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THE RIEMANN PROBLEM FOR A SIMPLE MODEL OF PHASE
TRANSITION∗

EDWIGE GODLEWSKI† AND NICOLAS SEGUIN‡

Abstract. We consider in this paper a simple model of liquid-vapor phase transition. The PDE
system corresponds to the isothermal p-system and the pressure law is defined for all positive density
and involves a constant zone. Such a pressure law can occur for instance when considering the Van
der Waals equation of state complemented by the Maxwell’s law. The Riemann problem is globally
solved for all initial states, as well in the pure phases as in the mixture zone.
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1. Introduction

The model we consider is the isothermal p-system. It is composed by the system
of partial differential equations

∂tτ−∂xu=0, (1.1)

∂tu+∂xp=0, (1.2)

where τ denotes the specific volume, u the velocity and p the pressure of the fluid. All
these unknowns depend on the time t and the Lagrangian variable x, (t,x)∈R+×R.
We also add the pressure law

p=P(τ). (1.3)

We then define u=(τ,u)T ∈Ω=R∗+×R and f(u)=(−u,P(τ))T (Ω will be referred
to as the phase space).

All the thermodynamic behavior of the fluid, in particular the transition between
the liquid and the vapor states, is contained in the law (1.3). We can refer for instance
to the Van der Waals equation of state (see the solid line in Fig. 1.1). The difficulty is
to cope with the elliptic zone defined by the specific volumes which verify P ′(τ)>0.
Indeed, system (1.1–1.3) is unstable in this zone (the sound speed c(u)=

√

−P ′(τ)
becomes complex). Numerous works deal with this problem, see for instance [2, 19]
and references therein.

The model we focus on may be seen as a Van der Waals type equation of state
complemented with Maxwell’s law. Roughly speaking, Maxwell’s law introduces two
constant specific volumes 0<τ ∗2 <τ

∗
1 which are given by the thermodynamic equilib-

rium and limit the mixture zone (see Fig. 1.1). Assuming that the pressure is constant
in the mixture zone, the Van der Waals pressure law is replaced by a straight line in
[τ∗2 ,τ

∗
1 ], depicted by the dashed line in Fig. 1.1.
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Fig. 1.1. Van der Waals pressure law and Maxwell closure law.

As a consequence, the pressure law is now globally nonincreasing and its derivative
(thus the sound speed) vanishes in the mixture zone. Note that a viscous regulariza-
tion of (1.1–1.3) has been studied by Roytburd and Slemrod in [25] with the help of
compensated compactness and equivalence of entropy criteria. The Riemann problem
with data of small amplitude has been investigated by Roytburd in [24]. Another
model has been studied by Shearer in [27], based on the Van der Waals equation
of state for which all stationary waves of phase transition are admissible. Here, the
physical model is slightly different since only stationary waves of phase transition sat-
isfying Maxwell’s law are allowed, which results in a more constraining problem with
a pressure law which is only piecewise C 1 and thus leads to different solutions.

The present model is very simple (in particular, it does not include any nonclassi-
cal theory [19]) and it is suitable for numerical approximations since the phase space
is convex. A particular model of pressure law which falls within the present frame-
work is the one studied by Caro et al. [5]. Assuming that the two phases behave as
isothermal perfect gases, the pressure law of the mixture is

P(τ)=











a2/τ if 0<τ <τ∗2 ,

a2/τ
∗
2 if τ∗2 ≤ τ ≤ τ

∗
1 ,

a1/τ if τ∗1 <τ <∞,

where a1 and a2 are two positive constants with a1>a2 and a2/τ
∗
2 =a1/τ

∗
1 .

The main difficulty is the presence of a constant zone in the pressure law. Indeed,
this leads to a local degenerate problem, since for τ ∈ [τ ∗2 ,τ

∗
1 ] the eigenvalues ±c(u)

of the system coalesce and the eigenvectors do not form a basis of R2 any longer.
Such a problem, usually called resonance, has been widely studied (see for instance
[16, 21, 22, 15, 17, 29, 26, 11, 6, 1]). In most cases, the resonant region is a hypersurface
of the phase space, except in [25, 1] (which will also be our case) where the resonant
region is a subdomain of the phase space (a point in the scalar case, a curve for a
2×2 system).

In this work, we study the Riemann problem for (1.1–1.3), i.e. system (1.1–1.3)
with the initial condition

u|t=0=

{

uL if x<0,

uR if x>0,
(1.4)
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where the data uL and uR belong to Ω. Such a study is of interest since it is a first
step towards the Cauchy problem and it allows the construction of numerical schemes,
such as the Godunov scheme [14].

The existence and uniqueness of the solution of the Riemann problem (1.1–1.4)
is proved, for any data uL,uR∈Ω (all these results hold similarly for the correspond-
ing system written in Eulerian coordinates). Because of the lack of regularity and
the nonconvexity of P, the solution involves multiple waves (as in [10, 30, 12]) and
the selection of admissible solutions is performed by the use of the extended entropy
condition (E) proposed by Liu [20] (see also [30]). More precisely, the nonconvexity
of P leads to waves which can be composed of rarefaction waves attached with dis-
continuities (shocks or contact discontinuities) while the loss of regularity of P at τ ∗1
and τ∗2 introduces constant states inside waves (see for instance Fig.5.3).

The paper is organized as follows. In Section 2, we make precise assumptions
about the pressure law P and state the results of the solution to the Riemann problem
(1.1–1.4). A useful geometric interpretation of the entropy condition (E) is presented
in Section 3. The Riemann problem is solved by the study of the intersection of two
sets of states: the set of nonpositive waves and the set of nonnegative waves. In
section 4, we compute the set of nonpositive waves which are involved in the solution
of the Riemann problem. In Section 5, the set of nonnegative waves is given and
the Riemann problem is solved and shown to be well-posed (existence, uniqueness,
L1

loc-continuity).

2. Assumptions and main results

We consider a pressure law which complies with the following properties (illus-
trated by Fig. 2.1). There exists two constant specific volumes 0<τ ∗2 <τ

∗
1 such that:

(H1) P ∈C 0(R∗+,R
∗
+)∩C 2((0,τ∗2 ]∪ [τ

∗
1 ,∞)),

(H2) P ′(τ)<0 and P ′′(τ)>0, for all τ ∈ (0,τ∗2 )∪(τ
∗
1 ,∞),

(H3) lim
τ→0+

P(τ)=+∞,

(H4) P(τ)=pm for all τ ∈ [τ∗1 ,τ
∗
2 ],

(H5) P(τ)>P ′(τ∗2 )(τ−τ
∗
2 )+P(τ∗2 ), for all τ >τ

∗
1 .
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Fig. 2.1. A pressure law fulfilling (H1–5).

The last assumption is not necessary to obtain the results we present but it simplifies
the computations. The assumptions on the pressure law in the region of pure phases



230 A SIMPLE MODEL OF PHASE TRANSITION

(0,τ∗2 )∪(τ
∗
1 ,∞) are described in (H2). They can be generalized, following Wendroff

[30], but we restrict to (H2) for simplicity.
This pressure law has two non classical features: it is not globally convex and

it involves a constant region. This leads to the following behavior according to the
region of Ω we study:

Ωp=((0,τ∗2 )∪(τ
∗
1 ,∞))×R and Ωm=[τ∗2 ,τ

∗
1 ]×R. (2.1)

Proposition 2.1. In Ωp, system (1.1–1.3) is strictly hyperbolic: the two eigenvalues

λ−(u)=−
√

−P ′(τ) and λ+(u)=
√

−P ′(τ) (2.2)

are real and the corresponding eigenvectors r−(u) and r+(u) are linearly independent,
for all u∈Ωp. The two fields are genuinely nonlinear.

In Ωm, system (1.1–1.3) is nonstrictly hyperbolic: λ−(u)=λ+(u)=0 and the
corresponding eigenvectors r−(u) and r+(u) are linearly dependent, for all u∈Ωm.
The field is linearly degenerate.

The proof of this result is left to the reader.
In the following, the waves associated with the eigenvalue λ− (respectively λ+)

will be denoted by nonpositive waves (resp. nonnegative waves).
One can remark that for, u∈Ωm, system (1.1–1.3) becomes the system of pres-

sureless gas [3, 4] for which measure solutions need to be introduced. We will see
in the sequel that such solutions do not appear because the resonant region Ωm is
bounded with respect to τ .

Let us now recall the entropy condition (E) given by Liu [20]. Let us first define
the Rankine-Hugoniot set S (ul)⊂Ω\{ul} as the set of ur ∈Ω, ul 6=ur, such that
there exists σ(ul,ur)∈R with

−σ(ul,ur)(ur−ul)+(f(ur)− f(ul))=0.

In the rest of the paper, we use the classical notation uβα=(τβα ,u
β
α), for any given

subscript α and superscript β.

Definition 2.1. A discontinuity between two states ul=(τl,ul)∈Ω and ur=
(τr,ur)∈S (ul) satisfies the entropy condition (E) if

σ(ul,ur)≤σ(ul,u) (2.3)

for all u∈S (ul) with τ ∈ (min(τl,τr),max(τl,τr)). A discontinuity which satisfies the
entropy condition (E) will be called an admissible discontinuity.

When considering the Riemann problem (1.1–1.4), we look for solutions in the
class of self-similar solutions composed by a succession of rarefaction waves, admissible
discontinuities and constant states. Two cases must be distinguished:

(H6a)

∫ +∞

τ∗1

√

−P ′(τ)dτ =+∞,

(H6b)

∫ +∞

τ∗1

√

−P ′(τ)dτ <+∞.

In the first case, the vacuum never appears, whereas in the second case, the Riemann
problem may have no solution if one does not introduce the vacuum [23, 28, 13]. We
have chosen to introduce the vacuum, that is {τ =+∞,u∈R}, in order to simplify
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the presentation, all the more since explicit conditions of occurrence of the vacuum
are difficult to obtain.

We can now state the following result:

Theorem 2.2. For all uL,uR∈Ω, the solution of the Riemann problem (1.1–1.4):
i. exists and is unique if (H6a) is fulfilled,
ii. exists and is unique if (H6b) is fulfilled, allowing the occurrence of the vacuum

state {τ =+∞} when necessary.

Restricting to data in Ωp, Colombo and Priuli [7] have already proved such a
result (and extended it to the use of kinetic relations). Besides, the solution satisfies
the following comparison result:

Theorem 2.3. Let W (x/t;uL,uR) be the self-similar solution of the Riemann prob-
lem (1.1–1.4). For any L>0 and initial data (uL,uR),(vL,vR)∈Ω

2, there exists a
constant C>0 such that

∫ L

−L

|W (ξ;uL,uR)−W (ξ;vL,vR)|dξ≤C(|uL−vL|+ |uR−vR|) (2.4)

where | · | stands for the Euclidean norm of R2.

The proof of Thm. 2.2 follows three steps. The first one consists in a rewriting of
the condition (E), initially proposed by Wendroff in [30]. Secondly, we investigate all
the states which can be connected to a given state by a succession of nonpositive waves
(respectively nonnegative waves), possibly separated by constant states, that is to say
which correspond to the eigenvalue λ−(u) (resp. λ+(u)) which is nonpositive (resp.
nonnegative)). Finally, the solution of the Riemann problem is studied. Existence
is obtained with the use of the vacuum state while uniqueness is achieved using the
property of self-similarity of the solution. Theorem 2.3 is a direct consequence of the
structure of the solution.

3. A geometric interpretation of entropy condition (E)
We recall here a classical result, which can be found in [30] (see also [8, 9, 18] for

other entropy criteria and their equivalence).

Lemma 3.1. Let ul be in Ω and ur ∈S (ul), with τl 6= τr.
Then, ul and ur are separated by an admissible discontinuity (i.e. satisfying (2.3)) if
and only if

σ(ul,ur)

(

P(τr)−P(τl)

τr−τl
−

P(τ)−P(τl)

τ−τl

)

≥0, (3.1)

for all τ ∈ (min(τl,τr),max(τl,τr)).

Proof. By definition of the Rankine-Hugoniot set S (ul), we have

−σ(ul,ur)(τr−τl)−(ur−ul)=0,

−σ(ul,ur)(ur−ul)+(P(τr)−P(τl))=0.

Combining both equations yields

σ(ul,ur)=−
ur−ul
τr−τl
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and

(ur−ul)
2=−(P(τr)−P(τl))(τr−τl).

Therefore, we obtain

(

σ(ul,ur)
)2

=−
P(τr)−P(τl)

τr−τl
.

The same calculations hold for ul and u∈S (ul). Then, if σ(ul,ur)≥0, inequality
(2.3) becomes

P(τr)−P(τl)

τr−τl
≥

P(τ)−P(τl)

τ−τl
.

The result for the case σ(ul,ur)≤0 follows similarly.

Remark 3.2. This result can easily be interpreted geometrically. Assume that the
speed σ(ul,ur) of the discontinuity between ul and ur is nonpositive, that is to say
that we consider a nonpositive wave λ−. If τl<τr, then in the (τ,p) plane, the segment
linking (τl,P(τl)) to (τr,P(τr)) must be below the curve {(τ,p)∈ (τl,τr)×R+,p=
P(τ)} (in the non-strict sense) or in other words, the graph of the function P lies
above the chord. Similarly, if τl>τr, the segment [(τl,P(τl)),(τr,P(τr))] must be
above the curve {(τ,p)∈ (τr,τl)×R+,p=P(τ)} (see also Remark 4.4). Of course, a
similar geometric interpretation holds for nonnegative waves λ+ too.

Note that this characterization is similar to the one in the scalar case with non-
convex flux functions [12].

We focus now on the characterization of nonpositive waves. Due to the noncon-
vexity of the pressure law, such a wave can be a succession of rarefaction waves and
admissible discontinuities, all corresponding to the eigenvalue λ−.

4. Nonpositive multiple waves
In this section, we seek all the states which can be connected to a given state,

say uL, by nonpositive waves. First, we focus on single rarefaction waves and single
admissible discontinuities associated with the eigenvalue λ−. Afterwards, we construct
nonpositive multiple waves as successions of these single waves.

4.1. Nonpositive rarefaction waves. Using Prop. 2.1, the study of rarefac-
tion waves can be restricted to Ωp. We note R−(uL) the set of the states which can
be connected to uL by a nonpositive rarefaction wave. If we define the function φ−
by

φ− :R
∗
+×Ω 7−→R

(τ,uL) 7−→uL+

∫ τ

τL

√

−P ′(v)dv,
(4.1)

the set R−(uL) can be explicitly stated [28, 13]:

Lemma 4.1. The set R−(uL) of the states which can be connected to uL by a non-
positive rarefaction wave is given by:

• If τL<τ
∗
2 , R−(uL)={(τ,φ−(τ,uL)),τ ∈ (τL,τ

∗
2 ]}.

• If τL>τ
∗
1 , R−(uL)={(τ,φ−(τ,uL)),τ ∈ (τL,∞)}.
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Both curves are increasing and concave in the (τ,u) plane.

Furthermore, if hypothesis (H6a) holds and τL>τ
∗
1 , the curve R−(uL) is un-

bounded by the above in the (τ,u) plane, with respect to u. However, if hypothesis
(H6b) is fulfilled and τL>τ

∗
1 , then the curve R−(uL) admits a horizontal asymptote,

namely R∗+×{uL+u∞(τL)}, where

u∞(τL)=

∫ ∞

τL

√

−P ′(v)dv<∞. (4.2)

This classical behavior is crucial when dealing with global initial data.

4.2. Nonpositive admissible discontinuities. We focus now on admissible
discontinuities. Let S−(uL) be the set of states which can be connected to uL by an
admissible discontinuity (in the sense of Def. 2.1) with a nonpositive speed. In order
to describe this set, let us first introduce some notations.

We define τ] as the function which maps any τL∈ [τ
∗
2 ,τ
∗
1 ) to the unique element

of

{τ >τ∗1 ,P(τ)−P(τL)=P
′(τ)(τ−τL)}.

In the same way, we note τ[ as the function which maps any τL∈ (τ
∗
1 ,∞) to the unique

element of

{τ <τ∗2 ,(P(τ)−P(τL))(τ
∗
1 −τL)=(P(τ∗1 )−P(τL))(τ−τL)}.

These two functions are monovalued, thanks to the assumptions on the pressure law
P. An illustration of these functions is given in Fig. 4.1. Now, if we define the
function

ψ− :R
∗
+×Ω 7−→R

(τ,uL) 7−→uL+sign(τ−τL)
√

(P(τ)−P(τL))(τL−τ),
(4.3)

we are in position to define more precisely the set of nonpositive admissible disconti-
nuities S−(uL):

Lemma 4.2. The set S−(uL) of the states which can be reached from uL by a non-
positive admissible discontinuity is given by:

• If τL∈ (0,τ
∗
2 ), S−(uL)={(τ,ψ−(τ,uL)),τ ∈ (0,τL)}.

• If τL∈ [τ
∗
2 ,τ
∗
1 ], S−(uL)={(τ,ψ−(τ,uL)),τ ∈ (0,τ](τL)]}.

• If τL∈ (τ
∗
1 ,∞), S−(uL)={(τ,ψ−(τ,uL)),τ ∈ (0,τ[(τL)]∪ [τ

∗
1 ,τL)}.

Moreover, the function ψ− verifies for all uL∈Ω
• ψ−(·,uL)∈C 0(R∗+)∩C 2((0,τ∗2 ]∪ [τ

∗
1 ,∞)).

• ∂τψ−(τ,uL)>0 and ∂2
ττψ−(τ,uL)<0, for all τ ∈ (0,τ∗2 )∪(τ

∗
1 ,∞).

• lim
τ→0+

ψ−(τ,uL)=−∞.

• ψ−(τ,uL)=ψ−(τ
∗
2 ,uL)=ψ−(τ

∗
1 ,uL) for all τ ∈ [τ

∗
1 ,τ
∗
2 ].

Proof. The characterization of the set S−(uL) is directly given by Lem. 3.1 and
Rem. 3.2 and the properties of the function ψ− are based on classical calculations,
using hypotheses (H1–5) made on the pressure law.

The set S−(uL) is represented in the (τ,p) plane by bold lines on Fig. 4.1.
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Fig. 4.1. Admissible discontinuities (bold parts of the curves).

In Fig. 4.2 are shown the sets S−(uL)) and R−(uL), with respect to the location
of τL in the (τ,u) plane. One may note that

lim
τL

>
→τ∗1

S−(uL)( lim
τL

<
→τ∗1

S−(uL),

since τ[(τL) is not defined when τL= τ
∗
1 . This is due to the fact that P is only

Lipschitz continuous at τ ∗1 , but it does not alter the global resolution of the Riemann
problem since we use multiple waves (see Section 4.3.3 where the set of nonpositive
multiple waves is shown to be continuous).
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4.3. Construction of nonpositive multiple waves. We have constructed
the set of states which can be reached from uL by one nonpositive wave: R−(uL)∪
S−(uL). However, this set is incomplete (see Fig. 4.2). It is thus necessary to consider
multiple waves. Such waves are classical when dealing with nonconvex pressure laws
[10, 30, 20].

First, let us remark that, since the flux f is independent of t and x, the solution
of the Riemann problem is self-similar. Then, a nonpositive multiple wave is simply
a succession of nonpositive rarefaction waves, admissible discontinuities and constant
states. If U−(uL) denotes the set of states which can be connected to uL by a
nonpositive multiple wave, that is to say

U−(uL)={W (0+;uL,u),u∈Ω}, (4.4)

where W (x/t;uL,uR) is a self-similar solution of the Riemann problem (1.1–1.4),
U−(uL) will at least contain the set {uL}∪R−(uL)∪S−(uL). In order to construct
multiple waves, we will introduce intermediate states (to be determined), say ui, and
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consider R−(ui) and S−(ui) in such a way that the speeds of consecutive waves are
in increasing order.

The study of U−(uL) is split into three parts, following the location of uL: in the
mixture zone (τ∗2 ≤ τL≤ τ

∗
1 ), in phase 2 (0<τL<τ

∗
2 ) and in phase 1 (τ∗1 <τL).

4.3.1. The left state is in the mixture zone. Surprisingly, this case is the
simplest one. In this case, the only state from which we can restart is

u](uL)=(τ](τL),ψ−(τ](τL),uL))

(see Lem. 4.2 and Fig. 4.2-center). It remains to compare the speed of the discontinuity
which links uL and u](uL) with the speed of the wave which links u](uL) with any
state of R−(u](uL))∪S−(u](uL)).

Due to the definition of τ](τL), the speed of the discontinuity between uL and
u](uL) is exactly

σ(uL,u](uL))=−
√

−P ′(τ](τL)). (4.5)

It is easy to check that for any state u∈S−(u](uL)),

σ(u](uL),u)<σ(uL,u](uL)).

Therefore, U−(uL)∩S−(u](uL))=∅. Consider now the set R−(u](uL)). For any

u∈R−(u](uL)), the speed λ−(u)=−
√

−P ′(τ) is increasing, then R−(u](uL))⊂
U−(uL). Finally, we can define

U−(uL)={uL}∪S−(uL)∪R−(u](uL)). (4.6)

Let us note that, by Eq. (4.5), the discontinuity between uL and u](uL) and the
rarefaction wave starting from u](uL) are attached (see Fig. 4.3-bottom).

4.3.2. The left state is in phase 2. We consider now waves starting from
the state

u∗2(uL)=(τ∗2 ,φ−(τ
∗
2 ,uL)),

which corresponds to the second case of Lem. 4.2 and Fig. 4.2-left. Any discontinuity
between u∗2(uL) and a state u∈S−(u

∗
2(uL)) satisfying τ <τ∗2 moves with a speed

σ(u∗2(uL),u) which is smaller than −
√

−P ′(τ∗2 −0) (the speed of the tail of the
rarefaction wave between uL and u∗2(uL)). Thus, no state of S−(u

∗
2(uL))∩((0,τ

∗
2 )×

R) belongs to U−(uL).
On the contrary, all the remaining parts of S−(u

∗
2(uL)) (that is for specific vol-

umes between τ∗2 and τ](τ
∗
2 )) are included in U−(uL). This is a direct consequence

of hypothesis (H5): the speed of the end of the rarefaction wave between uL and
u∗2(uL) is smaller than the speed of the discontinuity between u∗2(uL) and any state
of S−(u

∗
2(uL))∩((τ

∗
2 ,τ](τ

∗
2 ))×R). Since this inequality is strict, the rarefaction wave

and the discontinuity are not attached but separated by the state u∗2(uL).
The set U−(uL) is not complete yet since S−(u

∗
2(uL)) stops at the state

u∗] (uL)=(τ](τ
∗
2 ),ψ−(τ](τ

∗
2 ),u

∗
2(uL))).

Such a configuration has already been studied in the previous case: all the states
which can be reached by u∗] (uL) are given by R−(u

∗
] (uL)). Thus, we obtain

U−(uL)={uL}∪R−(uL)∪S−(uL)

∪
(

S−(u
∗
2(uL))∩([τ

∗
2 ,τ](τ

∗
2 )]×R)

)

∪R−(u
∗
] (uL)). (4.7)
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In order to describe more explicitly the waves which can occur in this case, let us take
a state u=(τ,u)∈U−(uL):

• If 0<τ <τL, the states uL and u are separated by an admissible discontinuity
(corresponding to the black solid line in Fig. 4.3-left).

• If τL<τ <τ
∗
2 , the states uL and u are separated by a rarefaction wave (cor-

responding to the grey solid line in Fig. 4.3-left).
• If τ∗2 <τ <τ](τ

∗
1 ), the states uL and u are separated by a rarefaction wave

connecting uL to u∗2(uL) and an admissible discontinuity from u∗2(uL) to u
(corresponding to the black dashed line in Fig. 4.3-left).

• If τ >τ](τ
∗
1 ), the states uL and u are separated by a rarefaction wave, the state

u∗2(uL), an admissible discontinuity to which a rarefaction wave is attached
at the point u∗] (uL) (corresponding to the grey dashed line in Fig. 4.3-left).

4.3.3. The left state is in phase 1. We are now interested in the state

u∗1(uL)=(τ∗1 ,ψ−(τ
∗
1 ,uL))

which is connected to uL by a discontinuity. This state fits the second case of Lem. 4.2
and Fig. 4.2-right. Consider now a state u∈S−(u

∗
1). If its specific volume τ is

greater than τ∗1 , it must be removed. If τ ∈ (τ[(τL),τ
∗
1 ), one can easily check that

σ(u∗1,u)>σ(uL,u
∗
1), that is to say the discontinuities between u∗1 and u and between

uL and u∗1 have compatible speeds. If τ = τ[(τL), the two discontinuities have the
same speed and actually are joined (this is the main argument for the continuity of
U−(uL) when τL crosses τ∗1 ).

Let us focus now on the states u with τ <τ[(τL). A priori, they can be connected
to uL by two ways. The first one uses the curve S−(uL), linking uL and u by a
simple discontinuity. The second one uses S−(u

∗
1), linking uL and u through two

discontinuities separated by the state u∗1. But in the second case, the discontinuities
are incompatible since σ(u∗1,u)<σ(uL,u

∗
1). We can then define

U−(uL)={uL}∪R−(uL)∪S−(uL)

∪
(

S−(u
∗
1(uL))∩([τ[(τL),τ

∗
1 ]×R)

)

.
(4.8)

Note that, by definition of τ[(τL),

ψ−(τ[(τL),uL)=ψ−(τ[(τL),u
∗
1(uL)).

Therefore, the curve U−(uL) is continuous (in the two previous cases, the continuity
of U−(uL) was trivial). Moreover, the transition when τL crosses τ∗1 is continuous
too.

As before, let us choose a state u in U−(uL) and describe the waves which occur,
according to the value of τ :

• If τ >τL, the states uL and u are separated by a rarefaction wave (corre-
sponding to the grey solid line in Fig. 4.3-right).

• If τ∗1 <τ <τL or τ <τ[(τL), the states uL and u are separated by an admissible
discontinuity (corresponding to the black solid lines in Fig. 4.3-right).

• If τ[(τL)<τ <τ
∗
1 , the states uL and u are separated by an admissible discon-

tinuity connecting uL to u∗1(uL) and another admissible discontinuity from
u∗1(uL) to u (corresponding to the black dashed line in Fig. 4.3-right).
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4.3.4. The complete parametrization of nonpositive waves. As a re-
sult of the previous calculations, whatever the state uL, the curve U−(uL) can be
parametrized with respect to τ and we denote by ϑ− :R

∗
+×Ω 7−→R the parametriza-

tion we have obtained, i.e.

{(τ,ϑ−(τ,uL)),τ >0}=U−(uL).

The properties of this function can be easily described:

Proposition 4.3. The function ϑ− satisfies for all uL∈Ω
i. ϑ−∈C 0(R∗+×Ω,R).
ii. ϑ−(·,uL)∈C 2((0,τ∗2 ]∪ [τ

∗
1 ,∞)).

iii. In (0,τ∗2 ]∪ [τ
∗
1 ,∞), the function ϑ−(·,uL) is strictly concave and strictly in-

creasing.
iv. lim

τ→0+
ϑ−(τ,uL)=−∞ and

• If (H6a) holds, lim
τ→∞

ϑ−(τ,uL)=+∞.

• If (H6b) holds, there exists a finite real constant u−∞(uL) such that
lim
τ→∞

ϑ−(τ,uL)=u
−
∞(uL).

v. ϑ−(τ,uL)=ϑ−(τ
∗
2 ,uL)=ϑ−(τ

∗
1 ,uL) for all τ ∈ [τ

∗
2 ,τ
∗
1 ].
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Fig. 4.3. The curve U−(uL) according to the position of uL.

The proof of this proposition is given in Appendix A and the curve U−(uL)
is plotted in Fig. 4.3 (see also (A.2), (A.3) and (A.4) in the Appendix for explicit
definitions of ϑ−).
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Remark 4.4. Actually, the composition of the multiple waves, that is to say the
nature of the waves which permit to connect any state ū to a given one uL, can easily
be deduced from a geometric construction (see [30]). Assume that τL<τ̄ and define
P̌ as the greatest convex function smaller or equal to P. It is composed by affine
and strictly convex parts. If we note τa and τb the limits of an affine part, then τa and
τb are separated by a discontinuity. On the other hand, if τa and τb limit a strictly
convex part P̌, then τa and τb are separated by a rarefaction wave. The case τ̄ <τL is
similar, using the smallest concave function greater or equal to P. Such a geometric
characterization is classical in the scalar case, for a nonconvex flux [12].

5. Resolution of the Riemann problem
In order to solve the Riemann problem (1.1–1.4), we first present the set of non-

negative multiple waves U+(uR). Afterwards, the solution of the Riemann problem
is constructed, intersecting the sets U−(uL) and U+(uR) and the properties of the
solution are investigated.

5.1. Nonnegative multiple waves. First, we must construct the set
U+(uR)⊂Ω, the analogue of U−(uL), defined by

U+(uR)={W (0−;u,uR),u∈Ω}, (5.1)

where W (x/t;uL,uR) is a self-similar solution of the Riemann problem (1.1–1.4).
Using the Galilean invariance of system (1.1-1.3), we directly obtain

U+(uR)={(τ,u)∈Ω,(τ,2uR−u)∈U−(uR)}. (5.2)

As above, ϑ+ will denote the function defined by

ϑ+ :R∗+×Ω 7−→R

(τ,uR) 7−→2uR−ϑ−(τ,uR).
(5.3)

Using simple calculations and Prop. 4.3, one may check:

Proposition 5.1. The function ϑ+ satisfies for all uR∈Ω:
i. ϑ+∈C 0(R∗+×Ω,R).
ii. ϑ+(·,uR)∈C 2((0,τ∗2 ]∪ [τ

∗
1 ,∞)).

iii. In (0,τ∗2 ]∪ [τ
∗
1 ,∞), the function ϑ+(·,uR) is strictly convex and strictly de-

creasing.
iv. lim

τ→0+
ϑ+(τ,uR)=+∞ and

• If (H6a) holds, lim
τ→∞

ϑ+(τ,uR)=−∞.

• If (H6b) holds, there exists a finite real constant u+
∞(uR) such that

lim
τ→∞

ϑ+(τ,uR)=u
+
∞(uR).

v. ϑ+(τ,uR)=ϑ+(τ
∗
2 ,uR)=ϑ+(τ

∗
1 ,uR) for all τ ∈ [τ

∗
2 ,τ
∗
1 ].

We turn now to the existence result for the solution of the Riemann problem
(1.1–1.4).

5.2. Existence of a solution. The existence of a solution is given by studying
the set

I (uL,uR)=U−(uL)∩U+(uR). (5.4)

More precisely, the solution of the Riemann problem (1.1–1.4) exists as soon as the
set I is non empty.
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Lemma 5.2. If hypothesis (H6a) holds, the set I (uL,uR) is non empty for all
uL,uR∈Ω.

If hypothesis (H6b) holds, the set I (uL,uR) may be empty for some initial con-
ditions uL,uR∈Ω. In such a case, the solution of the Riemann problem (1.1–1.4) is
completed with the use of the vacuum state {τ =+∞}.

Proof. Let us recall that under hypotheses (H1–5), the function ϑ−(·,uL) is
continuous, nonincreasing and limτ→0+ ϑ−(τ,uL)=−∞ (Prop. 4.3). In the same way,
the function ϑ+(·,uR) is continuous, nondecreasing and we have limτ→0+ ϑ+(τ,uR)=
+∞ (Prop. 5.1).

If hypothesis (H6a) is fulfilled, we also have limτ→∞ϑ−(τ,uL)=+∞ and
limτ→∞ϑ+(τ,uR)=−∞. Therefore, for any uL,uR∈Ω, the graphs of ϑ−(·,uL) and
ϑ+(·,uR) cross each other and thus I (uL,uR) 6=∅.

In the case of hypothesis (H6b), the functions ϑ−(·,uL) and ϑ+(·,uR) admit an
asymptote when τ goes to +∞ (see Props. 4.3 and 5.1). If uL and uR are such that
u−∞(uL)≤u

+
∞(uR), the two graphs never meet and I (uL,uR)=∅. Therefore, the

vacuum state {τ =+∞} is introduced in order to connect the two graphs, as done in
[23, 28, 13] for instance.

As a consequence, this Lemma provides the existence result for the Riemann
problem (1.1–1.4), allowing the use of the vacuum state when u−∞(uL)≤u

+
∞(uR).

Remark 5.3. Let us note that u−∞(uL) (respectively u
+
∞(uR)) can be made explicit,

according to the position of uL (resp. uR), using u∞, defined in (4.2). We thus can
make explicit the conditions on uL and uR which yield the occurrence of the vacuum
state.

5.3. Uniqueness of the solution. The uniqueness of the solution of the
Riemann problem (1.1–1.4) would be obvious if, for any initial data uL,uR∈Ω, the
set I (uL,uR) was reduced to a singleton (under the condition of nonoccurrence of
the vacuum state). Actually, assuming u−∞(uL)>u

+
∞(uR), I (uL,uR) is a singleton in

most cases if P verifies (H6b). In order to illustrate such a case, let us construct the
solution of the Riemann problem (1.1–1.4), for a specific couple (uL,uR), such that
τL<τ

∗
2 , τ

∗
2 ≤ τR≤ τ

∗
1 and I (uL,uR)⊂ (τ](τ

∗
1 )×R). The solution is plotted in Fig. 5.1.
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and in the (x,t) plane (right).



240 A SIMPLE MODEL OF PHASE TRANSITION

It is composed by four constant states, separated by three rarefactions waves (two of
them are attached with a discontinuity).

Actually, the set I (uL,uR) is a singleton except when uL and uR satisfy

ϑ−(τ
∗
2 ,uL)=ϑ+(τ

∗
2 ,uR). (5.5)

If equality (5.5) holds, the set I (uL,uR) is a segment of Ω:

I (uL,uR)= [τ∗2 ,τ
∗
1 ]×{ϑ−(τ

∗
2 ,uL)}. (5.6)

In such case, a careful study of the solutions must be performed.

Lemma 5.4. Let uL,uR∈Ω be such that (5.5) holds. Let us note u0=ϑ−(τ
∗
2 ,uL).

Then the self-similar solution W (x/t;uL,uR) of the Riemann problem (1.1–1.4) is
unique and satisfies

• If τL<τ
∗
2 , then W (0−;uL,uR)=(τ∗2 ,u0).

• If τL>τ
∗
1 , then W (0−;uL,uR)=(τ∗1 ,u0).

• If τL∈ [τ
∗
2 ,τ
∗
1 ], then W (0−;uL,uR)=(τL,u0).

• If τR<τ
∗
2 , then W (0+;uL,uR)=(τ∗2 ,u0).

• If τR>τ
∗
1 , then W (0+;uL,uR)=(τ∗1 ,u0).

• If τR∈ [τ
∗
2 ,τ
∗
1 ], then W (0+;uL,uR)=(τR,u0).

Proof. As mentioned above, if uL and uR satisfy (5.5), then I (uL,uR) is given
by Eq. (5.6). Consequently, there exists a fan, say ξl≤x/t≤ ξr, where W (x/t;uL,uR)
can take any value in I (uL,uR) and thus might lead to the non-uniqueness of
W (·;uL,uR).

Let us look at such a solution. Assuming for instance that τL<τ
∗
2 , the definition

of U−(uL) (4.7) implies that W ((ξl)
−;uL,uR)=(τ∗2 ,u0). Let ul∈I (uL,uR) be the

state directly connected to W ((ξl)
−;uL,uR), that is to say ul=W ((ξl)

+;uL,uR).
By hypothesis (H4), the wave which connects W ((ξl)

−;uL,uR) to ul has a null
speed and thus ξl=0. In the same way, assuming for instance τR<τ

∗
2 provides

ξr=0. Therefore, the fan of non-uniqueness is reduced to the line x/t=0 and
W (0−;uL,uR)=W (0+;uL,uR)=(τ∗2 ,u0) (the solution is represented in Fig. 5.2). ThePSfrag replacements
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Fig. 5.2. The solution described in the proof of Lem. 5.4.

proof can easily be reproduced for the other positions of τL and τR.

This Lemma concludes the proof of Theorem. 2.2. We now deal with the proof
of Theorem. 2.3.



E. GODLEWSKI AND N. SEGUIN 241

5.4. Continuity with respect to initial data. We are interested here in
the possible change of the structure of the self-similar solution W (x/t;uL,uR) when
changing the initial data uL and uR.

When considering initial data uL,uR∈Ω such that I (uL,uR)⊂Ωp, that is to say
when the intersection between U−(uL) and U+(uR) is in a pure phase, the comparison
result (2.4) is given by the continuity of ϑ− and ϑ+ (see Prop. 4.3–i and Prop. 5.1–i)
using classical arguments.

By contrast, the continuity in the neighborhood of a solution associated with
initial data verifying (5.5) must be handled with care. We do not prove Thm. 2.3 in
all the cases but we simply give an example of such initial data. The other delicate
cases can be handled in the same spirit.

Lemma 5.5. Let uL and uR be such that τL<τ
∗
2 , τR<τ

∗
2 and such that (5.5) holds.

Let uεL=(τL,uL−ε). Then, for any L>0 and any ε>0 small enough, there exists a
constant C>0 such that

∫ L

−L

|W (ξ;uL,uR)−W (ξ;uεL,uR)|dξ≤Cε. (5.7)

Proof. Since uL and uR verify (5.5), we can define the velocity u0 by

u0=ϑ−(τ
∗
2 ,uL)=ϑ+(τ

∗
2 ,uR).

Then, the self-similar solution W (·;uL,uR) is composed by two rarefaction waves
(one has a negative speed and the other a positive speed) and the intermediate state
u0=(τ∗2 ,u0).

Assuming now ε>0, we define

uε1=(τ ε1 ,u
ε
1)=(τ∗2 ,ϑ−(τ

∗
2 ,u

ε
L)),

uε2=(τ ε2 ,u
ε
2)=I (uεL,uR),

u3=(τ3,u3)=(τ∗2 ,ϑ+(τ
∗
2 ,uR)).

For any ε>0 small enough, the self-similar solution W (·;uεL,uR) is composed, from
the left to the right, by a negative rarefaction wave between uεL and uε1, a negative
discontinuity between uε1 and uε2, a positive discontinuity between uε2 and u3 and a
positive rarefaction wave between u3 and uR. All these waves are separated respec-
tively by the constant states uε1, uε2 and u3. Note that the smallness of ε is required
in order to have τ ε2 <τ](τ

∗
2 ) and avoid more complex wave patterns and, possibly, the

occurrence of the vacuum state. Besides, we have u0=u3 (see Fig. 5.3).
We first study the difference W (ξ;uL,uR)−W (ξ;uεL,uR) component by compo-

nent, noting τ(ξ;u,v) and u(ξ;u,v) the two components of W (ξ;u,v). By easy cal-
culations, we can obtain more information about the velocity of the intermediate
states:

uε1=u0−ε and u0−ε<u
ε
2<u0.

Then, if we define

Au=

∫ L

−L

|u(ξ;uL,uR)−u(ξ;u
ε
L,uR)|dξ,
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Fig. 5.3. The solution described in the proof of Lem. 5.5.

a coarse, but sufficient, estimate yields

Au≤

∫ L

−L

(u(ξ;uL,uR)−(u(ξ;uL,uR)−ε))dξ

≤2Lε.

Let us focus now on the τ -component of W (ξ;uL,uR)−W (ξ;uεL,uR). The only dif-
ference between the two solutions is located between the two discontinuities, since
uε2 6=u0. Then, defining

Aτ =

∫ L

−L

|τ(ξ;uL,uR)−τ(ξ;u
ε
L,uR)|dξ,

some manipulations based on the Rankine-Hugoniot jump relations and on τ ε2 >τ
∗
2

gives:

Aτ ≤ (σ(u2,u3)−σ(u1,u2))τ
ε
2 ,

≤

(

−
u3−u

ε
2

τ∗2 −τ
ε
2

+
uε2−u

ε
1

τε2 −τ
∗
2

)

τε2 ,

≤
u3−u

ε
1

τε2 −τ
∗
2

τε2 ,

≤

(

1+
τ∗2

τε2 −τ
∗
2

)

ε,

≤

(

1+
τ∗2

τ∗1 −τ
∗
2

)

ε.

Ineq. (5.7) thus results from the estimates on Au and Aτ .

Note that in Lem. 5.5, we assumed that ε is small whereas in Thm. 2.3 no
assumption about the smallness of the initial data is stated. It could be understood
as a contradiction. However, as mentioned in the proof of Lem. 5.5, the smallness
of ε relies on the occurrence of the self-similar solution given by (uL,u

ε
1,u

ε
2,u3,uR).

For greater ε, the solution becomes different but the continuity is then classical since
I (uL,uR)∈Ωp (see the beginning of this section). In other words, Lem. 5.5 only
provides a local result of continuity about initial data obeying (5.5) and the continuity
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for other initial data is given by classical arguments if I (uL,uR) is a singleton or by
similar arguments as those of the above proof if (5.5) holds. This finally leads to the
global continuity result stated in Thm. 2.3.

Remark 5.6. The comparison result of Thm. 2.3 provides the continuity of the
operator which links the initial data to the solution, in the L1

loc topology, with respect
to the self-similar structure of the solution. Let us emphasize that, due to the presence
of a degenerate part in the pressure law, such a result is not available in the L∞

topology (it is classical when dealing with resonant problems [26]).

We have thus been able to prove the well-posedness of the Riemann problem
(1.1–1.4): existence, uniqueness and L1

loc-continuous dependence of the solution with
respect to the initial data.

As mentioned before, the assumptions on the pressure law P can be relaxed.
Indeed, the same results hold even if the pressure law is only nonincreasing and if
each interval where P is constant is bounded. The main difference between such a
case and the present work is that the construction of multiple waves becomes much
more difficult.

Appendix A. Proof of Proposition 4.3.

Properties iii, iv and v of function ϑ− are derived from Eqs. (4.6), (4.7) and (4.8)
and from the behavior of φ− and ψ−.

In order to obtain Property ii, we must study the smoothness of the function
ϑ−(·,uL) at the following points:

a. τ = τ](τL) if τ
∗
2 ≤ τL≤ τ

∗
1 ,

b. τ = τ](τ
∗
2 ) if τL<τ

∗
2 ,

c. τ = τ[(τL) if τ
∗
1 <τL.

Let us simplify the notations and define

s(τa,τb)=
P(τa)−P(τb)

τa−τb
.

We first assume that τ∗2 ≤ τL≤ τ
∗
1 and focus on the first derivative ∂τϑ− for τ = τ](τL).

When τL<τ <τ](τL), we have

∂τϑ−(τ,uL)=∂τψ−(τ,uL)=−
1

2

(

P ′(τ)
√

−s(τ,τL)
−
√

−s(τ,τL)

)

.

Using the definition of τ](τL), we obtain

lim
τ→τ](τL)−

∂τϑ−(τ,uL)=
√

−P ′(τ](τL)).

Now, if τ](τL)<τ , the derivative is given by

∂τϑ−(τ,uL)=∂τφ−(τ,uL)=
√

−P ′(τ).

The first derivative ∂τϑ− is then continuous. Let us turn now to the second one,
∂2
ττϑ−. If τ

∗
1 <τ <τ](τL), some calculations give
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∂2
ττϑ−(τ,uL) = ∂2

ττψ−(τ,uL),

=
1

(τL−τ)
√

−s(τL,τ)

(

τ−τL
2

P
′′(τ)

+P
′(τ)−

(P ′(τ)+s(τL,τ))
2

4s(τL,τ)

)

. (A.1)

The definition of τ](τL) yields s(τ](τL),τL)=P ′(τ](τL)). It leads to

lim
τ→τ](τL)−

∂2
ττϑ−(τ](τL),uL)=

−P ′′(τ](τL))

2
√

−P ′(τ](τL))
.

On the other hand, if τ](τL)<τ , we have

∂2
ττϑ−(τ,uL)=∂

2
ττφ−(τ,uL)=

−P ′′(τ)

2
√

−P ′(τ)
,

which provides the continuity of the second derivative, replacing τ by τ](τL) in the
previous equation, and concludes point a. Furthermore, the proof of the C 2-continuity
in the case b follows the same process.

We now focus on case c. If τ[(τL)<τ <τ
∗
2 , the definition (4.8) leads to

∂τϑ−(τ,uL)=∂τψ−(τ,u
∗
1(uL))=−

1

2

(

P ′(τ)
√

−s(τ,τ∗1 )
−
√

−s(τ,τ∗1 )

)

.

If τ <τ[(τL), the derivative ∂τϑ− is given by

∂τϑ−(τ,uL)=∂τψ−(τ,uL)=−
1

2

(

P ′(τ)
√

−s(τ,τL)
−
√

−s(τ,τL)

)

.

By definition of τ[(τL), equality s(τ[(τL),τ
∗
1 )=s(τ[(τL),τL) holds and ensures the

continuity of ∂τϑ−, since

∂τψ−(τ[(τL),u
∗
1(uL))=∂τψ−(τ[(τL),uL).

Using now (A.1), we obtain

lim
τ→τ[(τL)−

∂2
ττϑ−(τ,uL)=∂

2
ττψ−(τ[(τL),uL)

=
1

(τL−τ[)
√

−s(τL,τ[)

(

τ[−τL
2

P
′′(τ[)

+P
′(τ[)−

(P ′(τ[)+s(τL,τ[))
2

4s(τL,τ[)

)

,

and

lim
τ→τ[(τL)+

∂2
ττϑ−(τ,u

∗
1)=∂

2
ττψ−(τ[(τL),u

∗
1)

=
1

(τ∗1 −τ[)
√

−s(τ∗1 ,τ[)

(

τ[−τ
∗
1

2
P
′′(τ[)

+P
′(τ[)−

(P ′(τ[)+s(τ
∗
1 ,τ[))

2

4s(τ∗1 ,τ[)

)

.
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Here again, we use the definition of τ[(τL) which leads to the continuity of the second
derivative:

lim
τ→τ[(τL)−

∂2
ττϑ−(τ,uL)= lim

τ→τ[(τL)+
∂2
ττϑ−(τ,u

∗
1).

This ends the proof of Property ii.
We now focus on the global continuity of ϑ−, stated in Property i. The continuity

of ϑ− with respect to its first argument is ensured by Property ii which we have just
proved. It remains to prove the continuity of ϑ− with respect to u=(τL,uL). The
behavior of ϑ−, or, in other words, the multiple structure of nonpositive waves, is
deeply modified only when τL varies (in particular in the neighborhood of τ ∗2 and τ∗1 ).
Therefore, the continuity of ϑ− with respect to uL comes from the (classical property
of) continuity of φ− and ψ− with respect to uL.

If we consider the continuity of ϑ− with respect to τL, the only delicate points
concern τ∗2 and τ∗1 .

Let us recall that if τ∗2 ≤ τ ≤ τ
∗
1 , Eq. (4.6) yields

ϑ−(τ,uL)=



















ψ−(τ,uL) if 0<τ <τL,

uL if τ = τL,

ψ−(τ,uL) if τL<τ ≤ τ](τL),

φ−(τ,u](uL)) if τ](τL)<τ.

(A.2)

In the same way, for 0<τ <τ ∗2 , Eq. (4.7) gives

ϑ−(τ,uL)=































ψ−(τ,uL) if 0<τ <τL,

uL if τ = τL,

φ−(τ,uL) if τL<τ ≤ τ
∗
2 ,

ψ−(τ,u
∗
2(uL)) if τ∗2 <τ ≤ τ](τ

∗
2 ),

φ−(τ,u](u
∗
2(uL))) if τ](τ

∗
2 )<τ,

(A.3)

and, for τ∗1 <τ , Eq. (4.8) leads to

ϑ−(τ,uL)=































ψ−(τ,uL) if 0<τ <τ[(τL),

ψ−(τ,u
∗
1(uL)) if τ[(τL)≤ τ <τ

∗
1 ,

ψ−(τ,uL) if τ∗1 ≤ τ <τL,

uL if τ = τL,

φ−(τ,uL) if τL<τ.

(A.4)

One can check that, letting τL go to τ∗2 in Eq. (A.3), the part φ−(τ,uL) for τL<τ ≤ τ
∗
2

vanishes and u∗2(uL) goes to uL. Eq. (A.3) then becomes Eq. (A.2) with τL= τ
∗
2 .

Likewise, when τL→ τ∗1 in Eq. (A.4), then τ[(τL)→0 and the part ψ−(τ,uL) with
τ ∈ [τ∗1 ,τL) vanishes and since u∗1(uL)→uL, for any 0<τ <τL, the function ϑ−(τ,uL)
becomes ψ−(τ,uL) in (A.4). Moreover, setting τL= τ

∗
1 in Eq. (A.2) gives τ](τL)= τ

∗
1

(and u](uL)=u∗1). Therefore, Eq. (A.4) and Eq. (A.2) represent the same curves
when τL= τ

∗
1 . It thus ensures the continuity of ϑ− with respect to τL and ends the

proof of Proposition 4.3.
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