =H1 and by damping the high numerical wavenumbers.
We do not investigate these methods in this paper. In addition we investigate an
algorithm, 1DWeil, reduced from the original 3D algorithm due to Weiland [22].

Algorithm Normal Update to time n+1/2
1DLinLift linear Lift
1DLin1Lift linear 1 Lift
1DQuLift quadratic Lift
1DQu1Lift quadratic 1 Lift
1DQu2Lift quadratic 2 Lift
1DCuLift cubic Lift
1DQuHav quadratic Hav
1DLinLin linear linear
1DQuQu quadratic quadratic
1DQu1Qu1 quadratic 1 quadratic 1
1DQu2Qu2 quadratic 2 quadratic 2
1DCuCu cubic cubic

Table 3.1. Labeling of the one dimensional algorithms.
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3.1.1. 1D Algorithm labeling. The labels for the 1D algorithms, Table
3.1, are identified by prefix 1D followed by two parts: the spatial interpolation used
in the direction normal to the interface during the first sub-cycling step and the type
of space-time interpolation used during the second sub-cycling step. Some of the one
dimensional algorithms used Lift or Hav during the second sub-cycling step, while
others apply the same spatial interpolation algorithms during each sub-cycling time
step with the coarse values needed at time level n+1/2 computed as the arithmetic
average between the coarse values at time levels n and n+1. For example, 1DQuQu
uses quadratic spatial interpolation during both subcycling steps.

Fig. 3.1. TM coarse-fine grid interface (top) and TE coarse-fine grid interface (bottom) showing
the location of the space-time interpolated ghost boundary values (greyscale).

3.2. Two dimensional interpolation algorithms. The two dimensional
(TM) and (TE) cases are obtained from the full 3D staggered grids by projecting the
3D computational cell along the z and x directions respectively [20, 22, 30]. Two
spatial interpolations are needed to determine the ghost boundary values, greyscale
values in Fig. 3.1, before the refined grid may be advanced. One interpolation,
tangential to the grid interface, involving only coarse grid values (upper case) and
the other normal to the grid interface involving fine grid values (lower case). We
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study the stability of various combinations of interpolation routines when incorporated
into to the 2D AMR algorithm presented in [29]. In addition we have investigated
three previously published algorithms, [22, 6], denoted here as as TMWeil, TEWeil and
Collino. The original Weil algorithm is a fully 3D algorithm that we reduced to its
(TM) and (TE) projections, while the Collino algorithm is applicable only to one
dimensional problems.

3.2.1. (TM) interpolation algorithms. The coarse-fine grid interface for
the (TM) case, obtained by projecting the 3D grid onto an x-y plane, is shown in Fig.
3.1 (left). For the TMWeil algorithm the coarse electric field values are defined at time
levels n−1/2 and n+1/2, while the fine electric field is defined at time levels n−1/4,
n+1/4 and n+3/4, and a linear interpolation is used in both directions,

E
n+1/2
z i−1/2,j±1/4 =

3
4
E

n+1/2
z i−1/2,j +

1
4
E

n+1/2
z i−1/2,j±1,

e
n+1/4
z i−1/4,j±1/4 =

2
3
E

n+1/2
z i−1/2,j±1/4 +

1
3
e
n+1/4
z i+1/4,j±1/4,

e
n+3/4
z i−1/4,j±1/4 =

2
3
E

n+1/2
z i−1/2,j±1/4 +

1
3
e
n+3/4
z i+1/4,j±1/4.

This interpolation is only first order accurate in time. In our construction the electric
field values are collocated in time differently from the TMWeil algorithm, the coarse
electric field values are defined at time levels n and n+1, while the fine electric field
is defined at time levels n, n+1/2 and n+1. In the tangential direction both linear
and quadratic interpolations, abbreviated as Lin and Qu respectively, were used:
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In the direction normal to the interface we applied linear, quadratic or cubic interpo-
lations, denoted as Lin, Qu and Cu respectively,
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and two alternative quadratic interpolants, Qu1 and Qu2,
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For the first sub-cycling step the fine field values are collocated in time with the coarse
values, however, for the second sub-cycling step ghost values have to be provided at
time level n+1/2. For this task we have used the following two approaches for time
interpolation.

In the first approach we again use Lift, based on Taylor expansion in time at the
nearest coarse grid value En

z i−1/2,j [2],
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,

where the Ẽn+1
z i−1/2,j was obtained during the step (1) of the AMR algorithm. This

coarse value is corrected during the last step, using the Yee scheme, when the updated
fine interface values become available [29].

The second approach, Hav, is based on applying the standard Yee scheme to
update the ghost value from time n to time n+1/2,
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(
H

n+1/4
y i,j+1/4−H

n+1/4
y i−1/2,j+1/4

)

−νy

(
H

n+1/4
x i−1/4,j+1/2−H

n+1/4
x i−1/4,j

)
,

where the necessary magnetic field values are determined by using the following
space-time interpolations. Quadratic interpolation along y-axis is used to determine
H

n±1/2
y i−1,j±1/4 and H

n±1/2
y i,j±1/4. Then linear interpolation in time with weights 3/4 and

1/4 gives values at time level n+1/4. Finally, H
n+1/4
y i−1/2,j±1/4 is defined as the arith-

metic average between H
n+1/4
y i−1,j±1/4 and H

n+1/4
y i,j±1/4. The x-components of the coarse

magnetic field at levels j±1/2 are computed using quadratic interpolation normal to
the grid interface,

h
n+1/4
x i−1/4,j±1/2 =

8
15

H
n+1/4
x i−1/2,j±1/2 +

2
3
h

n+1/4
x i+1/4,j±1/2−

1
5
h

n+1/4
x i+3/4,j±1/2.

The required values at time level n+1/4 are determined by linear time interpolation
from known values at time levels n±1/2. Finally H

n+1/4
x i−1/4,j is defined as

H
n+1/4
x i−1/4,j =

1
2

(
H

n+1/4
x i−1/4,j+1/2 +H

n+1/4
x i−1/4,j−1/2

)
.

3.2.2. (TE) interpolation algorithms. The coarse-fine grid interface for
the (TE) case, obtained by projecting the 3D grid onto a y-z plane, is shown in Fig.
3.1 (right). In this case the middle value En

z i−1/2,j is determined by an arithmetic
average,

En
z j−1/2,k =

1
2

(
En

z j−1/2,k−1/2 +En
z j−1/2,k+1/2

)
. (3.1)

In the direction normal to the interface we investigated the same interpolation schemes
as in the (TM) case. For the Lift algorithm the time gradient needed at point
(j−1/2,k) is computed as an arithmetic average of the time gradients at points
(j−1/2,k±1/2). The Hav approach is slightly simpler for the (TE) case as the val-
ues H

n+1/4
x j−1,k±1/2 and H

n+1/4
x j,k±1/2 require time interpolation only from known values

H
n±1/2
x j−1,k±1/2 and H

n±1/2
x j,k±1/2. The middle value H

n+1/4
x j−1/2,k is computed as an arith-

metic average of the four corner values H
n+1/4
x j−1,k±1/2 and H

n+1/4
x j,k±1/2.
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3.2.3. 2D algorithm labeling. The labels for the (TM) algorithms, Table
3.2, consist of three parts: the spatial interpolations used in the directions tangential
and normal to the interface during the first sub-cycling step and the type of space-time
interpolation used during the second sub-cycling step. For example, the algorithm la-
beled as TMLinQuLift corresponds to the (TM) algorithm with linear (tangential)
and quadratic (normal) interpolation during the first sub-cycling step and the Lift
algorithm for second sub-cycling step. For the (TE) case, Table 3.3, only normal in-
terpolation is needed during the first sub-cycling step and consequently the notation
shortens, with the middle value obtained from equation 3.1. For example the algo-
rithm labeled as TEQuHav denotes an algorithm employing quadratic interpolation in
the normal direction and using Hav for the second sub-cycling step.

Algorithm Tangential Normal Update to time n+1/2
TMLinLinLift linear linear Lift
TMLinQuLift linear quadratic Lift
TMLinQu1Lift linear quadratic 1 Lift
TMLinCuLift linear cubic Lift
TMQuLinLift quadratic linear Lift
TMQuQuLift quadratic quadratic Lift
TMQuQu1Lift quadratic quadratic 1 Lift
TMQuCuLift quadratic cubic Lift
TMQuQuHav quadratic quadratic Hav

Table 3.2. Labeling of the two dimensional (TM) algorithms.

Algorithm Normal Update to time n+1/2
TELinLift linear Lift
TEQuLift quadratic Lift
TEQu1Lift quadratic 1 Lift
TECuLift cubic Lift
TEQuHav quadratic Hav

Table 3.3. Labeling of the two dimensional (TE) algorithms.

4. Stability tests for AMR FDTD algorithms
Two tests based on the GKS-Trefethen theory [9, 8, 23, 24, 25] were performed.

These tests are necessary conditions for stability, however, passing these two tests
is not sufficient to assert the stability of the algorithm. The first test calculates
reflection/transmission coefficients for the plane wave incident on the grid interface
from either the fine or the coarse grid side. A reflection coefficient larger than unity
will manifest itself in a trapping instability as the respective wave packet amplitudes
will increase on each reflection. Similar instability will occur as the wave travels
across a periodic layered domain if the product between transmission coefficients of
different layers is larger than unity. An “infinite” reflection coefficient corresponds
to Kreiss modes that represent mode-boundary resonance. When the value of the
reflection coefficient is equal to unity, further tests for resonant behavior are needed
as the possibility of mode-mode resonance still remains. The second stability test



356 FDTD ALGORITHMS WITH LOCAL MESH REFINEMENT

checks for growing modes (eigensolutions) on an infinite domain with a single grid
interface allowing for both propagating and evanescent modes. This test will detect
the exponentially growing modes with Im(ω)<0 or Kreiss modes, that are limiting
cases of such modes, where Im(ω)=0, [8]. Mode-mode resonance and growth may
occur when frequencies or wavenumbers of two modes coincide. A simple illustration
of this behavior is given by a leap-frog scheme that has an evolution matrix of the

Jordan block form, A=
(

1 1
0 1

)
and An =

(
1 n
0 1

)
. The spatial mode-mode resonance,

with coinciding wavenumber, leads to growth in space and possibly in time, on a finite
domain with periodic or perfectly reflecting boundaries. Both of these cases require
further investigation.

4.1. Reflection and transmission through a single interface in one di-
mension. Reflection and transmission coefficients presented in this section were
computed in two ways, analytically using Mathematica symbolic manipulations and
numerically using a C code implementations of the AMR algorithms. The analyt-
ical solutions were obtained by substituting a plane wave ansatz into the interface
boundary conditions and solving the resulting linear system. The plane wave ansatz
takes into account that a single coarse grid frequency ω∆t generates two fine grid
plane waves with fine grid wavenumbers corresponding to the primary frequency ω∆t
and secondary aliased frequency ω̃∆t=ω∆t+2π. The respective wavenumbers are
denoted as k(ω∆t) and k̃(ω̃∆t). The primary plane wave is a propagating wave only
for grid frequencies ω∆t∈ [0,4sin−1(ν)] while the secondary aliased wave is evanescent
for all grid frequencies ω∆t∈ [0,π]. The exact solution is obtained using the following
plane wave ansatz,

(
ez

hy

)
=

(
1
1

)
ei(kx+ωt) +R

(
1

−1

)
ei(−kx+ωt) +R̃

(
1

−1

)
ei(−k̃x+ω̃t),

(
Ez

Hy

)
=T

(
1
1

)
ei(kx+ωt),

for an incident wave impinging from the fine grid side x>0, and
(

ez

hy

)
=T

(
1

−1

)
ei(−kx+ωt) + T̃

(
1

−1

)
ei(−k̃x+ω̃t),

(
Ez

Hy

)
=

(
1

−1

)
ei(−kx+ωt) +R

(
1
1

)
ei(kx+ωt),

for an incident wave impinging from the coarse grid side x<0.
Analytically, the reflection and transmission coefficients are solutions of a linear

system of equations obtained by substitution of the solution ansatz into the interface
boundary conditions. For example, for the 1DWeil algorithm the resulting interface
equations are,

Hn
y i =hn

y i,

e
n+1/4
z i−1/4 =

2
3
E

n+1/2
z i−1/2 +

1
3
e
n+1/4
z i+1/4,

e
n+3/4
z i−1/4 =

2
3
E

n+1/2
z i−1/2 +

1
3
e
n+3/4
z i+1/4.

The first equation defines the coarse interface magnetic field in terms of the collocated
fine magnetic field, while last two equations provide the boundary values of the electric
field for the refined region.
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Numerically measured reflection and transmission coefficients were computed us-
ing an incident Gaussian pulse [29]. The reflection and transmission coefficients com-
puted analytically (continuous line) and numerically (dashed patches) are in excellent
agreement as illustrated in the Fig. 4.1. The reflection and transmission coefficients
for fine-to-coarse propagation for three algorithms with R≤1, 1DQuLift, 1DQuHav
and 1DWeil, are shown in Fig. 4.1. At low frequencies the algorithms recover second
order accuracy with the reflection coefficient R∼O(∆t2), while Collino (not shown)
and 1DWeil algorithms have R∼O(∆t) near zero frequency. Note that even though
the transmission coefficient at the cutoff frequency is larger than unity, the product
of |Tfc||Tcf | is less than unity, and there is no build up of the energy in the high
frequency modes.
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Fig. 4.1. Fine-to-coarse reflection (left) and transmission (right) coefficients for the algorithms
1DQuLift, 1DQuHav and 1DWeil. Analytical (continuous lines) and numerical (dashed patches) solu-
tions are over plotted.
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Fig. 4.2. Fine-to-coarse reflection coefficient for the unstable, R>1, 1DLin1Lift algorithm, for
frequencies between fine and coarse grid cutoff. Analytical (continuous lines) and numerical (dashed
patches) solutions are over plotted.

The reflection coefficient for the Collino algorithm has the same behavior as the
1DWeil algorithm, where the reflection coefficient is unity for the frequencies between
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the coarse and fine cutoff, [2sin−1(ν),4sin−1(ν)], with a possibility of resonance of
high frequency numerical modes. In the Fig. 4.2 we plot the absolute value of the re-
flection coefficient for an unstable algorithm 1DLin1Lift [2]. Note that this algorithm
is stable in the context of AMR algorithms for the Euler equations of fluid dynamics
due to the dissipative nature of the numerical schemes employed.
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Fig. 4.3. Coarse-to-fine reflection (left) and transmission (right) coefficients for the algorithms
1DQuLift, 1DQuHav and 1DWeil. Analytical (continuous lines) and numerical (dashed patches) solu-
tions are over plotted.

For completeness we also show, in Fig. 4.3, the reflection and transmission coeffi-
cients for coarse-to-fine incidence for the algorithms, 1DQuLift, 1DQuHav and 1DWeil.
Note again that the slopes near zero frequency indicate second order accuracy for the
1DQuLift and 1DQuHav algorithms and first order for the 1DWeil algorithm. Table
4.1 summarizes the reflection coefficients for fine-to-coarse incidence for the rest of
the one dimensional algorithms discussed in the previous section.

R>1 1DLin1Lift 1DLinLin 1DQuQu
1DCuCu 1DQu2Lift 1DQu2Qu2
1DLinLift 1DQuLift 1DQu1Lift

R≤1 1DCuLift 1DQu1Qu1 1DQuHav
1DWeil Collino

Table 4.1. Reflection coefficients for fine-to-coarse incidence.

4.2. Modes of the infinite domain with a single interface in one dimen-
sion. Modes of the infinite domain with a single grid interface can be computed
using a modification of the solution ansatz used in the previous section. This ansatz
consists of outgoing waves only and includes both propagating and evanescent waves.

The solution ansatz is as follows,
(

ez

hy

)
=C

(
1

−1

)
ei(−kx+ωt) + C̃

(
1

−1

)
ei(−k̃x+ω̃t),

(
Ez

Hy

)
=D

(
1
1

)
ei(kx+ωt).
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Substituting it into the three interface boundary conditions gives a homogeneous linear
system for three unknown wave amplitudes C, C̃ and D. For a nonzero solution to
exist the determinant of the system must be zero. This is the same as the determinant
condition of GKS stability theory [9, 8]. The determinant is a nonlinear function of
the complex variable ω∆t. Its zeroes are investigated graphically by plotting a surface
of the absolute value of the determinant. The graphical analysis was supplemented by
local minimization and secant method root finding in cases where a zero occurs on the
imaginary axis Im(ω∆t)=0. The surface plots for all the cases considered indicate
that the absolute value of the determinant rapidly grows away from the imaginary axis
in the half plane Im(ω∆t)<0, thus eliminating the exponentially growing modes. The
numerical frequencies considered are in the range [0,2π], with 2π being the Nyquist
frequency on the fine grid since normalization is done using coarse grid spacing. In Fig.
4.4 we show the surface plot and Im(ω∆t)=0 cut of the |Det(ω∆t)| for the Collino
algorithm. Note, that the surface is a discontinuous function near Im(ω∆t=0), but
the mode for ω∆t=π is present for all three limiting cases, Im(ω∆t)<0, Im(ω∆t)=0
(shown) and Im(ω∆t)>0.
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Fig. 4.4. Surface (left) and Im(ω∆t)=0 cut (right) of absolute value of the determinant for
the Collino algorithm.

The Collino algorithm has a mode at ω∆t=π. In this case both kx∆x and
the aliased wavenumber k̃x∆x coincide. Therefore, the general solution of the finite
difference equation has the form eik∆xj , jeik∆xj , where j is the spatial index. On an
infinite domain with zero boundary conditions such modes decay in space. On the
other hand, if such modes persist on a finite domain with zero boundary conditions,
solutions growing linearly in space, and thus in time, may also be invoked. Whether
such a scenario of mode-mode resonance on the finite domain will be realized has to
be investigated further. None of the other algorithms showed the existence of modes
for Im(ω∆t)≤0.

4.3. Reflection and transmission through a single interface in two di-
mensions. In two dimensions a single coarse frequency, ω∆t, and a single trans-
verse wavenumber, ky∆y, correspond to two fine grid frequencies ω∆t and ω∆t+2π,
and two transverse wavenumbers ky∆y and ky∆y+2π. The coarse and fine disper-
sion relations then determine the wavenumbers normal to the interface, kx∆x and
kp,q

x , p,q =0,1, where the signs are chosen according to the sign selection rule dis-
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cussed in section 2,

sin2

(
ω∆t

2

)
=ν2

[
sin2

(
kx∆x

2

)
+sin2

(
ky∆y

2

)]
,

sin2

(
ω∆t+2πp

4

)
=ν2

[
sin2

(
kp,q

x ∆x

4

)
+sin2

(
ky∆y+2πq

4

)]
p,q =0,1.

The five unknown coefficients in the solution ansatz for the reflection/transmission
problem exactly correspond to the number of interface boundary conditions. For
example, a coarse interface magnetic field defines a single reflected/transmitted wave
on the coarse grid, while two fine ghost values at each sub-cycling time correspond to
four reflected or transmitted waves on the fine grid. To introduce the solution ansatz
we first define the amplitude normalization in terms of the following variables,

A=ν
sin(kx∆x/2)
sin((ω∆t)/2)

, B =−ν
sin((ky∆y)/4)
sin((ω∆t)/4)

, (4.1)

ap,q =ν
sin(kp,q

x ∆x/4)
sin((ω∆t+2πp)/4)

, bp,q =ν
sin((ky∆y+2πq)/4)
sin((ω∆t+2πp)/4)

. (4.2)

Then, the plane wave solution ansatz is



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hy

hx


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1
a0,0

−b0,0


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


1
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
ei(−kp,q

x x+kyy+ωt),

with p=0,1 and q =0,1. The transmitted plane wave on the coarse side has the form




Ez

Hy

Hx


=Tei(kxx+kyy+ωt)




1
A

−B


.

Similarly, when the wave impinges from the coarse side, x<0, there are four possible
transmitted waves. The incident and reflected plane wave solution ansatz on the
coarse side is,
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On the fine side the transmitted wave ansatz is as follows,
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where as before each of the variables p and q are equal to 0 or 1.
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Fig. 4.5. The (TM) reflection coefficient for fine-to-coarse incidence for the TMQuQuLift (left),
and TMWeil (right) algorithms.

4.3.1. (TM) algorithms. For the (TM) case all the algorithms that had
R≤1 in the one dimensional case also preserved, R≤1, for both fine-to-coarse and
coarse-to-fine incidence. A surface plot of the absolute value of the reflection coeffi-
cients as function of frequency and transverse wavenumber, |R(ω∆t,ky∆y)| for two
representative cases, the TMQuQuLift and TMWeil algorithms, are shown in Fig. 4.5.

The transverse wavenumber ky∆y runs through interval [0,2π] since both fine
and coarse wavenumbers were normalized by the coarse grid size ∆y. The frequency
interval is determined for each transverse wavenumber by the condition that, for the
incident wave, k0,0

x must be real, i.e. 0≤ sin(k0,0
x ∆x)≤1.

In Fig. 4.6 the surface plots of the absolute value of the reflection coefficient for
coarse-to-fine incidence for TMQuQuLift and TMWeil algorithms are shown.
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Fig. 4.6. The (TM) reflection coefficient for coarse-to-fine incidence for the TMQuQuLift (left),
and TMWeil (right) algorithms.

Note, in our previous publication [29] the sign of the imaginary part of the
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wavenumber kx was chosen incorrectly, consequently the reflection coefficient as plot-
ted in Fig. 2.6 (left) of [29] incorrectly shows R>1. The correct reflection coefficient
is shown in Fig. 4.6 (left), and has R<1 over all (ω∆t,ky∆y) space. We compared the
absolute values of several numerically computed reflection coefficients with analytical
solutions for coarse-to-fine incidence. The numerical reflection coefficients were com-
puted using an incident plane wave on a domain with periodic boundary conditions
in the direction along the interface, and PML boundary conditions in the direction
normal to the interface. Modulation of the numerically generated plane wave was less
than one percent due to initial turn-on of the source. The resulting numerical and
analytical reflection coefficients are shown in the Table 4.2.

ky∆ ω∆t Numerical Analytical
π 0.85 0.785 0.789
π 0.83 0.880 0.874

π/2 0.6 0.857 0.865
π/2 0.85 0.306 0.308

π/2.5 0.49 0.890 0.892
π/2.5 0.6 0.130 0.130

Table 4.2. Comparison of the numerically and analytically computed absolute values of the
reflection coefficients for coarse-to-fine incidence for the TMQuQuLift algorithm.

In Fig. 4.7 we present one dimensional cuts for the TMQuQuLift algorithm as a
function of ω∆t along the three planes, ky∆y =π,π/2,π/2.5, for coarse-to-fine inci-
dence together with several reflection coefficients obtained numerically.
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Fig. 4.7. One dimensional cuts of analytically computed reflection coefficients for the
TMQuQuLift algorithm for coarse-to-fine incidence along the three planes ky∆y =π,π/2,π/2.5 (con-
tinuous line) overploted with the numerically computed reflection coefficients (X symbols).

4.3.2. (TE) algorithms.
For coarse-to-fine incidence in the (TE) case, all algorithms were unstable, R>1,

except TEQuHav and TEWeil which had R≤1. Surface plots of the absolute value
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Fig. 4.8. The (TE) reflection coefficient for coarse-to-fine incidence TEQuLift (top left),
TEQuHav (top right) and TEWeil (bottom) algorithms.

of the reflection coefficients for the TEQuLift, TEQuHav and TEWeil algorithms are
shown in Fig. 4.8.

In the (TE) case when the incident wave approaches from the fine side all the
algorithms, except TEWeil and TEQuHav have some region with R>1 in (ω∆t,ky∆y)
space. Surface plots of the absolute value of the reflection coefficients for TEQuLift,
TEQuHav and TEWeil algorithms are shown in Fig. 4.9.

Similar to the (TM) case we compared the absolute values of several numerically
computed reflection coefficients with analytical solutions for coarse-to-fine incidence
for both TEQuHav and TEQuLift algorithms. The resulting numerical and analytical
reflection coefficients are shown in the Tables 4.3 and 4.4. In Fig. 4.10 we present
one dimensional cuts for TEQuHav and TEQuLift algorithms as a function of ω∆t
along the planes, ky∆y =0,π/6,π/2 and ky∆y =π/6,π/2, respectively, for coarse-to-
fine incidence together with several reflection coefficients obtained numerically.

4.4. Stability of modes on the infinite domain with a single interface.
In this section we examine the existence of modes for six algorithms TMQuLinLift,
TMQuQu1Lift, TMQuQuHav, TMWeil, TEQuHav, TEWeil that passed the R<1 stability
test, and two algorithms TELinLift, TEQu1Lift that failed the R<1 stability test.

Modes of the infinite domain with a single grid interface can be computed using a
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Fig. 4.9. The (TE) reflection coefficient for fine-to-coarse incidence TEQuLift (top left),
TEQuHav (top right) and TEWeil (bottom) algorithms.

ky∆ ω∆t Numerical Analytical
0 0.6 0.155 0.156
0 0.3 0.0214 0.0215
0 0.8 0.606 0.605

π/6 0.3 0.0247 0.0251
π/6 0.6 0.143 0.144
π/2 0.6 0.835 0.833
π/2 0.8 0.237 0.236

Table 4.3. Comparison of the numerically and analytically computed absolute values of the
reflection coefficients for coarse-to-fine incidence for TEQuHav algorithm.

modification of the solution ansatz used in the previous section. This ansatz consists
of outgoing waves only and includes both propagating and evanescent waves. The
solution ansatz is as follows,




Ez

Hy

Hx


=F




1
A

−B


ei(kxx+kyy+ωt),
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


ez

hy

hx


=

∑
p,q

Gp,q




1
−ap,q

−bp,q


ei(−kp,q

x x+kyy+ωt),

with the mode amplitude normalization defined as before by equations 4.1 and 4.2.

The domain is periodic in the transverse direction, y, and is infinite in the normal
direction, x. Both evanescent and propagating waves are considered by allowing for
complex frequency ω∆t and complex normal wavenumbers kx and kp,q

x , while the
transverse wavenumber ky∆y is assumed to be always real. Substituting this ansatz
into the interface boundary relations gives a homogeneous system of five linear equa-
tions for five unknowns amplitudes. Setting the determinant of this linear system
to zero gives a nonlinear equation that determines the frequencies of the mode. Ze-
roes of this equation are studied numerically by plotting the absolute values of the
determinant, |Det(ω∆t,ky∆y)|, for Im(ω)≤0. When the modes were detected they
were further examined by cuts in the vicinity of the imaginary axis in the half-plane
Im(ω <0) in order to check for possible nearby exponentially growing modes. Since
the graphs for all four algorithms showed rapid increase of the determinant away from
the axis in the direction of exponentially growing modes, Im(ω∆t)<0, the search was
limited to the real axis itself. Local minimization and secant root finding routines were
used to double check the results of the graphical investigation. An example of a sur-

ky∆ ω∆t Numerical Analytical
π/6 0.3 0.0261 0.0266
π/6 0.6 0.171 0.171
π/2 0.6 1.0464 1.0465
π/2 0.8 0.243 0.243

Table 4.4. Comparison of the numerically and analytically computed absolute values of the
reflection coefficients for coarse-to-fine incidence for TEQuLift algorithm.
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Fig. 4.10. One dimensional cuts of analytically computed reflection coefficients for the TEQuHav
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ky∆y =π/6,π/2, respectively, (continuous line) overplotted with the numerically computed reflection
coefficients (X symbols).
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face plot showing that there are no zeroes of the determinant for the TMQuQu1Lift
algorithm for the (TM) mode for real ω is shown in Fig. 4.11.

Similar mode behavior for both (TM) and (TE) cases was shown by all algo-
rithms, except the TMWeil and TEWeil. Both of these algorithms admitted modes on
the imaginary axis, Im(ω∆t=0), for ky∆y =π and ky∆y =2π, corresponding to the
coarse and fine transverse Nyquist wavenumbers, respectively. These modes vanished
under the perturbation away from the imaginary axis, therefore excluding the pres-
ence of the exponentially growing modes. Therefore, the only possibility left is the
presence of mode-mode resonances. The mode-interface resonances were excluded by
the absence of the infinite reflection coefficients for TMWeil and TEWeil algorithms as
discussed in the previous section. In Fig. 4.12 we show a cut of the |Det(ω∆t,ky∆y)|
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Fig. 4.11. Surface plot for the absolute value of the determinant for the TMQuQu1Lift algorithm.
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along the real axis of the frequency for the (TE) case when ky∆y =2π, as a function
of the grid frequency ω∆t over an interval [0,2π].

Whether such borderline modes may lead to instability on a finite domain will be
investigated numerically in the next section.
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Fig. 4.13. Distribution of the eigenvalues on the complex plane for methods 1DQuLift and
1DLin1Lift. Dashed boxes and arrows indicate eigenvalues that fall outside of the unit circle, |λ|>1.
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Fig. 4.14. Distribution of the eigenvalues on the complex plane for methods 1DQuHav and
1DWeil. Arrows indicate eigenvalues that fall outside of the unit circle, |λ|>1.

4.5. Matrix stability analysis of modes on the finite domain. In this
section we apply a matrix stability analysis to a fully discrete problem on a finite do-
main with a single refinement patch. We present the results for a particular domain
as a function of the CFL number. This analysis provides a necessary and sufficient
condition for stability on a given grid. It states that the method is stable iff the up-
date matrix has eigenvalues lying inside or on the unit circle. In addition, eigenvalues
lying on the unit circle should be non-defective. Implemented numerically, this is
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equivalent to determining if an eigenvector subspace is smaller than the eigenvalue
algebraic multiplicity (defective matrix), i.e. whether the canonical form of a matrix
contains non-trivial Jordan blocks. This problem is ill-conditioned due to its sensi-
tivity to perturbations and requires an extrapolation procedure from a series of high
precision computations [12]. In the one-dimensional case considered below, however,
this situation, arising from coinciding eigenvalues on the unit circle, was not encoun-
tered. Note, that this analysis is more general than the spectral radii analysis, as the
latter is inconclusive about the coinciding eigenvalues on the unit circle, which require
consideration of the dimension of the corresponding eigenspace to rule out the mode
resonances. Eigenvalues of the update matrix were evaluated numerically, using the
ARPACK iterative eigensolver [14].

4.5.1. One-dimensional matrix stability analysis. In this subsection, we
consider the following one-dimensional algorithms 1DQuLift, 1DLin1Lift, 1DQuHav
and 1DWeil as described in Section 4.1. The solution state vector is represented by
the Ef , Hf field values on the fine grid and the Ec, Hc field values in the regions
of the coarse grid that do not overlap with the fine grid. Algorithms 1DQuLift,
1DLin1Lift and 1DQuHav require magnetic field values for the update of the ghost
cells, and therefore the coarse H-field values collocated with the fine H-fields at the
grid interfaces are also included as part of the solution vector.

We consider solutions of an eigenvalue problem resulting from a discretization
based on a single fine grid patch of 8∆f (=4∆c) cells centered on a 10∆c coarse grid.
Reflecting boundary conditions (E=0) are applied on the coarse grid. The numerical
tolerance for the error in the computed eigenvalues was set to 10−10.

Fig. 4.13 and Fig. 4.14 show the computed eigenvalue distributions in the complex
plane. Algorithm 1DLin1Lift results in several eigenvalues (indicated in Fig. 4.13
by the arrows) that fall just outside of the unit circle. Fig. 4.15 shows that with
a decreasing Courant number the maximum of the eigenvalue magnitude approaches
unity from above, max|λ|→1+.

Algorithm 1DQuLift has max |λ|≤1, with the simple eigenvalue λ=(1,0) hav-
ing the largest magnitude for any CFL values ν <1. Similar behavior characterizes
algorithm 1DQuHav which, however, requires a smaller CFL value to move all the
eigenvalues inside of the unit circle.

Algorithm 1DWeil results in simple eigenvalues located on the unit circle, inde-
pendent of the CFL number, similar to the FDTD scheme without the grid refinement.

The above results obtained from the matrix analysis are in agreement with the
necessary conditions for stability from the reflection/transmission analysis for the
one-dimensional methods, derived in section 4.1. In addition, the analysis indicates
that there are no coinciding eigenvalues of unit magnitude, for which an eigenvector
subspace is smaller than the eigenvalue algebraic multiplicity, which can lead to the
existence of growing modes and instability. Numerical simulations performed with
random noise initial data indicate damping, amplification or non-dissipative behavior
for each of the algorithms, in accord with the corresponding eigenvalue distributions.

Stability analysis based on the computation of the spectral radius of a matrix,
resulting from a semi-discrete [28] or a fully-discrete problem [31], allows evaluation of
the stability condition structure and dependence on the mesh size. Figure 4.15(right)
shows the dependence of the stabilty number, (an inverse of the Courant number
= ∆x/clight∆t), on the grid step ∆x. It characterizes the effects of both spatial
and time discretizations and was computed numerically for a problem with one level
of grid refinement and open domain boundaries. We considered the 1DQuLift and
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1DQuHav interpolation methods, both of which have second order accuracy in time and
space. The stabilty number converges from below to a constant value of 1.41≈√2
(corresponding to a CFL clight∆t/∆x = 0.708), when ∆x changes over approximately
two orders of magnitude. For CFL numbers above the limiting value of 0.708, we have
found that the stability condition is not a monotone function and depends strongly
on the time step.
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Fig. 4.15. Left: Dependence of the maximum of the eigenvalue magnitude on the Courant
number for methods 1DQuLift, 1DLin1Lift, 1DQuHav and 1DWeil. Right: Stability condition as a
function of mesh size for methods 1DQuLift and 1DQuHav.
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Fig. 4.16. Distribution of twenty largest (in magnitude) eigenvalues on the complex plane
for TEQuHav, TMQuQuHav, TEWeil and TMWeil algorithms computed on a symmetric two-level grid
with nc =10, nf =8 CFL=0.4. For the TEQuHav algorithm arrows indicate the complex-conjugate
eigenvalue pair that fall outside of the unit circle, |λ|>1.

4.5.2. Two-dimensional matrix stability analysis. In this subsection the
eigenvalues of the update matrix of the TEQuHav, TMQuQuHav, TEWeil and TMWeil algo-
rithms are considered. The problem is discretized on an nc×nc coarse grid containing
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one nf ×nf fine grid patch, with reflecting boundary conditions (E=0) applied on
the coarse grid.

For CFL=0.4, the maximum eigenvalue magnitude computed for the TMQuQuHav
algorithm is found to be within the unit circle for all values of nc and nf that were
considered, except for the case of nf =4 and mod(nc,2)=0, with symmetric placement
of the fine grid with respect to the coarse grid center. This arrangement leads to one or
more pairs of complex-conjugate eigenvalues with |λ |>1. On the same grid structure
with smaller Courant numbers (e.g. CFL=0.2), these eigenvalues move inside of the
unit circle, |λ |≤1.

For CFL=0.4 and the TEQuHav algorithm, eigenvalues with |λ |>1 exist for the
case of nf =4 and a placement of the fine grid within one grid of the coarse grid
center. Additional modes with |λ |>1 exist in the case of nf >4 and a symmetric
arrangement of the fine grid with respect to the coarse grid center. For the case of
the algorithms TEQuHav, TMQuQuHav, TEWeil and TMWeil algorithms Fig. 4.16 shows
eigenvalue distributions in the complex-plane for the case of a refined patch, nf =8,
placed in the center of the coarse grid, nc =10.

5. Examples of Numerical Instabilities
In this section we illustrate the stable/unstable behavior of various algorithms.

Grid configurations are chosen to highlight trapping instabilities on both coarse and
fine patches. A CFL number of 0.4 was used in all of our examples.

Example 1. (TM) Trapping instability on a single fine grid refinement patch.

In this example, we illustrate trapping instability for the (TM) case using the
TMQuLin1Lift algorithm on a computational domain containing a single refinement
patch. For comparison we illustrate stable behavior of the TMQuQuHav algorithm on the
same computational domain. The coarse domain contains 40×40 uniformly spaced
points with a grid resolution of ∆z =∆y =20nm. A single refined patch consisting
of 30 fine cells in the z-direction is positioned in the center of the computational
domain. The boundary conditions were periodic in the y-direction and PML boundary
conditions were implemented in the z-direction. All fields were initialized to zero and
a plane wave source was placed in the coarse grid at the top of the coarse domain.
The Ex field component is driven to produce a plane wave impinging onto the coarse-
to-fine interface at 30 degrees with an amplitude normalized to one at a wavelength
λ=400nm.

The onset of the trapping instability on the fine patch for the TMQuLin1Lift is
shown in Fig. 5.1 (left) after 2×104 iterations with the final time being 520 fs. The
performance of the TMQuQuHav algorithm did not show any instability after 2×104

iterations, as shown in Fig. 5.1 (right), in agreement with the theory.

Example 2. (TE) Trapping instability on the coarse patch placed between two
fine refinement patches.

To show the agreement with the instability analysis of the previous section, in
this example, we illustrate the trapping instability for the (TE) TEQuLift algorithm
on a computational domain consisting of two refinement patches surrounding a coarse
strip placed in the middle of the computational domain. The width of each fine patch
and the middle coarse patch are 10 coarse (20 fine) grid points. The spatial resolution
and boundary conditions are the same as in the previous example. The Hx field was
initialized in the middle of the computational domain, z =0 to produce a plane wave
impinging onto the coarse-to-fine interface from inside the coarse patch at an angle
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Fig. 5.1. Onset of a trapping instability for the (TM) case using the TMQuLin1Lift algorithm on
a single refinement patch after 2×104 iterations (left). Stable behavior of the TMQuQuHav algorithm
on the same computational domain (right).

of 74.64 degrees. To show this instability the parameters were chosen according to
the analytical prediction discussed in the previous section: λ=83.7758nm, ky∆y =
π/2 and ω∆t=0.6. In Fig. 5.2 we show the solution before and after the onset of
the instability, for 5×103 and 1.2×104 coarse iterations, respectively. The growing
oblique wave trapped inside the coarse strip can be clearly seen in this figure. The
wavenumber of the trapped wave is the same as the wavenumber of the source, ky∆y =
π/2, corresponding to half of the Nyquist wavenumber along the interface.

Fig. 5.2. Onset of a trapping instability for the (TE) case using the TEQuLift algorithm on a
computational domain consisting of two refinement patches surrounding a coarse strip after 5×103

(left) and 1.2×104 (right) iterations.

Example 3. (TE) White noise initial data.

In this example we use a white noise initial condition on the whole coarse domain
that contains two fine patches as shown in Fig. 5.3. Reflecting boundary conditions
(E=0) were used in all directions. For the TEQuLift algorithm a trapping instability
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formed inside the fine patches and on the coarse grid between the fine patches, shown
in the figure after 5×104 coarse iterations. The TEQuHav algorithm remained stable
after 7.5×104 iterations but introduced some damping of the solution due to waves
crossing the grid interfaces multiple times upon reflection from the boundaries. Damp-
ing of the solution at grid interfaces suggests that for such algorithms AMR gridding
should not be used for simulations involving numerous grid interface crossings.

Fig. 5.3. Onset of a trapping instability for the TEQuLift algorithm, for a white noise initial
condition (top left), inside the fine patches after 5×104 iterations (top right). Stable behavior of
the TEQuHav algorithm on the same computational domain (bottom) after about 7.5×104 iterations.

6. Conclusions
When the neutrally stable Yee algorithm is extended to include adaptive mesh

refinement it becomes extremely sensitive to perturbations introduced by the inter-
polation algorithms at grid interfaces potentially resulting in trapping instabilities,
exponentially growing modes, mode resonances with the interface and mode-mode
resonances. Gustafsson-Kreiss-Sundstrom-Trefethen analysis based on the computa-
tion of the reflection/transmission coefficients and mode analysis of the solution on the
infinite domain with a single interface and matrix stability analysis on finite domains
was applied to several interpolation methods for 2D AMR-FDTD algorithms. Since
these tests are only necessary conditions for stability, the algorithms have to be fur-
ther tested for possible resonant unstable behavior on a finite domain with perfectly
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reflecting boundaries.
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