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NETWORK MODELS FOR SUPPLY CHAINS∗

S. GÖTTLICH† , M. HERTY‡ , AND A. KLAR§

Abstract. A mathematical model describing supply chains on a network is introduced. In
particular, conditions on each vertex of the network are specified. Finally, this leads to a system of
nonlinear conservation laws coupled to ordinary differential equations. To prove the existence of a
solution we make use of the front tracking method. A comparison to another approach is given and
numerical results are presented.
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1. Introduction
Supply chain modelling is characterized by different mathematical approaches: On

the one hand there are discrete event simulations based on considerations of individual
parts. On the other hand, continuous models like [1, 2, 3] using partial differential
equations have been introduced.

In this paper we present a model for the behavior of supply chains on a network.
We work with the conservation law presented in [1] which is derived there from a
discrete time system.

More precisely, a supply chain with M suppliers is considered, where every sup-
plier m is only linked with the previous supplier m−1. Further, every supplier consists
of a processor characterized by its processing time T (m), its maximal processing rate
µ(m) and a queue in front, see [1]. The variable τ(m,n) denotes the arrival time of
part n at supplier m. For computing the time evolution of every part the modelling
of queues is essential. By assuming FIFO policy two cases of queue states can be
distinguished: either the queue is empty or non-empty. If the queue is empty, part n
is directly given into the processor m and is produced with time T (m) (see equation
(1.1a)). Otherwise the queue is non-empty, so part n has to wait. Its time of waiting
is the inverse of the processing rate (see equation (1.1b)). After being produced in
processor m the part n is given into the queue of processor m+1 (equation (1.2)).

τ(m+1,n)= τ(m,n)+T (m), (1.1a)

τ(m+1,n)= τ(m+1,n−1)+
1

µ(m)
. (1.1b)

Summarizing these results yields, see again [1]:

τ(m+1,n)=max{τ(m,n)+T (m),τ(m+1,n−1)+
1

µ(m)
},

m=0,... ,M−1, n≥0. (1.2)
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This time recursion can be investigated using the so called Nevell-curves (see [8], [14]
for more details), which are curves of cumulative counts using the Heaviside function:

U(m,t)=
∞∑

n=0

H(t−τ(m,n)), m=0,... ,M, t>0. (1.3)

The focus in [1] is on the derivation of a conservation law based on the time recursion
(1.2).

Mapping each supplier onto one gridpoint in space and performing an asymptotic
analysis yields under certain assumptions a partial differential equation for the N-
curve ū(x,t) and the density ρ̄(x,t)=−∂xū:

∂tū−min{−L

T
∂xū, µ(x)}=0 (1.4)

and

∂tρ̄+∂xmin{L

T
ρ̄, µ(x)}=0. (1.5)

Due to discontinuities of the solution ū of the first equation one obtains δ-distributions
on the level of the solution of the equation for ρ̄. These δ-distributions are natural,
modelling the queues in the system, but do not allow for a simple theoretical treatment
of the equation. In the following section we investigate a similar model. By modelling
queues exactly in front of each supplier we obtain an equation for the density avoiding
the above bottlenecks in the density. In section 3 an analysis of the new model
is performed and the existence of the solutions is shown. Section 4 points out the
differences and similarities of the two models. In particular, the above equation for the
N-curve ū from [1] is recovered. Numerical results are presented in section 5. A major
advantage of the present approach is that it is easily adapted to more complicated
networks with vertices with multiple entries and exits. This will be discussed shortly
in the final section and in more detail in a forthcoming paper.

2. Modelling
In this section we introduce a new model for large queuing supply chain networks

based on the work of Armbruster, Degond and Ringhofer (see [1]). The main new
ingredients are the formulation as a PDE network problem and a separate modelling
of the queues. One advantage of such a point of view is the easy accessibility to
existence theory of the network problem. Moreover, in this framework situations with
real networks having multiple incoming and outgoing arcs for each vertex are easily
included. At first, we state the definition of a supply chain network and describe the
connection between the network and the suppliers.

Definition 2.1. [Network definition] A supply chain network is a finite, connected
directed, simple graph consisting of arcs J ={1,.. .,N} and vertices V={1,... ,N−1}.
Each supplier j is modelled by an arc j, which is again parameterized by an interval
[aj ,bj ]. We use a1 =−∞ and bN =+∞ for the first respectively the last supplier in
the supply chain.

First, we consider the special case where each vertex is connected to exactly two
arcs. For notational convenience we assume that bj =aj−1, c.f. Figure 2.1. As already
mentioned, a supplier j is defined by a queue j and a processor j. Physically, the queue
is located in front of each processor, i.e., at x=aj . To avoid technical difficulties, we
assume that the first supplier consists of a processor only.
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Fig. 2.1. Example of a simple network structure

Each processor j is defined by a maximum processing capacity µj , its length
Lj and the processing time Tj . The rate Lj/Tj describes the processing velocity.
Further, ρj denotes the density of parts in the supply chain at point x and time t.
The dynamics of each processor on an arc j are governed by an advection equation
as in [1]:

∂tρj(x,t)+∂xmin{µj ,
Lj

Tj
ρj(x,t)}=0, ∀x∈ [aj ,bj ], t∈R+ (2.1a)

ρj(x,0)=ρj,0(x), ∀x∈ [aj ,bj ]. (2.1b)

Note that we use the flux functions derived in [1]

f :R+
0 → [0,µ], f(ρ)=min{µ,

L

T
ρ}, (2.2)

with a positive constant µ, i.e., the maximal rate for the processor. Clearly, f is
Lipschitz with constant Lf = L

T .
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Fig. 2.2. Relation between flow and density

Remark 2.2. Usually, an inflow profile f1(t) for the supply chain is given. In the
above model, this profile can be translated into initial data ρ1,0(x) :=ρ1,0(b1− t)=
f1(t) on an (artificial) first arc, where in addition we assume µ1 >maxf1, L1/T1 =1.

In contrast to [1] we consider queues in front of each processor. Each queue is
a time-dependent function t→ qj(t) and used to buffer demands for the processor j.
If the capacity of processor j−1 and the demand of processor j are not equal, the
queue qj increases or decreases its buffer. Mathematically, we require each queue qj

to satisfy the following equation:

∂tqj(t)=fj−1(ρj−1(bj−1,t))−fj(ρj(aj ,t)), j =2,... ,N (2.3)
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Due to the advection, there is freedom in defining the flux on the outgoing arc j. We
use

fj(ρj(aj ,t))=

{
min{fj−1(ρj−1(bj−1,t)),µj}, qj(t)=0
µj , qj(t)>0.

(2.4)

The flux fj(ρj(aj ,t)) is dependent on the capacity of the queue. If the queue is empty,
fj(ρj(aj ,t)) is either fj−1(ρj−1(bj−1,t)) or µj . Otherwise, if the queue is non-empty,
the queue is reduced with rate µj . For the precise definition of a solution at the
vertex, see Definition 3.5. Finally, we obtain the following coupled system of partial
and ordinary differential equations (2.5) on a network given by Definition 2.1.

∂tρj(x,t)=−∂xmin{µj ,
Lj

Tj
ρj(x,t)} (2.5a)

ρj(x,0)=ρj,0(x) (2.5b)
∂tqj(t)=fj−1(ρj−1(bj−1,t))−fj(ρj(aj ,t)) (2.5c)

qj(0)= qj,0 (2.5d)

fj(ρj(aj ,t))=

{
min{fj−1(ρj−1(bj−1,t)),µj}, qj(t)=0
µj , qj(t)>0.

(2.5e)

3. Theoretical Investigations
In this section we give precise statements of the definition of a solution to the

supply chain model. We prove the existence of solutions for piecewise constant initial
data up to any fixed positive time T. The construction of the solution and the proof
is based on wave- or front-tracking method, see [5, 11].

First, we discuss the existence results for the Cauchy problem on a single arc
without coupling conditions. We recall the definition of entropic solutions in sense of
Kruzkov [13] and well-known existence results [5, 7, 11]. Then we define the solution
at a single vertex. Finally, we combine the results to prove existence for the whole
network.

We recall the definition of solutions for the general Cauchy problem

∂tρ(x,t)+∂xf(ρ)=0, ρ(x,0)=ρ0(x) (3.1)

in the sense of [13]:

Definition 3.1. A locally bounded and measurable function ρ(x,t) on R×R+
0 is

called an admissible weak solution to (3.1), if for any non-decreasing function h(ρ)
and any smooth non-negative function φ with compact support in R×R+

0 ,
∫ ∞

0

∫ ∞

−∞
(I(ρ)φt +F (ρ)φx)dxdt+

∫ ∞

−∞
I(ρ0)φ(x,0)dx≥0 (3.2)

where I(ρ)=
∫ ρ

h(ξ)dξ and F (ρ)=
∫ ρ

h(ξ)df(ξ).

The following result is well-known.

Theorem 3.2. [Lemma 3.1 [7]] Assume f piecewise linear and Lipschitz continuous
on [m,M ] and

ρ0(x)=
{

ρl x≤0
ρr x≥0 (3.3)
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with constants ρl,ρr ∈ [m,M ]. Then there exists an admissible weak solution of (3.1)
which consists of a finite number of constant states separated by shocks centered at
the origin.

For our special flux function (2.2), the solution of Riemann problems for (3.1)
and (2.2) is either given by (3.4) or by (3.5): Consider the initial data (3.3) with
ρl,ρr ∈R+

0 . Let ρl <ρr, then the weak admissible solution to (3.1), (2.2) and (3.3) is
given by

ρ(x,t)=

{
ρl, −∞< x

t ≤ f(ρr)−f(ρl)
ρr−ρl

,

ρr,
f(ρr)−f(ρl)

ρr−ρl
< x

t <∞.
(3.4)

In the case ρr <ρl we distinguish three cases. If ρl≤µ or if ρr≥µ the solution is
given by (3.4). In the remaining case ρr <µ<ρl we obtain the solution (3.5)

ρ(x,t)=





ρl, −∞< x
t ≤ µ−f(ρl)

µ−ρl
,

µ, µ−f(ρl)
µ−ρl

< x
t ≤ f(ρr)−µ

ρr−µ ,

ρr,
f(ρr)−µ

ρr−µ < x
t <∞.

(3.5)

In this case it holds µ−f(ρl)
µ−ρl

=0 and f(ρr)−µ
ρr−µ =1.

The idea to construct a solution ρ(x,t) for all times t is given by the front- or wave-
tracking algorithm [5, 11]: We start with a step function ρ0(x) and solve at each point
of a jump discontinuity a Riemann problem as described above. Then the solution
ρ(x,t), t>0 is again a step function with discontinuities travelling at constant speed
(fronts). At some time t̄>0 one or more fronts may collide. As before we proceed
by solving a Riemann problem with initial data ρ(x,t̄). For all times t this procedure
is well-defined and generates a solution ρ(x,t) once we proved that the number of
collisions is finite. The following lemma - which holds true in more general situations
(Lemma 2.6 [11]) - can be proven rather elementary for the above flux function. This
lemma is necessary to prove existence for a single conservation law as (3.1) as well as
for a coupled system of equations.

Lemma 3.3. Consider the problem (3.1) and (2.2).Let M be any fixed positive number.
For each fixed δ, such that µ/δ∈N, consider the set of points R :={ρi} given by ρi = iδ
for 0≤ iδ≤M and i∈N0. Let the initial data ρ0 be a piecewise constant function with
values in R.

Then there exists only a finite number of interactions between discontinuities of
the admissible weak solution to (3.1), (2.2) for each t∈R+

0 .

Proof. We consider the case M >µ. Note that by assumption ∃i such that µ=ρi

and therefore f has breakpoints in the set R. Consider the integer valued function φ(t)
where φ(t) is the number of points of jump discontinuities of the solution ρ(x,t) at
time t. The function N :R+

0 →N defined by N(t) :=φ(t)+φ(0) is strictly decreasing
for each collision of discontinuities. Indeed, assume that k≥2 fronts given by the
jumps given by (ρ1,ρ2),(ρ2,ρ3),... ,(ρk,ρk+1) collide at time t̄. By construction, the
solution to the Riemann problem with initial data (ρi,ρi+1) is locally of the type (3.4)
or (3.5). In the first case j(t) decreases by k−1 and N(t) decreases by at least one.
The case (3.5) cannot happen due to the monotone flux function: Consider the case
k =2 and assume ρ1 >µ>ρ3. For a collision of the two discontinuities we need that
f(ρ1)−f(ρ2)>0 which implies that ρ2 <µ. This is a contradiction to the speeds of
the fronts. Finally, N(t) is strictly decreasing for each collision and the construction
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is well-defined. Furthermore, by (3.4) and (3.5) the total variation is non-increasing
and bounded: TV (ρ(·,t))≤TV (ρ0(·)).

Using the above lemma the proof of the following theorem is standard, see for
example Theorem 2.13 [11].

Theorem 3.4. Let ρ0 be a L1(R)-function with bounded variation and let f be a
Lipschitz function. Then there exists a unique admissible weak solution ρ(x,t) to the
initial value problem

∂tρ+∂xmin{µ,ρ}=0, ρ(x,0)=ρ0(x). (3.6)

We extend the results to the network case. For the remaining part we assume the
following,

(A1) The supply chain can be modelled as in Definition 2.1. We assume a con-
secutive labelling of the processors, such that processor j−1 is connected at
x= bj−1 to processor j.

(A2) Lj/Tj =1 for all j∈J .
(A3) ρj,0(x)≤µj a.e. x∈ [aj ,bj ] and all j∈J

Recall that the density ρj in the processor j∈J of the supply chain satisfies

∂tρj +min{µj ,
Lj

Tj
ρj}=0, ∀(x,t)∈ [aj ,bj ]×R+

0 (3.7a)

ρj(x,0)=ρj,0(x). (3.7b)

We consider admissible weak solutions ρj(x,t) in the sense of Definition 3.1 on
each arc j. We define admissible solutions at a vertex v∈V as follows, see also Figure
3.1.

Definition 3.5. Given functions ρ1(x,t),ρ2(x,t) in L1([aj ,bj ]×R+
0 ) and such that

ρj(·,t) has bounded variation. Let q(t) := q2(t)≥0 be a an absolutely continuous func-
tion on [0,T ] for T sufficiently large and let fj(ρ) :=min{µj ,ρ}.
Then we call (ρ1,ρ2,q) an admissible solution at the vertex for all times 0≤ t≤T , if
and only if

d

dt
q(t)=f1(ρ1(b−,t))−f2(ρ2(a+,t)) a.e. t (3.8a)

f2(ρ2(a+,t))=
{

µ2, q(t)>0
min{µ2,f1(ρ1(b−,t))}, q(t)=0.

(3.8b)

Now, we study Riemann problems at the vertex. These solutions will be used to

r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

r

rrrrrrrrrrrrrrrrrrrrrrrrr

r

rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r� r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

r

rrrrrrrrrrrrrrrrrrrrrrrrr

r

rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r|| ||

�1 �2q2
a1 b1= a2 b2

Fig. 3.1. Two suppliers linked by queue q2

construct solutions for the network problem by front-tracking. The first result gives
existence of admissible solutions at the vertices for constant initial data.

Theorem 3.6. Let T be arbitrary fixed time, aj =0, bj =1 and let ρ1,0≤µ1, ρ2,0≤µ2

and q2,0≥0 be constants.
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Then there exists a unique admissible solution (ρ1,ρ2,q) at the vertex and an admis-
sible weak solution (ρ1,ρ2) on the arcs for all times 0≤ t≤T such that ρj(x,0)=ρj,0,
q2(0)= q2,0 and the solution is given by

ρ1(x,t)=ρ1,0 (3.9a)

ρ2(x,t)=





f1(ρ1,0)<µ2





ρ1,0 0≤ (x− t0)/t<1= f2(µ2)−f2(ρ1,0)
µ2−ρ1,0

µ2 1≤ (x− t0)/t and x/t<1
ρ2,0 1≤x/t<∞

f1(ρ1,0)≥µ2

{
µ2 0≤x/t<1= f2(µ2)−f2(ρ2,0)

µ2−ρ2,0

ρ2,0 1≤x/t<∞

(3.9b)

q2(t)= q2,0 +
∫ t

0

f1(ρ1,0)−f2(ρ2(a+,τ))dτ (3.9c)

wherein t0 = q2,0/(µ2−f1(ρ1,0)).

Remark 3.7. We refer to Figure 3.2 for a sketch of the solution ρ2(x,t) in the
x− t−plane in the case q2,0 >0 and f1(ρ1,0)<µ2.

In the case q2,0 =0 we obtain ρ2(x,t)=ρ1,0 for 0≤x/t<1 and ρ2(x,t)=ρ2,0 for
1≤x/t<∞. t0 denotes the first time at which the queue is empty.

Obviously, the discussion is similar removing assumption (A2).

Proof. The solution (3.9a-3.9c) satisfies (3.8a)-(3.8b). Further, it is an admissible
weak solution in all cases. In the interesting case f1(ρ1,0)<µ2 the solution ρ2(x,t) is
the restriction of the solution to the Cauchy problem (3.7) with initial data ρ0(x)=ρ1,0

for x≤−t0, ρ0(x)=µ2 for −t0 <x≤0 and ρ0(x)=ρ2,0 for x>0.
For the uniqueness we notice that since f ′j≥0 the solution ρ1(x,t) has to be

(3.9a). The map ρ→f ′j(ρ) is invertible for 0≤ρ≤µj . If f1(ρ1,0)≥µ2 then (3.8b)
implies (3.9b).
We discuss the case f1(ρ1,0)<µ2 and q2,0 >0 with the remaining case being similar.
There exists t0 >0 such that q(t0)=0 and ρ2(a+,t)=µ2 for t≤ t0. t0 is given by 0=
q2,0 +

∫ t0
0

f1(ρ1,0)−µ2 dτ = q2,0− t0(µ2−f1(ρ1,0)). For t≥ t0 we obtain ρ2(a+,t)=ρ1,0

and q(t)=0. Hence the solution is given by (3.9b).
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Fig. 3.2. Admissible solution at the vertex in the subcase q2,0 >0 and f1(ρ1,0)<µ2 in the
x− t−plane

Next, we define solutions for the network problem.
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Definition 3.8. Assume a network geometry as in assumption (A1) with consec-
utive labelling of the processors according to (2.5). Let T >0, values qj,0≥0, j =
2,.. .,N and functions ρj,0 : [aj ,bj ]→R in L1 and with bounded variation for all
j =1,.. .,N be given. The supply chain problem then reads with fj =min{µj ,ρj} and
∀j =1,.. .,N ∀(x,t)∈ (aj ,bj)×(0,T ), ∀j =2,... ,N

∂tρj +∂xfj(ρj)=0, ρj(x,0)=ρj,0(x), (3.10a)
∂tqj(t)=fj−1(ρj−1(b−,t))−fj(ρj(a+,t)). (3.10b)

We call a family ρj : [aj ,bj ]× [0,T ] of L1−functions with bounded variation and
functions qj absolutely continuous an admissible solution to the network problem, if for
each vertex (ρj ,qj)j is an admissible solution at the vertex in the sense of Definition
3.5, if for all j =2,... ,N , qj(0)= qj,0 and if for all j ρj is an admissible weak solution
for the processor in the sense of Definition 3.1.

Remark 3.9. In contrast to the notation of solutions proposed in traffic flow theory,
see for example [6, 12], the above defined solution is not a solution in the sense that

∑

j

∫ bj

aj

∫ ∞

0

(
∂tφjρj +∂xφjfj(ρj)dxdt

)
=0 (3.11)

where {φj}N
j=1 is a family of smooth test-functions and where each φj has compact

support in [aj ,bj ]×R+
0 and is smooth across a vertex, i.e., φj(b,t)=φj+1(a,t) if arcs j

and j +1 are connected. Especially (3.11) implies that for sufficiently regular solutions

fj(ρj(b−,t))=min{µj ,ρj(b−,t)}
=min{µj+1,ρj+1(a+,t)}=fj+1(ρj+1(a+,t)).

This condition is replaced by ∂tqj+1(t)+fj+1(ρj(b−,t))=fj(ρj(a+,t)) with the phys-
ical interpretation that the incoming flux is distributed among the outgoing processor
and its buffering queue.

Using the Front–Tracking idea we show for piece-wise constant initial data, we can
define a solution to the network problem (Definition 3.8) up to any positive time T.
We introduce a discretization of the flux functions. Let µ̄ :=max{µj : j =1,... ,N} and
introduce a equi-distant grid (iδ)Nx

i=0 such that 0≤ iδ≤ µ̄ and such that ∀j ∃ij iδ =µj .
Due to assumption (A3) ρj,0(x)≤µj we can approximate the initial data by a step
function ρδ

j,0 taking values in the set {iδ : i=0,.. .,Nx}. Further, this construction
ensures that the solution at the vertex only takes values in this set, see (3.9a-3.9c).
For the Riemann problems with data ρδ

j,0 on each arc j we can find solutions ρδ
j

using Lemma 3.3. Then the solutions define a set of discontinuities moving along
the intervals [aj ,bj ]. Clearly, ρδ can be defined until the first discontinuities collide.
Either the collision can be resolved by solving a new Riemann problem on the arc
(which is a well-defined process due to Theorem 3.4) or we obtain a collision with a
vertex discussed in Lemma 3.10. In both cases we obtain new discontinuities which
can be propagated until the next collisions. This can be repeated and below we show
that indeed ρδ can be defined up to any given time T .

From now we consider a step function ρδ
j(x,t), j =1,... ,N , defined by a number

of constant states ρδ
j,i for i=1,.. .,N−1. For notational convenience we assume that

ρδ
j(ai,·)=ρδ

j,1 and so forth.
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Lemma 3.10. Given a vertex with ingoing arc j =1 and outgoing arc j =2, assume
states ρ1,0,ρ2,0 and q2,0 given with ρj,0≤µj. Consider a discontinuity colliding with
the vertex at time t̄.

Then the admissible solution to the network problem in sense of Definition 3.8 is
again a step function and the integer valued function 4φ1(t)+φ2(t) is strictly decreas-
ing after the collision, where φj(t) denotes the number of possible jump discontinuities
on arc j at time t and is defined by (3.12).

Proof. The colliding discontinuities can arrive from the ingoing arc j =1 only,
since f ′j(·)≥0. Denote by (ρ̄1,ρ1,0) the colliding discontinuity with ρ̄1≤µ1.

By Theorem 3.6 we obtain that ρ1(x,t)= ρ̄1 for t≥ t̄ and ρ2(x,t) is a step function
with at most three steps. We define φj before we discuss the possible solutions ρ2

arising due to the collision of (ρ̄1,ρ1,0) at time t̄.

φj(t) :=ϕj(t)+2ψj(t) (3.12)

Here ϕj denotes the number of discontinuities in the solution ρj at time t. The function
ψj indicates possible discontinuities arising due to the queue qj . To be more precise
we define

ψj(t) :=
{

0, if ∂tqj(t)≥0
1, if ∂tqj(t)<0 , (3.13)

and ψj(0)=1, if qj 6=0. If (the integer–valued function) φj(t)=0 at some time t>0,
then ρj is a constant. The collision yields a reduction of ϕ1 by one. For the outgoing
arc j =2 we distinguish the following cases and remember that the solution ρ2 is given
by (3.9b). First assume ρ̄1 >µ2, then φj increases at most by three, since both ϕ2 and
ψ2 might increase by at most one. Second, assume that ρ̄1 <µ2. Then ϕj increase by
at most one at time t̄ and possibly again by at most one at time t̄+ t0, where t0 is as
in Theorem 3.6. If at time t̄+ t0 ϕj increases, then ψj decreases by exactly one, since
the queue ∂tq2(t̄+ t0)=0. Summarizing, φ2 increases by at most three at time t̄ and
is possibly decreasing at time t̄+ t0 by at least one. This yields the assertion.

Remark 3.11. Note that due to the positive velocity of the travelling discontinuities
(or equivalently due to the monotonicity of the flux functions fj) an estimate on the
number of travelling discontinuities is also an estimate on the number of possible
interactions (i.e. collisions).

Remark 3.12. Due to Lemma 3.3 we already know that for each single arc the
function φj(t)+φj(0) is strictly decreasing for each collision. Generalizing this to a
network fulfilling the assumptions (A1−A3) with N arcs, we see that the function

N(t) :=
N∑

j=1

(φj(t)+φj(0))+
N∑

j=1

4N−jφj(t)

is strictly decreasing for each collision. Hence, the total number of collisions is
bounded by N(0) and the construction outlined above is well-defined.

In the setting of Lemma 3.10 we cannot expect that the total variation is
non-increasing. Indeed it may increase due to a collision with the vertex. As-
sume ρ2,0 =µ2, q2 >0, f1(ρ1,0)<µ2 and ρ̄1 arbitrary. Further let t̄< q2/(µ2−f(ρ1,0))
be the collision time of the discontinuity (ρ̄1,ρ1,0) with the vertex. Then for
t≥ t̄ : TV (ρ2(·,t))≥|ρ̄1−µ2| which cannot be bounded by |ρ̄1−ρ1,0| and TV (ρ2(·,0)).
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Therefore, the total variation might increase due to collisions with the vertices and
there is no bound uniformly in δ.

Theorem 3.13. Assume (A1-A3) and a network of N processors. Consider the
problem (3.1) and (2.2). Assume that the initial data (ρ1,0(x),... ,ρN,0(x)) are step
functions.

Then the problem (3.1), (2.2) has a weak admissible solution constructed by ad-
missible network solutions in the sense of Definition 3.8.

4. Comparison with the approach by Armbruster, Degond, Ringhofer
[1]

In this section we compare the present model to the model developed in [1]. In [1]
a PDE for the N-curve ū(x,t) is derived. We use the notation ū and ρ̄ to denote the
solutions from [1]. The density ρ̄(x,t) is determined as the negative space derivative
of ū(x,t). As we will see, although the concept of solution of the network problem is
different, both models give the same equation for the N-curves.
Assume L=T =1 and two connected processors as in Figure 3.1. Then the equation
for the N-curve ū(x,t) in [1] on the interval x∈ [a1,b1]∪ [a2,b2] with b1 =a2 is given
by

∂tū(x,t)=min(µ(x),−∂xū(x,t))︸ ︷︷ ︸
=:f(x,ρ̄)

, (4.1a)

ū(a1,t) :=
∫ t

0

f(a1, ρ̄(a1,t
′))dt′. (4.1b)

By the discussion in the introduction we have ρ̄=−∂xū. Further, for x≤ b1 : µ(x)=µ1

and f(x,ρ̄)≡f1(ρ̄) and for x≥a2 : µ(x)=µ2,f(x,ρ̄)≡f2(ρ̄).
Consider now the present model and the network solution ρ(x,t) defined in this

paper and u(a1,t)≡ ū(a1,t) as above, we set

u(x,t) :=u(a1,t)−
∫ x

a1

ρ(x′,t)dx′−q(t)χ[a2,x). (4.2)

Formally, we calculate

∂tu(x,t)=∂tu(a1,t)−
∫ x

a1

∂tρ(x′,t)dx′−∂tq(t)χ[a2,x)

and one obtains for x∈ [a1,b1] : ∂tu(x,t)=f1(ρ1(x,t))=f(x,ρ) and for x∈ [a2,b2]:

∂tu(x,t)=∂tu(a1,t)+
∫ b1

a1

∂xf(ρ(x′,t))dx′+
∫ x

a2

∂xf(ρ(x′,t))dx′−∂tq(t)

=∂tu(a1,t)+f1(ρ1(b1,t))−f1(ρ1(a1,t))+f2(ρ2(x,t))
−f2(ρ2(a2,t))−

(
f1(ρ1(b1,t))−f2(ρ2(a2,t))

)

=f2(ρ2(x,t))=f(x,ρ).

I.e. we obtain the same equation as in [1] and further, ū=u.
In other words the definition of the N-curve u(x,t) given above coincides with

the N-curve ū(x,t) in [1]. However, the definition of the density ρ(x,t) is different.
Here, the points of discontinuity of ū(x,t), i.e. the queues, are modelled by a separate
function q(t). Thus, the remaining part of u(x,t) gives a well defined density ρ(x,t)
which can be treated by the usual front tracking algorithm avoiding the issue of
distributional solutions of the equation for ρ̄(x,t) in [1].
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5. Numerical Results
We present numerical results for our network model explained in the sections

before. The example we consider is similar to the one in [1]: We consider a supply
chain with N =4 consisting of three processors with queues characterized by Lj ,µj

and Tj for j =1,... ,4 and an inflow arc. We use the labelling according to our network
Definition 2.1. According to the discussion above the numerical results for the N-
curve u(x,t) are equivalent to those obtained in [1]. This in particular true due
to the same Upwind discretization given below and in [1].

Numerically, we discretize the system (2.5) using an Upwind-scheme for the ad-
vection equation and an explicit Euler-scheme for the queues. Therein, each arc j
could have different space increments, namely ∆xj = Lj

Nj
, where Nj is the number of

space discretization points. For simplicity, the time steps ∆t are constant and satisfy
the CFL condition on each arc.

To compare the results with [1] we use the data in Table 5.1. Initial values for

Processor j Nj µj Tj Lj

1 10 25 1 1
2 10 15 1 0.2
3 30 10 3 0.6
4 10 15 1 0.2

Table 5.1. Parameters of the example problem

the first arc are fixed by the inflow profile f1(t), see the discussion in Remark 2.2. All
other initial values are zero, i.e., ρj,0 =0 and qj,0 =0 for j =2,3,4. The initial profile
is such that it exceeds the maximum capacity of the processors, see Figure 5.1.
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Fig. 5.1. Inflow profile f1(t) prescribed as initial data on arc one.

In Figure 5.2 we present the numerical solution to the supply chain model. At the
top we find plots of the queues located at the beginning of the processors j =2,3,4.
The queue q4 remains empty, since the maximal capacity µ4 >µ3. In the queues q2

and q3 we observe the buffering of an exceeding demand. At the bottom, we find
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a plot of the final density. The density ρ2 of processor two corresponds to the strip
0≤x≤10,t>0, ρ3 for processor three to 10≤x≤40,t>0 and ρ4 to the remaining part
of the plot. Since the initial data exceeds for some time the maximum capacity of the
processors two and three, respectively, we observe functions that are plateau shaped.
This can also be seen in Figure 5.3 showing the contour plot of the corresponding
fluxes fj(ρj).

0 20 40 60 80 100 120 140
−20

0

20

40

60

80

100

120

140

t

pa
rt

s

Queue 1
Queue 2
Queue 3

10
20

30
40

50

0
20

40
60

80
100

120
140

0

20

40

60

80

xt

Fig. 5.2. Queue and density of the network model.

To compare the model with the existing results we also give a plot of the antideriv-
ative u(x,t) obtained by the calculations in the preceding section, see equation (4.2)
and Figure 5.4. This plot is similar to the results proposed in [1]. For further compar-
isons, we formally calculate ρ̄=−∂xu. A plot is given in Figure 5.5. As expected, one
observes the appearance of sharp peaks approximating δ−distributions, see remarks
in [1]. Those peaks do not occur in the new proposed network model (Figure 5.2),
due to the introduced buffering by queues.

6. Conclusions
1. Using the reformulation of the model in [1] which is presented here allows

for an existence theory directly for the density ρ. The new model consists of
queues and processors modelled as a coupled system of partial and ordinary
equations and it allows a formulation as a network of processing units.
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Fig. 5.4. Antiderivative of the density ρ

2. The model is easy to adapt to networks with multiple entries and exits at the
vertices corresponding to more complex supply chain geometries. The main
difference to the existing approach is the definition of appropriate conditions
for the queues. This is currently under investigation and will be studied in a
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Fig. 5.5. Density with δ-functions concentrations computed by the model in [1]

forthcoming paper. As an example we consider a vertex with two incoming
arcs and only one outgoing arc. Obviously, the ordinary differential equation
of the queue qj is composed of the two incoming fluxes fj−2,fj−1 and the
outgoing flux fj .

∂tqj(t)=fj−2(ρj−2(bj−2,t))+fj−1(ρj−1(bj−1,t))−fj(ρj(aj ,t)) (6.1)

where

fj(ρj(aj ,t))=

{
min{fj−2(ρj−2(bj−2,t))+fj−1(ρj−1(bj−1,t)), µj} qj(t)=0
µj qj(t)>0.

Similarly, other structures can be described in a straightforward way.
3. Also larger networks and optimization approaches are currently under in-

vestigation using simplification methods similar to those used in traffic flow
theory, see [10].

Acknowledgements. This work was supported by the Excellence Cluster ‘De-
pendable Adaptive Systems and Mathematical Modelling’, University of Kaiser-
slautern, Rheinland-Pfalz.

REFERENCES

[1] D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing net-
works and supply chains, SIAM J. Applied Mathematics, to appear.

[2] D. Armbruster, P. Degond and C. Ringhofer, Kinetic and fluid models for supply chains sup-
porting policy attributes, Transp. Theory and Stat. Phys., to appear.

[3] D. Armbruster, D. Marthaler and C. Ringhofer, Kinetic and fluid model hierarchies for supply
chains, SIAM J. on Multiscale Modeling and Simulation, 2, 1, 43-61, 2004.

[4] C. Bardos, A. LeRoux and J. Nedelec, First order quasilinear equations with boundary condi-
tions, Comm. in Partial Differential Equations, 4, 1017, 1979.

[5] A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, Oxford, 2000.
[6] G. Coclite, M. Garavello and B. Piccoli, Traffic flow on road networks, preprint, 2004.
[7] C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a

conservation law, J. Math. Anal. Appl., 38, 33, 1972.
[8] C. F. Daganzo, A Theory of Supply Chains, Springer Verlag, New York, Berlin, Heidelberg,

2003.
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