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MINIMIZATION WITH THE AFFINE NORMAL DIRECTION*

HSIAO-BING CHENGT, LI-TIEN CHENG?!, AND SHING-TUNG YAUS$

Abstract. In this paper, we consider minimization of a real-valued function f over R**1 and
study the choice of the affine normal of the level set hypersurfaces of f as a direction for minimization.
The affine normal vector arises in affine differential geometry when answering the question of what
hypersurfaces are invariant under unimodular affine transformations. It can be computed at points
of a hypersurface from local geometry or, in an alternate description, centers of gravity of slices. In
the case where f is quadratic, the line passing through any chosen point parallel to its affine normal
will pass through the critical point of f. We study numerical techniques for calculating affine normal
directions of level set surfaces of convex f for minimization algorithms.
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1. Introduction

Affine transformations perform translations, rotations, and flips in R™*!, map-
ping F— AZ+b, for AeGL(n+1,R), beR"!. In digital image processing, they
have been used to handle changes in perspective, video images [16, 17], segmentation
[1, 15], and smoothing [7], to reference a few. Similar operations also apply to prob-
lems in computer graphics and geographic information systems; however, these only
scratch the surface of the subject of affine transformations and affine geometry.

The central question of affine differential geometry can be posed as: what hyper-
surfaces of R"*! are invariant under the group of unimodular affine transformations?
The most basic solutions are what are known as affine hyperspheres, or hypersurfaces
whose affine normal lines through each point either intersect at exactly one point or
are all parallel. In the simplest examples, these are ellipsoids and hyperboloids. In
this paper, we are interested in how this applies to minimization.

2. Minimization

Many real-world problems can be stated as optimization problems. In business,
one may be interested in minimizing the costs of production, while in biology, one may
seek the minimum energy state of a complex molecule. When no physical quantity
exists to be minimized, a non-physical quantity can be invented such that desired
properties are present at the minimum. For example, in image processing, denoising of
an image can be achieved by minimizing total variation in the presence of a fitting term
[14]. Thus optimization not only arises from physical problems, but is an established
computational tool as well. From this, it is not surprising that optimization has been
and currently is a field of intense interest and study.

As a model problem, we consider the following basic optimization problem: find
Z€R™! that minimizes a given smooth, real-valued function f:R"*!—R. The
function f can be chosen to represent production costs or a physical or artificially
constructed energy. Our interest lies in determining the location of minima. Fur-
thermore, we will be content with local minima since global minimization presents
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difficulties of a highly complex nature and of a different class. Thus, henceforth in
this paper, we use the word “minima” to refer to local and global minima.

3. Iterative Methods

Algorithms for minimization typically use iterations to improve on approximations
they generate. Starting from an initial guess, these algorithms calculate a direction
that approximately points at the minimum. Sometimes both a direction and length is
provided, and adding the guess to the vector with that length and direction leads to
an improved approximation of the minimum. Otherwise, the improved approximation
can be computed from a line search, a search for the minimum of the function along the
line passing through the guess parallel to the direction. Such a search is not necessarily
computationally expensive due to its one-dimensional nature. Repeating this process
starting with the last approximation produces a sequence of approximations. What
is desired of this sequence is, of course, fast convergence to the exact minimum.

We outline two example approaches for illustration that, in addition, can later
both be viewed as starting points for our new approach to minimization. Variations
of them also produce serious minimization algorithms.

3.1. Steepest Descent Method. Situated at any point, a natural direction
to choose for minimization is the steepest descent direction. This is the direction
along which the function is locally diminishing the most rapidly. Thus the use of
this direction leads to a greedy algorithm where the best choice locally is used. Line
searches in these directions and iterations produce the sequence of approximations
associated to the steepest descent method.

The steepest descent direction itself can be computed from derivative information
of f through the form: —V f. In terms of computational costs, this involves taking
first derivatives of the function f. Unfortunately, while this direction is intuitively
sound, it exhibits slow convergence for some very basic functions. This has lead
to the introduction of the quadratic minimization problem as a basic test case for
minimization algorithms. Consider the quadratic function

(&)= AT+ b T +c,

where A is an (n+1) X (n+1) positive definite matrix. We note this function has
only one critical point, a global minimum. Furthermore, it can be viewed as arising
from the quadratic approximation of a more general function. The steepest descent
method, in general, performs poorly for quadratic functions (see Figure 3.1). How-
ever, note the one case where it performs perfectly is when A=FkI, for k a constant.
The level sets of f, which are all circles centered at the minimum and the steepest
descent direction —V f, which is normal to the level sets, points exactly towards that
minimum. This viewpoint on the level sets of the function will fuel our minimization
approach. Furthermore, it may be especially useful and natural when level sets of f
have special meaning, such as when f represents an image.

We mention here that variations of this approach lead to very competitive and
successful minimization algorithms such as the conjugate gradient method. In this
method, in addition to the steepest descent direction, conjugate directions are also
included. The main points of the algorithm involve efficient construction of the conju-
gate directions and fast convergence in terms of these sets of directions. Examples of
conjugate gradient methods include the Fletcher-Reeves and Polak-Ribiere methods.
See [8, 12] for more on the subject.
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FiG. 3.1. Gradient descent starting at (0.9,0.1) not yet close after 15 iterations due to a wasteful
zig-zag behavior.

3.2. Newton’s Method. Consider the quadratic approximation of the func-
tion f at the origin:

F@) =TV2F0)Z+VF(0)'T+c.
The critical point of this quadratic satisfies
V2f(0)Z+V f(0)=0,

and so is located at = —(V?f(0)) "1V £(0). Generalizing, when the quadratic approx-
imation is taken at a point ¥, the critical point is at =7 — (V2f(%)) "'V f(7). Thus,
given an initial guess, this critical point, which corrects the guess by —(V2f)~1Vf,
evaluated at the guess, can serve as the next approximation in an iterative method.
This is known as Newton’s method, whose sequence of approximations exhibit fast
convergence. In terms of computational costs, this approach involves calculating first
and second derivatives and inverting the (n+1) x (n+1) Hessian matrix. However,
it performs perfectly on our test case, the quadratic minimization problem, with the
vector —(V2f)~1V f sending any initial guess straight to the minimum (see Figure
3.2). Furthermore, it is able to capture maxima and unstable critical points as well
as minima.

Improvements on Newton’s method focus on improvements in efficiency, leading
to competitive and widely used minimization algorithms. The so-called quasi-Newton
methods remove calculation of second derivatives of f by replacing the inverse of the
Hessian with an approximation that doesn’t involve them. Examples of quasi-Newton
methods include the Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno
methods. See [8, 12] for more on the subject.
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Fic. 3.2. Finding the minimum of the quadratic minimization problem in one iteration starting
from (0.8,0.3).

4. Affine Normal

The algorithm we introduce can be seen as incorporating the affine normal di-
rection into the steepest descent method or, alternatively, Newton’s method. To
understand the affine normal direction, we look at affine differential geometry. Let us
first consider the Euclidean case, using the Euclidean metric on R"*!. Let M be a
hypersurface in R"*!. We can then choose a vector field of normal vectors N to M.
Now if X and Y are vector fields on M and DxY is the flat connection on R™t!,
then we can decompose

DxY=VxY+h(X,Y)N,

where VxY is the tangential part of DxY and h(X,Y") the normal part, also known
as the second fundamental form. Furthermore, in this case, VxY is the Levi-Civita
connection of the Riemannian metric induced by R"*! on M.

In the affine situation, we consider any transversal vector field £ on M and define
VxY and h(X,Y) as above, but with £ in place of N. M is called non-degenerate
if A has rank n, and if this is true, then there is a unique &, up to sign, so that
the induced volume element 0(z1,...,z,)=det(z1,...,2,,£) is parallel relative to the
induced connection V. Moreover, it is equal to the volume element of the metric h.
This £ is called the affine normal field and I1 the affine metric. Note £ is invariant
under the unimodular affine group.

Alternatively, if we choose an arbitrary local frame field ey, ...,e,41 With eq,... e,
tangent to M and det(eq,...,e,+1) =1, we may define h as above, with DxY =V xY +
h(X,Y)en+1, to arrive at the affine metric

ITi=H "7 hyy,

where H is the determinant det{h;;} and the indices are in the {er}. In this case,



HSIAO-BING CHENG, LI-TIEN CHENG AND SHING-TUNG YAU 565

it can be proven that the affine normal field is given by AX, where the laplacian is
with respect to the affine metric 17 and X is the position vector of M.

When M is a level set surface of the function f, we can derive the affine normal
field to take the form

ij frnt1,i
Hiks (f” (=t ot n i >>
__n_ ’
V]
where the coordinates x; used are rotated so that x,,41 is in the normal direction; i.e.,

in the direction of V f. If only the direction of the affine normal is of importance we
may simplify this expression, such as dropping the determinant H, to arrive at

(f” (—7;2|Vf|ququz—+fn+1,i)> |
—1

Rotating back to standard coordinates just involves treating each of the components
in the above vector as the corresponding coefficient of a linear combination of the xj
in standard coordinates. This gives the affine normal direction of the level set surface
of f passing through a point of interest.

We note here some details of the affine normal vector. One is that the length of
the vector itself seems to be meaningless in terms of minimization. Another is that the
vector degenerates when the Hessian is non-invertible. Finally, as mentioned before,
when the hypersurface is an ellipsoid, all affine normals point towards its center. In
fact, the affine normals of the level sets of a quadratic polynomial will point toward
the unique critical point, even if that critical point is unstable. We will not take
advantage of this latter property in our work here. See [2, 3, 4, 6, 11] for more on the
affine normal and affine differential geometry.

5. Affine Normal Descent Algorithm

Using this affine normal field, we can summarize our algorithm in the following
steps, iterated to convergence:

1. Compute the affine normal direction to the level set of the function at the
current approximation location.
2. Use a line search to find the minimum of the function along that direction.
This location serves as the new approximation.
We call this the affine normal descent algorithm.

For the quadratic minimization problem, due to the nature of the affine normal
and the ellipsoidal level sets of f, the approximations of this algorithm will take on
the value of the exact minimum after one iteration (see Figure 5.1). Thus, the affine
normal and the vector —(V2f)~!Vf used in Newton’s method are parallel to each
other in this case, though, in general, not for other choices of f.

This means we may view this algorithm as an extension of the steepest descent
method, using the affine normal direction, which points at the center of ellipsoids,
instead of the steepest descent direction, which points at the center of spheres. On
the other hand, we may view it as a relative of Newton’s method, both exact for the
quadratic minimization problem but with different higher order terms.

Use of the affine normal has an immediate consequence: the algorithm is affine
scale invariant. This is a useful property that implies the existence of rigorous testing
programs that are easy to run and interpret [10] and can even mean greater numerical
stability in certain circumstances [13]. Furthermore it is particularly adapted to scale-
space [5] and natural scenes [1] in two and three-dimensional image processing and
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Fic. 5.1. In this two-dimensional example, we illustrate the fact that the affine normal points
toward the minimum of quadratic functions with ellipsoidal level sets.

analysis. Another useful property is that the affine normal depends just on the shape
of the level sets of f, not their values. This implies the algorithm is invariant under
contrast changes, borrowing from terminology used in image processing.

What we have listed so far are certainly advantages, however, in order for the
affine normal descent algorithm to truly be of merit, we must illuminate two other
major aspects. One concerns the computational costs of the approach, especially in
computing the affine normal direction. The other involves the generality of its applica-
tion, namely to problems outside of the class of quadratic minimization problems. For
the former issue, we consider the computational costs of the geometric construction of
the affine normal direction and propose alternatives arising from different viewpoints
afforded by affine geometry. For the latter issue, we perform numerical experiments
on the minimization of a wide range of convex functions f and investigate the results.

6. Efficiency

In terms of computational costs, we note that the previously derived formula for
the affine normal direction requires first, second, and third derivatives of f, as well
as inversion of an n xn matrix of second derivatives. While it may be possible to
generate other forms or approximations of the affine normal direction that simplify
the inversion or diminish the need of derivative information, perhaps following how
the quasi-Newton methods simplify Newton’s method, we are currently not able to
derive the correct expressions.

Instead, we consider a different viewpoint of the affine normal to bypass the need
for such information. Consider a convex hypersurface, a point on that surface, and
the tangent plane located there. Furthermore, consider the class of planes intersecting
with the surface and parallel to the tangent plane. On each of these planes, we look
at the center of gravity of the region enclosed by the intersection of the plane with
the surface. The union of these centers of gravity forms a curve. It turns out that
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Fic. 6.1. In this two-dimensional example, we show a point lying on the surface of a convex
object, lines parallel to the tangent line at that point, the centers of gravity of the part of those lines
lying in the convex object, and the curve that is created by a union of those centers of gravity. The
tangent of that curve at the point of interest on the surface gives the affine normal direction.

the one-sided tangent direction of this curve at the point of interest is the affine
normal vector (see Figure 6.1). Thus, an alternate approach for calculating the affine
normal vector involves calculating centers of gravity, completely bypassing the need
for derivative information higher than that of the first derivative which is required
for tangent planes. More accurately, it is not actually the centers of gravity that are
needed, just the one-sided tangent of the curve formed by them.

In detail, at an approximation location p, to find the equation of the plane passing
through that location and tangent to the level set surface f(z) = f(p), we note that V f
is normal to that surface. Thus the plane satisfies P(z)=V f-(x —p)=0 and planes
parallel to it satisfy P(z)=C, for C € R. The regions of interest on these planes can
then be implicitly identified as {P(z)=C}N{f(x) < f(p)} and algorithms for finding
centers of gravity of convex objects can be brought to bear on this description. Thus,
we can calculate the center of gravity of such a region for a small value of C'<0 to
form a divided difference approximating the tangent of the curve of centers of gravity.
This gives an approximation of the affine normal vector.

This approach to an efficient algorithm seems promising, though it must be
pointed out that current methods for finding centers of gravity are not fast enough in
high dimensions to achieve a speed-up for our approach (see [9] for related but more
difficult volume techniques). It is certainly beyond the scope of this paper to produce
such methods. However, we fully expect such methods to be advanced in the near
future.

Figure 6.2 visually compares two-dimensional minimizations of the function

f(x)=2(x%/2+21/12) 4 (23 /2 +25/12) +sinz; sinazy — 1

using derivatives, on the one hand, and centers of gravity, on the other, to calculate the
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affine normal. The results are identical. We note, however, that the method employed
here for computing the centers of gravity is dimension-specific and not generalizable
for efficient high-dimensional computations.

081

061

041

L L ! L L L L L L L L ! L L L L L L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Fic. 6.2. The figure on the left shows a numerical result of minimization using the affine
normal computed from centers of gravity. The figure is identical to the one shown on the right,
where the affine normal is computed through the geometric definition that uses derivatives.

Additionally, there is another viewpoint for the construction of centers of gravity
of convex objects. Consider the ellipsoid of minimum volume that circumscribes the
convex object. The center of this ellipsoid is the center of gravity of the object and, in
fact, dilation by 1/(n+1), where n+1 is the dimension of the object’s ambient space,
using origin at the ellipsoid center leads to a smaller ellipsoid that lies completely
inside the object. Though there are currently no fast methods for finding any of
these ellipsoids, we state its connection with the affine normal to illustrate other
possibilities for affine normal construction in high dimensions. For more on these
alternative viewpoints of the affine normal, see [2, 3, 4, 6, 11].

7. Convex Minimization

For more general cases, consider a convex f where the Hessian is always posi-
tive definite. Also suppose that the function’s critical point, the global minimum, is
attained away from infinity. Note, all level sets of f, which are what is important
in our algorithm, are convex, and the affine normals of these surfaces will not, in
general, point directly at the minimum. This means our affine normal descent al-
gorithm in general generates an infinite sequence of approximations. We investigate
the speed of convergence and approximation errors of this sequence by performing a
series of numerical tests. Since the iterations of our algorithm are more similar to the
quasi-Newton methods than the conjugate gradient methods, and since quasi-Newton
methods are simply efficient forms of Newton’s method, we mainly make comparisons
of our results with those of Newton’s method.

Our first series of tests considers convex functions whose level sets are ellipses
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centered at the minimum, such as

n+1 2

F@=exp| Y=
i=1

Note such a function is not a quadratic polynomial, but is a contrast change of one.
Our algorithm converges in one step to the minimum in every case and in every
dimension, as expected. Figure 7.1 shows the convergence in two dimensions along
with that of Newton’s method, which requires up to 4 iterations. We note, since it is
hard to determine from the figure, that the direction of minimization that Newton’s
method uses in general does not point exactly at the minimum.

0.8

0.6

0.4

0.2

Fic. 7.1. On the left, our algorithm exhibits convergence in one step to the minimum of a
non-polynomial function whose level sets are ellipses. On the right, Newton’s method requires 3 to
get close to the minimum and 4 to reach a comparable accuracy.

Our second series of tests takes place in three dimensions and studies the conver-
gence of the affine normal descent algorithm. Let

3 2
f@)= 321’? + Zsin:ci sina; 41
i=1 i=1

be the convex function whose minimum p is at the origin. Table 7.1 collects infor-
mation on iterations p; of our algorithm with initial guess at po=(2,—1,—2). Con-
vergence is fast and after 4 iterations, the minimum is captured. Newton’s method
exhibits similar speed in this case.

Alternatively, let

3 4
- Z z;
f(fE) = o <1'$ + E +COS.Z‘1->

be the convex function whose minimum p is at the origin. In this case, we choose
a starting point that is further from the origin, po=(10,6,7). Table 7.2 collects
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f(p;)

|Pj—Pj—1|

|

\pj —P|

27

3

1.40210926439103

2.87339142153736

0.69783378511265

0.00043034937731

0.70047441690861

0.01251645103971

0.00000000000001

0.01251643844478

0.00000005727856

=W N = OfS.

0.00000000000000

0.00000005727852

0.00000000000005

TABLE 7.1. Three Dimesional Result: In this three-dimensional example, the minimum is

captured after 4 iterations.

[J] f(p;) [ Ipj—pj-al ] lp; —pl \
0 | 1327.29166767853 13.60147050874
1| 107.61710514695 | 13.34645179930 | 6.27181862814
9 [ 100.05967077939 | 2.29760334273 | 6.30056266636
3 | 49.45367585162 | 4.43737133243 | 5.20714147442
4| 557628342138 | 5.22089032262 | 1.01111608274
5| 3.39959363498 | 1.76639408750 | 0.85090933891
6 | 3.01528632271 | 0.83300818402 | 0.17461685512
7 [ 3.00000027963 | 0.17461525378 | 0.00074783310
8 [ 3.00000000000 | 0.00074783310 | 0.00000000012

TABLE 7.2.
is at first slow,

Starting Far in Three Dimensions: Starting far from the minimum, convergence
then gains speed as the approxrimation gets closer to the minimum.

information on iterations p; of our algorithm. As expected, the iterations are slow to
converge at first, due to the distance of the approximations away from the minimum.
However, as the approximations get better, so does the speed of convergence. The
minimum is captured after 8 iterations. These examples are representative of the
affine normal descent algorithm in three dimensions. Newton’s method has similar
convergence speeds in these tests. Testing higher dimensions, let

6 5
7) =6 E z?+ E sinx;sinw; 1
i=1 i=1

be the convex function with #€ R% and minimum at the origin. This is a higher-
dimensional version of one of our previous three-dimensional tests. Using the initial
guess (0.1,—2,0.2,0,—0.3,0.8), we show the iterations of our algorithm in Table 7.3.
The behavior in terms of convergence is the same as in the three-dimensional case,
with convergence occurring after 3 iterations. Newton’s method exhibits similar speed
for these tests.

For a five-dimensional convex function, let

=3

i=1

“+sin xl

Let (—0.2,0,0.4,1,—0.3) be the starting point. The iterations of our algorithm are
shown in Table 7.4. Note, we do not assume the minimum to be known in this case.
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\ f(p)) | Ipj —pj-1 | lp; —pl \
28.19657899961829 2.18632111989754
0.10820380719931 2.17147295853185 | 0.13959871710538
0.00000000732600 | 0.13960261665982 | 0.00003483822916
0.00000000000000 | 0.00003483822789 | 0.00000000000152

W N = Of|~.

TABLE 7.3. Six-Dimensional Result: In this siz-dimensional example, the minimum is
captured after 3 iterations.

Convergence to the point

—0.45018354967147
—0.45018354967140
—0.45018354967139
—0.45018354967125
—0.45018354967129

is achieved in a few iterations. Newton’s method requires a similar number of itera-
tions for convergence.
For a more nonlinear example, consider the function

.y gt 1 g
f(Z)=exp 271—1—1—; —&—1—0200833
i=1 i=1

with minimum at the origin. Table 7.5 shows our affine normal descent algorithm
in action with starting point (0.2,0.2,—0.4,0.1,1). In this example, convergence was
achieved in 4 iterations while Newton’s method required 6. This gap is retained even
for other starting points and on other similar functions. This leads us to advance the
notion that our algorithm performs better for highly nonlinear functions.

For ten dimensions, with the convex function

10 2

2 gt
1@=3 (% +i5)
i=1

we once again see fast convergence to the minimum located at the origin in Table 7.6
using the initial guess (1,1,1,1,1,1,1,1,1,1). These examples are representative of the
affine normal descent algorithm in higher dimensions. Newton’s method, in this case,
performed just as fast.

From these studies in higher dimensions, we see the convergence of our approach
is not strongly affected by the dimension involved. Newton’s method also has this
property. Many other minimization algorithms such as the steepest descent method,
however, can require significantly more work for convergence in higher dimensions.

For a majority of our tests so far, Newton’s method has performed as well as
our approach, though in general leading to different sequences of approximations.
However, consider the convex function

-3 (&4 et
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\ f(pj) \
2.02669978966015
—0.87543513107826
—1.16211480429203

—1.16232787552543

—1.16232787579106

—1.16232787579106

Y | W N = Of.

Ip; —pj—1] \

2.17147295853185
0.13960261665982
0.00003483822789
0.00001466875411
0.00000000001789

TABLE 7.4. Five-Dimensional Result: In this five-dimensional example, convergence is
achieved after 5 iterations.

TABLE 7.5. Highly Nonlinear Result in Five Dimensions: In this five-dimensional exam-

|

f(pj)

lp; —pj-1l

lp; —pl

1.93582623492383

1.11803398874989

1.53696009070222

0.91576389258490

0.43531524358145

1.50052639212305

0.41811574484086

0.05228924261910

1.50000000048994

0.05227649798143

0.00005180928984

=W N =] Of.

1.50000000000000

0.00005180928710

0.00000000000906

ple on a highly nonlinear function, convergence is achieved after 4 iterations.

|

f(pj)

|pj—pj—1|

\pj —p|

3.38730158730159

3.16227709208757

0.20345967861706

3.57024309129289

0.78295790802333

0.01001074240275

0.91450443097023

0.24957535992445

0.00001004198928

0.24673975195323

0.00934204949602

=W N | Of%.

0.00000000000009

0.00934204949602

0.00000000000000

TABLE 7.6. Ten-Dimensional Result: In this ten-dimensional example, the minimum is
captured after 4 iterations.

with minimum at the origin. Our algorithm converges on average in 3 iterations for
a variety of starting points, with one case shown in Table 7.7. Newton’s method,
on the other hand, in general does not converge, oscillating for example between
(0,0,—1.047191267) and (0,0,1.047191267) in the three-dimensional case with initial

guess (0,0,1).

|

f(p;)

\pj —pj—1|

\pj —p|

1.21871862457614

1.445688322948010

0.04157512870688

1.49053754544770

0.24901763711108

0.00000037826466

0.24918409356303

0.00078674976823

W N = Of|~.

0.00000000000000

0.00078674979188

0.00000000011379

TABLE 7.7. Special Example in Three Dimensions: Three-dimensional example converging
in 3 iterations with initial guess at (0.3,—1,1). Newton’s method, on the other hand, does mot
converge.
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Finally, we consider a degenerate case. Let
2 4
- €Z;
F@=Y o
i=1
In this case, convergence is slow near the minimum at the origin, due to a singular
Hessian there, among other places. Starting from (1,0.5), our algorithm after 20 it-
erations reaches (0.00001514822871,—0.00002512372278). Newton’s method after the
same number of iterations reaches (0.00015233661514,0.00004721666799). However,
their behaviors are different, as seen in Figure 7.2. Nevertheless, degenerate cases
should be avoided.

1

0.8F

0.6

0.4

0.2

. . N N N . . -1 . . . . . . f
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Fic. 7.2. Our algorithm, on the left, and Newton’s method, on the right, converge slowly and
differently to the minimum at the origin.

From these studies, we see that our affine normal descent algorithm exhibits fast
convergence in a variety of situations in a number of dimensions. In fact, higher
dimensions do not greatly affect the number of iterations needed. The speed of con-
vergence in general is on the scale of that of Newton’s method, meaning our algorithm
can be competitive with other minimization algorithms that are around. In addition,
it is especially fast for certain, and perhaps most, highly nonlinear functions. On the
other hand, as expected, convergence is slower when far from the minimum or when
the function is degenerate at the minimum. These cases should be avoided as much
as possible. Finally, we would like to note that the studies we have carried out here
are mainly numerical in nature. Analytical studies to verify our results need to be
the subject of future work.

8. Conclusion

Summarizing, our studies reveal three advantageous characteristics of our affine
normal descent algorithm. The first is affine scale invariance, which can be at the
same time natural, simplifying, and essential. The second is that it is exact for
quadratic minimization due to the direction the affine normal points. Numerical
studies show this translates to fast convergence when more general convex functions
in any dimension are considered, especially a class of highly nonlinear ones. The third
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is that alternate viewpoints for constructing the affine normal allow for efficiency.
Though we are unable currently to take advantage of this due property, we believe the
desired advances will be forthcoming in the future. Altogether, we conclude that use
of the affine normal as a descent direction in minimization, with the abilities revealed
in our studies, can make an impact as a new algorithm in the field of minimization.
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