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APPLICATION OF WEEKS METHOD FOR THE NUMERICAL
INVERSION OF THE LAPLACE TRANSFORM TO THE MATRIX
EXPONENTIAL*

PATRICK O. KANOt, MOYSEY BRIO%, AND JEROME V. MOLONEY?

Abstract. Weeks method is a well established algorithm for the numerical inversion of scalar
Laplace space functions. In this paper, we extend the method to the inversion of matrix functions
of a single time variable and assess the qualities of this approach. To illustrate and quantify our
discussion, we compute the matrix exponential by means of an FFT based algorithm. Particular
attention is paid to a comparison of algorithms for the automated selection of two tuning parameters.
In addition to selection algorithms from the literature, we introduce a pseudospectra based approach
for the particular case of the matrix exponential. Finally, applications involving both pathological
matrices and the numerical solution of differential equations highlight the utility of the method.
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1. Introduction

In this paper, we present an approach to calculate a matrix function from its
Laplace space representation. To perform the numerical inversion of the Laplace
transform, we extend the well established scalar Weeks method to matrix functions
parameterized by time. This entails a matrix formulation, an analysis of the errors,
and a systematic comparison of selection algorithms for the method’s parameters.
Also novel is a pseudospectra based approach to the selection of these two tuning
parameters. To illustrate and quantify our discussion, we focus upon the computation
of the matrix exponential from its corresponding Laplace space function [23].

Due to its inherent ill-posedness, the numerical inversion of the Laplace transform

f(#) L/Fes"‘F(s)ds (1.1)

~ o

is a long standing problem. This fact is attested to by the existence of numerous
algorithms for this procedure [7, 40]. One perspective is that the various approaches
to the numerical inversion are different regularization techniques.

From experimentation and review, four main algorithms for numerical Laplace
transform inversion have proved to be of use, the Post-Widder formula [2, 40, 41],
Fourier Series Expansion [9], Talbot’s method [31], and the Weeks method [1, 36, 37].
Each has found a domain of application corresponding to the ability of the algorithm
to invert certain classes of Laplace space functions. To highlight the strengths and
weaknesses of the Weeks method, we briefly discuss these other algorithms.

The distinct property of the Post-Widder formula (1.2) is that it requires sampling
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336 THE WEEKS METHOD FOR THE MATRIX EXPONENTIAL

of the Laplace space function F(s) only on the real line.

F(t) = tim =Y (ﬁ)”HFW (5) (1.2)

n—oo ! t

The difficulty of computing high order derivatives F(") can be mitigated by using
finite differences. This gives rise to the well-known Gaver functionals

a0 =2 (2] é(—w’ () F(wen™2) (13)
: £()= 1im a0

Unfortunately, this method suffers from very slow convergence |f(t) — ¢, (t)| ~1/n as
n — 00, so that a series accelerator is demanded for any practical computation. Recent
work [41] has established the utility of the Wynn-rho algorithm for the acceleration.
Another drawback to a Post-Widder based approach is its sensitivity to roundoff
errors. This is due to the potentially large coefficients in the Gaver functionals. Some
success using high precision variables to subdue the roundoff error has been reported
[2]. Although notable packages exist [4], the present lack of a standardized library
for arbitrary precision variables for low level languages however makes this approach
cumbersome.

The Fourier Series method is excellent for dissipative problems [11] and widely
used in the hydrological community to perform long time integration of weekly
damped systems. For these dissipative problems, it is capable of providing spec-
tral accuracy in time similar to Fourier (FFT) spectral accuracy in space [6, 28, 30].
As such, it is typically formulated for real time domain functions f(t). It utilizes
the standard Bromwich contour s =o + iy familiar from the analytic inversion of the
Laplace transform. The result is a weighted Fourier transform and after numerical
integration, a Fourier series. While certainly one of the faster numerical inversion
methods, this approach has the disadvantage that the solution is not well determined
for t~0 and t~2T where T is the fundamental frequency of the Fourier expansion.
It also requires a series acceleration due to the highly oscillatory nature of the inte-
grand. Typically, one uses the quotient-difference algorithm, which, as is true for any
acceleration method, is unstable for certain classes of coefficients [9, 38].

Talbot’s method applies a deformed contour to the integration of the complex in-
version integral (1.1). It maps the standard Bromwich contour to one which opens to-
ward the negative real axis s(6) = o+ \0(iv + cot(0)) where A\,v,0 €R and 0 € (—m,).
It thus inherently assumes that the physical system damps highly oscillatory terms
and is not appropriate for purely conservative problems. The nontrivial task of de-
veloping software to select optimal values for these parameters has been undertaken
for scalar functions [24]. Simplified alternatives to Talbot’s contour have also been
proposed [2].

Weeks method has the principal advantage over these three other methods of
returning an analytic formula for the time domain function. In particular, it assumes
that a smooth function [1] f(¢) can be well approximated by an expansion in terms
of Laguerre polynomials L, (t)

N-1

ft)~e Z ane 'L, (20t). (1.4)

n=0
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It is thus highly efficient for multiple evaluations in the time domain. Computing the
function at a new time with these other methods requires essentially restarting the
numerical inversion procedure. Furthermore, it does not inherently utilize dissipation
and is equally applicable to real and complex time domain functions. It can also be
computed using double precision variables. Despite these strengths and its popularity
for scalar functions, little work has been done to extend it to matrix-valued functions.
Part of this may be due to the difficulty of choosing appropriate values for the expan-
sion parameters o and b, which can vary dramatically with Laplace space function.
In this paper, we attempt to address many of these issues.

The present text is organized as follows. In the first section, we extend Weeks
method to the computation of the time domain function f(t) for a general matrix
function F(s). We provide midpoint and FFT algorithms for the coefficients a,, and
an estimate of the errors following the recent work by Weideman for the scalar Weeks
method [37]. Once the theoretical apparatus has been established, we apply it to the
particular case of the matrix exponential.

In the second portion, we focus upon the algorithms for the selection of ¢ and
b. We have investigated three approaches taken from the literature, Weeks original
suggestions, a direct minimization of the Cauchy estimate for the truncation error,
and a total error minimization. We also introduce a fourth algorithm based on the
concept of the pseudospectrum [35]. In all these cases, we select o and b based on
the properties of the matrix as a single mathematical entity instead of performing the
more expensive element-by-element parameter selection.

Tllustrations of the accuracy and stability of Weeks method for the matrix expo-
nential are provided in the third section. Our examples include both matrices with
pathological spectra and matrices which arise in the numerical simulation of PDEs.
The first differential equation is the usual advection and diffusion equation, which has
been solved with great success by other numerical Laplace transform methods, chiefly
the Fourier series method [30]. The second PDE is a dispersive equation, the scalar
nonparaxial beam propagation equation from computational photonics [42]. The so-
lutions to this equation are complex and are typically propagated by conservative
algorithms. It thus presents an interesting challenge to any numerical Laplace trans-
form inversion procedure. Since one typically encounters sparse and dense matrices,
our examples include both.

Finally, to conclude, we summarize some of the main points of this paper and
provide suggestions for future work.

2. Weeks Method

Weeks method is one of the most well known algorithms for the numerical inver-
sion of a scalar Laplace space function [1, 7, 12, 37] 1. Its popularity is due primarily
to the fact that it returns an explicit expression for the time domain function. In
particular, Weeks method assumes that a smooth function of bounded exponential
growth f(t), given by the inverse Laplace transform

1
t)=— SUR(s)d 2.1
1(0)= 5 [ Pl (21)
where T is a contour in the complex plane, can be expressed as the limit of an expan-

IThe notation in this paper follows the conventions used by Weideman [37].
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sion in scalar Laguerre polynomials
N-1
In(t)=e’" Z ane "' L, (2bt). (2.2)
n=0
The functions Ly, (z) for n>0 are defined by the equation
e* d* , _

on z € (0,00). Clearly, the coefficients a,,, which may be scalars, vectors, or matrices,
contain the information particular to the Laplace space function F(s) and may be
complex if f(t) is complex. More importantly, these coefficients are time independent
so that f(t) can be evaluated at multiple times from a single set of coefficients.

The two free scaling parameters ¢ and b in the expansion must be selected accord-
ing to the constraints that b>0 and o > 0g, where oy is the abscissa of convergence.
The restriction of b to positive values ensures that the weighted Laguerre polynomials
e YL, (2bt) are well behaved for large t, Fig. 2.1. More importantly, this condition
implies that |e~% L, (2bt)| < 1. The convergence of the series is uniform [13].

In this section, we present an algorithm to compute the coefficients a,, for a
general vector or matrix function F(s) and an analysis of the errors for a fixed o and
b. The case that F(s)=(sI —A)~! which corresponds to eA? is illustrated in section
(2.3). For clarity, we discuss the case that the coefficients a,, are matrices. In a high
level language such as MATLAB however, we were able to compute vector and matrix
coefficients with only minor changes to our codes.
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2.1. General Function F(s). The computation of the coefficients begins
with an integration in the complex plane

1
t)y==—— [ e F(s)ds. 2.4
1= 5 [ e F(s)ds (24)
If one chooses the Bromwich contour I'(s) =0 +iy, with o >0g, y€R
eat S
=5 [ enraiay (2.5)

and assumes the expansion

ft)=e"" Zane_thn(%t) (2.6)
n=0
then equating the two expressions yields
Zane_thn(%t) = 2—/ eV'F(o+iy)dy. (2.7)
7r
n=0 -

It is known that the weighted Laguerre coefficients have the Fourier representation
[37]

oo

B 1> .. (iy—b)"
bt (2bt :7/ wt 7T 2.8
e ( ) o _ooe (iy+b)”+1 Yy ( )

Performing the appropriate substitution, assuming it is possible to interchange the
sum and integral, and equating integrands thus leaves

- iy —b)" _
T;)an(i(yzi—b)’)‘“ =F(o+iy). (2.9)

The functions % form a complete, orthogonal basis in Ly(R) [18]. In principle,
one could try to use directly the orthogonality of the basis to determine a,,. However,
these functions are high oscillatory and thus not amendable to numerical integration.
One method of recourse to this problem is to apply a Mdbius transformation to map
s to a new complex variable w

_s—o—b

=—. 2.10
v s—o+b ( )
For the Bromwich contour s=o+1iy
w= Y0 (2.11)
wy+b

so that s is mapped to the unit circle |w|=1. A more subtle result of this transfor-
mation is that the singularities of F(s) in the half-plane o <oy are mapped to the
exterior of the unit circle in the w plane. An exception to this occurs when F(s) has
a singularity at infinity which then maps onto the unit circle [7]. In the following we
will assume that the singularities of F'(s) occur in a finite region of the complex plane.
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The Laplace space function corresponding to the matrix exponential belongs to this
class of functions.

With the Mobius transformation and using y= % along the Bromwich con-
tour, equation (2.9) can now be expressed as

apw" = (iy+b)F (o +iy) (2.12)
n=0
. 2b 1
I (J—bw+>. (2.13)
= 1—w w—1

In this form we see that the coefficients a,, of the original expansion (2.2) are also
the coefficients of a Maclaurin series. The radius of convergence R is strictly greater
than unity due to our selection of functions F'(s) which do not have a singularity at
infinity. Furthermore, within this radius, the power series converges uniformly.

Cauchy’s integral theorem [3] provides a method to compute a,,. Since the func-
tion is analytic inside the radius of convergence R > 1, the integration can be per-
formed along the unit circle w=e*

1 1 2b w+1
n==— F(o—-b d 2.14
L [T e 2D e +1
n== - —F(o—b— do 2.15
= on _Tre 1—e (o 6“9—1) (2.15)

Numerically the evaluation of the integral can be computed very accurately using the
midpoint rule; 0, = 57, where n=0,...,N—1 and m=—-M,..., M —1.

—inm/(2M) M—-1 % i@m+1/2
€ —inb, <Y B g
anNT _ZMe 1_ei9m+1/2F (J b6i9m+1/2 _1) (216)

Implementation of this formula for the coefficients (2.16) requires consideration, par-
ticularly, with respect to memory and computing costs.

If there is sufficient memory to store the function evaluated along the contour
then a large enhancement in speed can be obtained by using the fast Fourier transform
[37]. The summation (2.16) with N =M can be performed in O(Nlog(N)) operations
as opposed to O(N?) required by the direct application of the midpoint rule. The
coeflicients corresponding to negative indices which result from the FFT algorithm
are not needed for the summation and thus can be neglected.

For large matrices, it may be too demanding on memory to store a series of
evaluations of F(s). In this case, it is more efficient to overwrite the Laplace space
function after each evaluation at a point in the contour. Because the midpoint rule
converges quickly for a periodic function, a reasonable choice of M is N =M.

If the matrix function F'(s) is dense, the evaluations of the Laplace space function
can dominate the computations. It is at this point that the use of a preliminary Schur
decomposition, although not essential, may be advantageous. Every square matrix
A has a complex Schur factorization of the form A=QT QY where T is a triangular
matrix whose diagonal elements are the eigenvalues of A and @ is a unitary matrix
whose columns are not necessarily however the eigenvectors [14]. With this repre-
sentation, f(A)=Qf(T)Q. After a preliminary factorization one might suppose to
simply compute the function of the triangular matrix and proceed without Weeks
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method. Indeed, Parlett’s algorithm provides one with a method to compute the
f(T); for i<,

s

j—1
fiktig —tinfr;

(2.17)
—tip S, til

The resulting matrix is also triangular. This method is in fact implemented in MAT-
LAB’s command funm for an arbitrary function of a matrix. One of the major advan-
tages of this approach is speed. After the initial Schur decomposition is computed for
a square p X p matrix in 0(p3), the Parlett algorithm can be performed very quickly.
The problem with the Schur-Parlett approach however can also be seen from equation
(2.17). When the eigenvalues of A are repeated or sufficiently close, the computation
of f;; can not be performed reliably. This problem was originally addressed in Par-
lett’s paper [26] and in more recent works by Higham and Davies [8, 19]. One can see
from the level of sophistication of the papers however that the resolution of the issue
is by no means settled. One must in general resort to another method to deal with
the matrices corresponding to degenerate eigenvalues.

Also, one might suggest a series acceleration method for the coefficients in the
Maclaurin series. However, from our investigations, we have found that the gains in
accuracy do not justify the increased computation time. The potential instability of
a nonlinear series acceleration also brings robustness into question.

Finally, once the coefficients have been computed and the parameters selected, it
is necessary to perform the Laguerre expansion. A naive approach is to generate the
Laguerre polynomials using the recurrence relation,

n+1)Lpi1(x)=02n+1—2x)L,(z) —nLy_1(x) (2.18)

with starting values

Lo(x)=
Li(z)=1—

multiply by the coefficients, and compute the sum

(o=b)t Zan (2bt). (2.19)

The Laguerre polynomials however can be large for increasing n and thus lead to an
unstable summation. A stable method which does not require explicit evaluation of
the Laguerre polynomials is the backward Clenshaw algorithm [29].

2.2. Error Estimate. Up to this point we have not been concerned with
the accuracy of Weeks method. One of the stronger arguments for using it instead
of another numerical Laplace transform inversion method is that a straight-forward
estimate of the errors can be performed using standard methods of numerical analysis
[37]. In contrast, an analysis of the errors in Talbot’s or the Fourier series methods is
significantly more involved [7, 25, 38]. The estimates we are able to obtain from our
analysis are fundamental to a proper selection of the tuning parameters ¢ and b.

We start by postulating that a smooth function f(¢)

ft)y=e" iane_thn(%t) (2.20)

n=0
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is approximated by the computed function f (t)

f(t)y=e" Z_an(l—i—e)e_thn(th) (2.21)

n=0

where € is on the order of the numerical precision. We note that there are three
sources of error:

e Discretization Error: Due to the discrete sampling along the unit circle in
the integral for the coefficients a,,.

e Roundoff Error: Due to the finite precision of the computations.

e Truncation Error: Due to the finite number of Laguerre expansion coeffi-
cients.

Here we will ignore the discretization error introduced in the computation of
the coefficients since the integration (2.16) is computed spectrally accurately by the
midpoint rule on the unit circle. That is, we assume that the coefficients in the
approximation are exactly the coefficients in the true expansion except for the roundoff
error. Typically one would expect to be able to neglect the roundoff error as well,
however since it is multiplied by e(“~?* it may add significantly to the total error.

Despite the fact that the contributions from the roundoff error may be consid-
erable, it is the truncation error which typically dominates. Although potentially
expensive, a computational estimate can be obtained by calculating twice the num-
ber of coefficients than that used in the Laguerre expansion and then defining the
truncation error from the tail coefficients.

Using these ideas, the total error including the truncation and roundoff can be

computed as follows. If we let ||| denote the Frobenius norm, then
If&)=FfOlr _ - _
ST 1 P (2.22)

where the truncation matrix T and roundoff matrix R are
T=> ane "Ly (2bt) (2.23)
n=N

N—1
R=c¢ (Z ane_thn(th)> (2.24)
n=0

and a,, are matrices. Applying elementary analysis and using the indices, j=0,...,J —
1l and k=0,...,K —1, to denote the position (j,k) in the matrix

IT||r= (2.25)

0o 2
Tiul? = anine 'L, (20t)| . 2.26
J J
n=N
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Since for >0 and n>0, [e=% L, (2bt)| <1

T < fangnl? (2.27)
n=N

J-1K—-1 oo

ITIE< [ DD D lanssl? (2.28)

=0 k=0 n=N

1Tl < | D lanl? (2:29)
n=N

A similar computation can be performed for the roundoff error which together with
the truncation yields the total error

J-1K—-1 o J-1K—-1N-1
Erorar <€ | (DD D lanelP+ey | DD > lanl? (2.30)
Jj=0 k=0 n=N 7=0 k=0 n=0

or written more succinctly

o0 N-1
Etotal Seat Z ||a'nH%‘+6 Z Ha"rLH%‘ . (231)
n=N n=0

This above computational method for estimating the truncation error is often
appropriate. It however does not provide any additional insight into the convergence
properties of the Laguerre expansion. Instead, the role that the radius of convergence
plays in the rate of convergence of the Maclaurin series can be determined from the
the Cauchy estimate for the truncation error. To compute this estimate consider a
circular contour of radius r € (1, R) such that the function F(o—b%tl) is analytic

1 1 2b w+1
== e F(o—b—— 2.32
Um0 g 0 T —w (U bw—1>dw (2:32)
2b w41
=—Flo—b—— 2.
G(w) T w <o’ bw—l) (2.33)
1 |G (w)|r
<— T 2.34
HanHF_27r /w_r | dw (2.34)
G )| < max [ Glw) | =K () (2.35)
1 K(r)
<7 .
||anHF — 27_[_ Tn+1 /lw_rdw (2 36)
K
lan||F < T(nr) (2.37)
ITNF <> llanllr (2.38)
n=N
— K(r
1T F < (r) (2.39)

rN=1(r—1)"
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Thus we see, that since r € (1,R) the coefficients always decay geometrically. For
R =1 however the coefficients decay slowly and the truncation error is large, while for
R>1, they decay more quickly.

2.3. Application to the Matrix Exponential. An illustration of the
general formalism of section (2.2) is presented here for the matrix exponential. It
becomes clear that this is a natural application of the inverse Laplace transform when
one considers the general definition of a function f of a matrix A

f(A =5 / f(s)(sI —A)"tds. (2.40)
If f(s)=e", then
1
At—Q—m/ st(sI— A)"tds. (2.41)

The Laplace transform function corresponding to the matrix exponential is obviously
the resolvent matrix F(s) = (sI — A)~!. With this fact, the calculations of the previous
section proceed as follows

eot 00
et=_—— eVt ((o+iy) I —A)~" (2.42)
2m J_
1 1 2 w+1 -
=— —_— fbif A d 24
0= w|_1wn+11—w<( Al ) w (2.43)
-1
L [T e 2D e“g—i—l
=— — I-A . 2.44
= o _Tre [0 (oc— b 1) de (2.44)

The coefficients are computed approximately from the sum

1

—inm/(2M) M=1 ‘ 2% WOmt1/2 41 -
Ap = 76 Z e*l’ﬂem _— <(O' — bH)IA) . (2.45)

2M 1—em+1/2 eWOmy1/2 1
m=—M

We choose N =M. With the substitution of a preliminary complex Schur factorization
A=QTQ" and multiplication by an initial condition vector (0)

Q

eMia(0)= =% | est(sI —T)" Q™ (0))ds (2.46)
2wt Jr
we can define new coeflicients
—Z’I’LT!'/(2M) M-1 2h et0m+1/2 +1 -1
) E —zn@,” ~

m=

where @(0) = Q(0). This quantity is of course computed only once for each determi-
nation of the coefficients a,,. The inversions of (sI —T') are now of a triangular matrix
which can be performed efficiently by back substitution. Even though the number
of operations to perform the Schur decomposition of a square p x p matrix is O(p?),
the fact that back substitution is O(p?) more than makes up for the time that would
have been spent on direct inversions. The only exception may be for the case when
A is initially sparse. More importantly for the proper selection of the parameters, a
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preliminary Schur decomposition has the advantage of providing the entire spectrum
of F(s)=(sI —A)~!. This follows from the fact that the eigenvalues of A, which are
the poles of F(s), are also the diagonal elements of the triangular matrix 7.

Once all the coefficients have been computed the Clenshaw algorithm is used to
perform the summation

N—-1
eMii(0) ~ Qe " Gy L (2b1). (2.48)

n=0

3. Parameter Selection Algorithms

Up to this point, we have shown that the theory and error analysis for the scalar
Weeks method can be extended in a straight forward manner to vector or matrix
functions. This analysis assumed however predetermined optimal values for ¢ and b.
The proper selection of these tuning parameters is crucial for the success of Weeks
method and also the most difficult aspect of the computation.

Various algorithms have been proposed to automate the selection of ¢ and b for
the scalar Weeks method. Omne could in principal use these for each element in a
matrix valued function parameterized by time. For large matrices however this would
become prohibitively expensive. A more sensible approach is to treat the matrix
function as a single mathematical entity and determine optimal parameters based on
its properties. In this paper, we thus extend three methods from the literature for
scalar functions and add one of our own based on the concept of the pseudospectrum
for the particular case of the matrix exponential. The three from the literature are
Weeks original approach [36], a maximization of the radius of convergence (MinMax)
approach [12], and a total error minimization proposed by Weideman [37]. One of
the main issues besides accuracy and efficiency that these methods must address is
the relationship between o and b. A straight forward two dimensional search of the
(0,b) plane is virtually impossible for matrix functions due to sheer computational
expense. Thus, one must consider how to relate o and b and thereby reduce the search
to only one of the parameters. For real time domain scalar functions, prescriptions
for determining an optimal b for a chosen o have been derived [12]. However, since
we are interested in potentially complex time domain functions, we will not utilize
these considerations. Finally, in keeping with the previous discussion, we describe
the algorithms for a general function F(s) and then focus upon the inverse Laplace
transform of the resolvent matrix F(s)=(sI —A)~! for illustration.

3.1. Weeks Original Approach. In his original 1966 paper [36], Weeks
offers semi-empirically determined expressions for ¢ and b. His suggestions provide
a starting point for an investigation of the optimal parameter selection. Using our
present notation where

N-—-1
f(t)=el N " a, L, (2bt) (3.1)

n=0

Weeks suggests the values UZIII&X(O,UQ—I-%) and b= % where N is the number of
expansion coefficients. The selection for ¢ is purely empirical with the additional
constraint that o >0. His justification for b however comes from a consideration of
the behavior of the weighted Laguerre polynomials e~ L,,(2bt). For 2bt > 4n, the nth
Laguerre polynomial decays exponentially and thus, Weeks assumes, would not be
expected to approximate the solution well. Weeks thus considers only 2bt <4N which
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is satisfied if we choose b= % Since this value for boc N can be potentially large, we
also look at the case when b is fixed at b=1/2. The value of o is still chosen according
to Weeks prescription.

3.2. MinMax Approach. Weeks original suggestions for ¢ and b are some-
what unsatisfying in that they do not rely upon an analysis of the errors or knowledge
of the spectrum of F'(s) beyond the location of the abscissa of convergence. An al-
ternative is to neglect roundoff and discretization errors and attempt to minimize the
truncation error from the Cauchy estimate [12]

IITFﬁm. (3.2)

We surmise that maximizing the radius of convergence

(3.3)

where )\ are the singularities, will lead to a minimization of the truncation error.

For a general function F(s) this type of maximization requires knowledge of at
least the singularity which is mapped closest to the origin in the w plane and thus
defines the radius of convergence. For the case of the matrix exponential where
F(s)=(sI—A)~!, we have already seen that all of the singularities can be obtained
from a complex Schur factorization. Thus, R can be determined unambiguously for
each (o,b) from a mapping of the eigenvalues of A and maximized without the need
to evaluate F'(s). In some simple cases it is also possible to analytically determine the
critical singularity. An example is the matrix exponential of a matrix A with purely
imaginary eigenvalues A=1y. In this case

(0+b)%+y?

2_ .
R 7m>}ni(a—b)2—|—y2'

(3.4)

2 2
The function % has a maximum at y =0 and decreases monotonically as |y| —

00. Thus, for matrices with only imaginary eigenvalues, R is determined by the
eigenvalue with the largest absolute value.

Concerning the implementation, we have tested two approaches. First, we com-
pute R on a discretized (o,b) grid and then maximize over the computed values. This
can be performed in MATLAB using only a few lines of vectorized code. A second
alternative is to utilize a two-parameter search algorithm such as the Nelder-Mead
simplex method in MATLAB’s command fminsearch. One difficulty with any search
algorithm is of course the choice of starting values which will avoid local minima. For
the Laplace transform, a more important issue though is the need to constrain the
values of o > gg. Although a minimum may exist for o < oy, this value for o leads to
an unphysical time domain function.

3.3. Weideman’s Approach. The previous two approaches have the distinct
advantage of not requiring potentially expensive evaluations of F'(s). Neither however
directly utilize an estimate for the total error and thus presumably may fail to yield
values of ¢ and b which control both the truncation and roundoff errors. Weideman
[37] has shown that the numerical inversion of a scalar function F(s) using Weeks
method can be performed robustly if one minimizes the total error (2.31). This direct
approach is clearly the most expensive and a full two parameter search is probably
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prohibitively costly for most matrix-valued functions F(s). This is particularly true
since the truncation error is estimated by doubling the number of expansion coeffi-
cients. Fortunately, again for the matrix exponential, we can utilize the spectrum to
define b as the value which maximizes the radius of convergence R(c,b) for a given o.
This allows a one parameter minimization of equation (2.31) over o.

3.4. Pseudospectra Approach. Our last approach is a compromise be-
tween minimization of the total error used in Weideman’s algorithm and the blind
maximization of the radius of convergence. We propose to relate o and b by a maxi-
mization of the radius of convergence and then perform a minimization of the Cauchy
estimate for the truncation error as a function of . We thus ignore the roundoff and
discretization errors. This in turn requires us to compute

K (r) = max|| G(w(®)) | (35)
in the estimate
Il < Sy (36)

For some functions F(s) it may be possible to determine analytically estimates for
K(r) or compute the norm without directly computing G(w) on circular contours.
The matrix exponential provides an excellent example where this is true.

In the case of the matrix exponential

(G

K =
(r) = max T

|w|=r

(3.7)

w—

F

It is a known fact of matrix norms that

[AllF < /pllAll2 (3.8)

where p is the dimension of the square matrix A. With this, we can replace the

Frobenius norm
1 -1
| ((a _ bz—jl)p A>

The constant ,/p is not a function of the parameters o and b nor the radius r and
is therefore not involved in the minimization of K (r). For this reason, we drop this
factor in the following discussion.

Our motivation for the change of norm is the efficiency with which the two-norm
of the resolvent matrix can be estimated. The quantity is well known in numerical
methods and is related to the concept of the pseudospectrum of a matrix [34, 35]

K(r)<,/pmax

lw|=r

(3.9)

l—w‘

2

A(A)=[s€Clymin(sI —A) <¢. (3.10)
where i, is the smallest singular value of the matrix (sI —A). In particular,
_

Vmin (8T — A)

Computing the full singular value decomposition of (s — A) to determine the norm
is hardly advantageous but there are many algorithms for computing the minimum

(1= A) I3 = (3.11)



348 THE WEEKS METHOD FOR THE MATRIX EXPONENTIAL

singular value. The method used here to accelerate the computation of ||(s] —A)~1||2
is the “triangularization+inverse Lanczos iteration” by Lui [21]. The concept behind
this method is the fact that for A=QTQ

(5T = A) 7 3= A [(57 = A) (5T = A)] = A [(ST-T)H (5T-T)]  (3.12)

where Ay is the smallest eigenvalue. For our implementation of the Weeks method,
the Schur decomposition has already been performed and the number of inversions
required for the power method is often less than required by doubling the number
coeflicients to estimate the tail of the Laguerre expansion.

One last important detail is a reasonable choice of r. We have tested two ap-
proaches. In one we choose r=R if R<1.1, else r=1.1. This selection is arbitrary
but leads to an overestimate of error rather than an underestimate.

A second algorithm, which avoids choosing a value for r is to maximize ||((c+
iy)I —A)~|2 over yeR..

3.5. Practical Considerations for Parameter Selection.

3.5.1. Parameter Plane Selection Region. One issue to address is the
proper selection of a portion of the (o,b) plane over which to scan for the optimal pa-
rameters. We have already established that o > oy and that b>0. This is insufficient
however since we can not approach the singularities too closely in a numerical method
without introducing large quantities and roundoff errors. On the other hand, one can
not be too far away from the singularities or else the true value of the Laplace func-
tion may fall below the smallest representable number in our computations. In this
case, one would be sampling noise. Also, if 1 < g <o, then the exponential in Weeks
method can be large enough that the errors are enhanced to levels which destroy the
feasibility of the method.

In our simulations we have found that the following range of parameters leads to
robust calculations. We use b€ (0,54 |0 min|) where o € (Gimin,Omaz)- Tmin and Gmaz
are chosen according to the prescription

e if |og|<0.1
— Omin=1
— Omaz =20
e else
— if 1<|og]/20
* if 09 >0
 Omin = 1.050¢
* Omaz = 1009
* else
© Omin =007+ ‘O'O|/20
* Omaz =00+ 10‘0—0‘
— else
x if 09 >0
© Omin=00+1
- Omaz =1009+1
* else
© Omin =007+ 1
© Omaz =00+ 14 10]og).

The only exception is for the MinMax full two parameter search. In this case, we
use MATLAB’s function fminsearch which requires an initial guess for o and b. Here
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we use b=2.5+|0min/2| and o =0omin+ (k|omaz — Ominl|)/10), where k=1,2,... and
is allowed to vary so as to restart fminsearch until an optimal o is reached which is
greater than og.

3.5.2. Matrix Exponential Scaling. Another issue to address is scaling.
Many of the practical algorithms for computing the matrix exponential reply upon
the property et = (e%)f [14, 23]. The expectation is that the errors introduced by
computing the scaled matrix, followed by repeated squaring will be less than direct
application of the algorithm to the full matrix. The effect of the scaling and squaring
on the Weeks method is also analyzed in this paper.

With respect to the practical implementation of the scaling, one has a variety of
options. First, since the coefficients a,, are time independent, the scaled exponential
for any scaling x € C can be computed with the coefficients for the full matrix A

N1
e(FA — pARt) g go (K1) Z e D q, (0,b, A) Ly, (2b(kt)). (3.13)

n=0

This approach is particularly attractive for exponential time differencing with an
arbitrary time step.

Equivalently, one can directly multiply the matrix A and compute coefficients
using the selection algorithms for the scaled matrix

N—-1
o(FAE o ot Z e a,(0,b,kA)L, (2bt). (3.14)
n=0

The o and b in this sum are chosen with respect to kA and are thus typically not the
same as in equation (3.13).

One aspect of the coefficients a,, which applies to both these sums is their homo-
geneity

an(0,b,A)=a,(ko,kb,kA). (3.15)

Thus, in principle, one could replace the coefficients a,(o,b, A) with any scaled equiv-
alent. There is hence an infinitude of possible scalings. An interesting topic which we
have not pursued in detail is a procedure for the automated selection of the scaling
parameter k. Instead, in this paper, we have chosen to not generally use squar-
ing/scaling. In the cases where we do scale, we have opted to multiply the matrix A
by k and perform the sum using equation (3.14). In the PDE examples, choosing a
smaller step size for e4%* and propagating with this smaller value clearly has the same
effect as scaling/squaring.

4. Numerical Examples

In this section of the paper, we present examples to illustrate Weeks method and
elucidate the behavior of the parameter selection algorithms. To begin, we compute
the full matrix exponential for two pathological matrices from MATLAB’s gallery,
the Hanowa matrix and the Pei matrix. Both have a spectrum which challenges the
accuracy and stability of the Weeks method. Although useful as test cases, they
are unlikely however to arise in a practical computation. We therefore also study
the exponential for matrices from the advection-diffusion equation and the scalar
nonparaxial beam propagation equation from computational photonics [42].

The computation of the matrix exponential for the large matrices in the numer-
ical simulation of a PDE requires special consideration. Typically, even for sparse
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matrices, the matrix exponential is dense. In two or more dimensions the memory
requirements demanded by this dense matrix are often untenable. Since we wish to
compare the solution from Weeks method with one computed using the explicit ma-
trix exponential from MATLAB’s function expml, we have limited ourselves to one
dimension. Additionally, we compute the vector e4%#(0) with each step 6t directly
using Weeks method instead of explicitly forming the matrix exponential.

= -
L] -1 [

g, e oheand rem|
(=2

Aial

Fic. 4.1. Hanowa matriz resolvent norm

4.1. Pathological Matrices. One of MATLAB’s more useful features is
a gallery of test matrices. Included in this collection are the Hanowa and the Pei
matrix. In both cases we have considered a square 6 x 6 matrix. The spectrum of
the Pei matrix is particularly interesting due to its degeneracy; all the eigenvalues
except one have a value of 1, the other is equal to N 4+ 1 where N is the dimension of
the square Pei matrix. The Hanowa matrix in contrast has eigenvalues with negative
real part, ®(\)=—1, and nonzero imaginary parts. Fig. 4.1 and 4.2 are plots of the
two-norm of the resolvent matrix ||(sI — A)~!||2 generated by the Eigtool program for
MATLAB [39]. The location of the singularities at the eigenvalues is evident.

Fig. 4.3 and 4.4 depict the actual measured maximum relative error of the nonzero
elements in the Hanowa and Pei matrix exponentials as a function of o and b for 32
coefficients. The ‘true solution’ is defined as the matrix exponential given by the
MATLAB function expmI. For normal matrices, the Padé/Scaling approach utilized
by MATLAB is typically reliable [14]. To note from these figures is the large basin
in the (0,b) plane where the error approaches the precision of the computations.
The width of the basin is proportional to the number of coefficients. The rate of
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convergence as a function of the number of coefficients is given in Table 4.1 and 4.2.
Also plotted in Fig. 4.3 and 4.4 are the locations of the parameters obtained from
the seven selection algorithms without scaling the matrix. The corresponding values
are given in Table 4.3 and 4.4. The scaling referred to in the table is the value of n in
(eA/ ™)™, The computation time reported is the time required by the FFT algorithm
for the coefficients and includes the time to compute an estimate of the error. From
this information it is clear that a squaring and scaling algorithm is a highly effective
acceleration technique for Weeks method. The increased accuracy greatly outweighs
the need to square the matrix. Also interesting is the agreement between Weideman’s
method and the pseudospectra methods on the location of the optimal parameters.

Shown in Table 4.5 and 4.6 is the accuracy of the absolute error estimates derived
in section (2.2). The parameters are computed using the Weideman method. The
computation times required by the midpoint and FFT methods are also contrasted.
As expected, the FFT approach requires considerably less time for a large number of
coefficients than the direct midpoint summation. Thus, unless otherwise stated, all
simulations in this paper are performed using the FFT algorithm.

Finally, from the comparison of the computation times required by each of the
selection algorithms, Table 4.7 and 4.8, one sees that while Weideman’s method is
the most robust it is also the most expensive. This is particularly problematic for
the large numbers of inversions which one is likely to use in a practical computation.
The pseudospectra approach based on the minimum singular value has a slower rate
of convergence than Weideman’s method but yields the same accuracy for the large
numbers of coefficients required for a spectrally accurate computation. It is also
considerably faster. Surprisingly, if the errors do not need to be less than 10719,
then the simple blind maximization of the radius of convergence is surprisingly well
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F1G. 4.3. Hanowa matriz measured relative error

F1G. 4.4. Pei matriz measured relative error

suited. It provides reasonable accuracy and efficiency. The intelligent search in the
(0,b) plane using MATLAB’s fminsearch function is not robust due to the fact that
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the algorithm is not limited to values of 0 >0p and b>0. Rather, a constrained
optimization algorithm is required.

4.2. Advection-Diffusion Equation: Dense Matrices. The advection-
diffusion equation

ou  Ou d82u
ot "oz “or
with small diffusion d <<1 is notoriously difficult to simulate accurately. Countless
algorithms have been proposed beyond standard finite differences [6, 28, 30, 32]. The
numerical Laplace transform approach using the Fourier series algorithm is one of the
more popular for long time, small diffusion, hydrological and geological simulations
of this equation. This method however adds artificial diffusion due to the nonlin-
ear series acceleration algorithm and is not applicable to the purely advective limit.
Weeks method does not suffer from this restriction and can thus be used to propagate
conservative equations spectrally accurately.
With periodic boundaries on the domain x € [0,27), the advection-diffusion equa-
tion (4.1) can be diagonalized with a Fourier spatial transform. However, to demon-
strate our algorithm we use the method of lines to establish a system of ODEs

(4.1)

—

dii
— =vDi+dD%*i (4.2)
dt

where D is the differentiation matrix. Since we use a spectrally accurate propagator
in time it is sensible to use the same for the differentiation matrix. For this reason,

we choose the Toeplitz Fourier p x p differentiation matrix [35] with initial column

S cot (137) j#0(modp).

This matrix is dense and thus we will use a preliminary Schur decomposition. Since the
solution must be smooth to utilize the spectral accuracy of the differentiation matrix,
we assume an initial condition @(z,t =0)=sin(z — ) for purely advective simulations
and an initial condition @(z,t=0)=14sin(x — ) for the diffusion simulations. Both
of these functions have a single period over the simulation domain [0,27). Since we
use 16 points in the differentiation matrix, the resolution of the initial condition is
16 points per wavelength. The advection speed is 1, while the diffusion coefficient is
1073.

The results of our simulations are shown in Table 4.9,4.10,4.11,4.12 for the purely
advective and 4.13 for the purely diffusive case. The error reported is the absolute
error of the Weeks method solution compared to the solution computed using a Fourier
series. The Fourier series contains 256 elements. It is spectrally accurate in the case
of the diffusion equation and exact for the advection equation. In Fig. 4.5 and 4.7
are the errors using the Weideman algorithm for the parameter selection.

The apparent broadening of the width of the line for the advection case is due to
the growth of small oscillations in the error. The difference in the two-norm of the
initial condition and the solution at time ¢

n=|ll@t)ll2 — [|(0)]2] (4.4)

for the advection equation is shown in Fig. 4.6. The simulation time reported in
these figures and in the tables includes the contributions from the error estimate

D;=

(4.3)
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Fia. 4.5. Advection equation absolute error. 128 coefficients dt=5 o=13.00 b=17.94.
Computation time=2.29 hours.

using equation (2.31), the storage of the Weeks method solution at each time step,
and the time to compute the solution using the matrix exponential from MATLAB’s
expml. Streamlining the calculations to involve only the propagation by the Weeks
method and not store the solution at each time step yields simulation times of 699
seconds for the advection equation and 6.464 seconds for the diffusion equation. An
analysis of the distribution of the computation time reveals that the majority of
the time is spent in the inversion of the triangular matrix in the calculation of the
expansion coefficients. In comparison, propagating the identical problem using the
matrix exponential from MATLAB results in simulation times of 14.1 seconds and
0.0908 seconds for the advection and diffusion equations, respectively.

The dependence of the advection equation on the time step for Weeks method
can be easily understood from the considerations of the radius of convergence R in
section (3.2). In the special case that o =b, a reasonable assumption for a matrix with

20
Ymaz

the center differences approximation to %, the largest eigenvalue is proportional to
g—;. Solving for ¢, one obtains a stability-like condition

2
purely imaginary eigenvalues, RZ=1+ ( ) . For the differentiation matrix from

5t o (”R‘zx_l) (4.5)

From this equation, we can see that for a larger radius of convergence R and presum-
ably smaller error and for finer spatial grids dx, ¢t must also be smaller.



TABLE 4.1. Relative Error: Hanowa 6

N Weeks:N Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
2 1.00 1.49 27.28 — 2.44 2.08 2.08

4 0.479 0.825 1.42 — 0.313 0.330 0.660

8 0.154 2.59 7.96-1073 - 0.115 0.133 1.50-1073
16 0.0137 0.133 2.76-1077 — 2.33.1073 2.85.1073 8.22.10~ 1!
32 0.0215 0.117 1.49.10~14 — 3.15-10~6 5.31-10~6 1.10-10~14
64  0.0154 2.46-1073 1.54-10~ - 1.92-107'  6.84-10!''  5.58-1071°
128 5.24-1072 5.90-1076 1.65-10~ 1 - 4.88-1071%  5.03-10715 4.89-10715

TABLE 4.2. Relative Error: Pei 6

N Weeks:N Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
2 0.222 0.767 1.31 11.99 0.724 0.724 0.714

4 0.0145 0.155 0.548 13.80 0.102 0.102 0.112

8 5.43-10%  0.519 9.45 0.0839 4.09-102 4.09-1072 2.98-10~4
16 8.75-10~% 0.0722 2.33-10~ ¢ 7.50-10~7 4.42-10~6 4.41-10~6 9.99.1012
32 3.98-107% 7.87-1073 4.28.10713 4.73.10713 6.56-10~12 6.52-102 3.07-10715
64 2.57-107% 2.11-10~* 7.74-10713 3.02-10713 3.27-10°1° 2.65-10"1° 2.65-1071°
128 2.19-1072% 1.97-108 7.78-10713 2.05-10713 2.96-101° 2.77-1071% 2.43.10715
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TABLE 4.3. Weeks Method Parameters: Hanowa 6 for 32 Coefficients

Scaling Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin  Pseudo:Y =~ Weideman
1 o 0 0 4.80 - 0.134 0.0665 4.03

b 16 1/2 5.00 - 3.21 3.18 5.84

Time (sec) 0.0330 0.0328 0.0656 - 0.454 0.393 0.474

Relative Error  0.0215 0.117 1.49-1014 Failed 3.15-10-6 5.31-10~%  1.10-1071®
2 o 1/2 1/2 5.20 — 0.560 0.554 1.80

b 16 1/2 5.50 — 1.85 1.84 2.76

Time (sec) 0.0580 0.0426 0.0625 — 0.452 0.414 0.424

Relative Error  0.0575 4.221-107° 1.36-10~14 Failed 2.37-107° 2.51-10% 5.18-10715
4 o 3/4 3/4 3.25 0.776 0.803 0.803 0.897

b 16 1/2 3.60 1.13 1.28 1.28 1.36

Time (sec) 0.0418 0.0430 0.0512 0.0727 0.380 0.349 0.436

Relative Error  0.106 1.406-10~8 5.74-1071° 3.20-101° 8.90-10~15 8.90-101% 7.25.10°1°
8 o 7/8 7/8 2.08 0.977 0.932 0.944 0.945

b 16 1/2 2.20 1.15 1.10 1.10 1.10

Time (sec) 0.0417 0.0522 0.0473 0.071 0.343 0.317 0.382

Relative Error  0.205 1.436-10712  4.93.10°'° 4.57-10715 1.29.10 14 6.02-10"1% 6.02.10°15
16 o 15/16 15/16 5.90 — 1.04 1.04 1.04

b 16 1/2 6.00 - 1.11 1.10 1.10

Time (sec) 0.0418 0.0439 0.127 — 0.758 0.656 0.883

Relative Error  0.178 8.10-10~14 7.68-10714 Failed 8.80-101° 1.38-1071%  1.24.107 %

9¢¢
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TABLE 4.4. Weeks Method Parameters: Pei 6 for 32 Coefficients

Scaling Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y ~ Weideman
1 o 8 8 17.40 15.99 8.07 8.07 9.42

b 16 1/2 13.00 8.99 2.75 2.75 4.52

Time (sec) 0.0356 0.0340 0.288 0.0561 0.882 0.995 0.908

Relative Error 3.98-107%  7.87-1073 4.28-10713 4.73-10713 6.56-10712 6.52-10712  3.07-10715
2 o 9/2 9/2 11.6 4.50 4.56 4.56 4.78

b 16 1/2 9.50 36.00 2.09 2.09 2.34

Time (sec) 0.0421 0.0422 0.139 0.070 0.854 0.765 1.04

Relative Error  7.98-107% 8.44-1076 1.75-10714 4.83-10715 3.23-10715 3.12-1071%  3.07-10715
4 o 11/4 11/4 8.75 4.83 2.81 2.81 2.79

b 16 1/2 7.70 3.08 1.65 1.65 1.64

Time (sec) 0.0424 0.0423 0.0849 0.071 0.662 0.593 0.863

Relative Error  0.016 2.70-107% 1.20-107 2.68-1071° 2.15-107*  2.50-107%%  2.49.1071°
8 o 15/8 15/8 7.28 2.60 1.93 1.93 1.94

b 16 1/2 6.80 2.47 1.37 1.37 1.37

Time (sec) 0.0422 0.0425 0.060 0.072 0.498 0.452 0.557

Relative Error  0.0323 1.72-10710 5.81-10714 2.49-10715 2.92.10715 2.49-1071%  2.92.10715
16 o 23/16 23/16 5.34 1.86 1.49 1.49 1.50

b 16 1/2 5.10 1.80 1.22 1.22 1.23

Time (sec) 0.042 0.0424 0.050 0.073 0.426 0.385 0.469

Relative Error  0.0656 1.17-10712 2.39-10714 8.47-10715 8.45-10715 2.29-10715 4.83-10715
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TABLE 4.5. Absolute Error Estimate: Hanowa 6

N  Estimate Measured Computation Time (sec)
FFT Midpoint FFT Midpoint FFT Midpoint
2 2.67 2.67 0.305 0.305 0.239 0.216
4 0.903 0.903 0.0631 0.0631 0.159 0.184
8 8.97-107% 897-107% 2.01-107* 2.01-107* 0.235 0.390
16 2.60-107° 2.60-107° 1.86-10~'' 1.57-10"'' 0.310 1.02
32 253-107'* 1.94-107'%  1.28-107'° 2.99-107'° 0.474 3.35
64 2.44-1071% 4.52.107% 1.78-1071% 241-107'% 1.36 12.51
128 1.39-107*° 4.71-107* 1.78-107* 2.06-107% 6.35 52.38
TABLE 4.6. Absolute Error Estimate: Pei 6
N Estimate Measured Computation Time (sec)
FFT Midpoint FFT Midpoint FFT Midpoint
2 2.93-103 2.93-103 1.32-10? 1.32-10? 0.433 0.443
4 5.71-102 5.71-102 20.78 20.78 0.441 0.517
8 3.70 3.70 0.055 0.055 0.420 0.706
16 5.24-1077  5.72-1077  1.85-107% 8.24-107?  0.408 1.49
32 8.29-107'2 6.35-107''  5.69-1071% 1.34-107'2 0.908 7.13
64 2.11-107'2  4.46-10~'! 4.83-107'3 6.49-107' 2.77 26.71
128 1.82-107'2 6.65-107'' 6.25-107'3 6.54-107'3 13.58 104.34
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TABLE 4.7. Computation Time (sec): Hanowa 6

N Weeks:N Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
2 0.0128 0.0131 0.0510 — 0.469 0.418 0.239

4 5.15-107% 5.34-1073 0.0378 — 0.400 0.366 0.159

8 8.45-10~2 8.39-1073 0.0410 - 0.376 0.371 0.235

16 0.0154 0.0153 0.0482 - 0.407 0.376 0.310

32 0.0330 0.0328 0.0656 — 0.454 0.393 0.474

64 0.109 0.105 0.138 — 0.500 0.467 1.367

128  0.480 0.488 0.514 — 0.888 0.841 6.35

TABLE 4.8. Computation Time (sec): Pei 6

N Weeks:N Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
2 3.80-10~% 3.98-1073 0.290 0.0270 0.854 0.759 0.433

4 5.71-1072 5.48-1073 0.260 0.0290 0.861 0.756 0.441

8 8.66-107% 9.16-1073 0.263 0.0319 0.882 0.769 0.420

16 0.0161 0.0165 0.270 0.0428 0.874 0.783 0.408

32 0.0356 0.0340 0.288 0.0561 0.882 0.995 0.908

64 0.114 0.125 0.362 0.128 0.961 1.62 2.77

128 0.510 0.488 0.740 0.504 1.39 1.73 13.58
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TABLE 4.9. Adwvection Error: N =32, Simulation Time = 100, T =10

Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
o 1 1 20 2.99 8.16 1.06 1.24
b 16 1/2 10 2.99 13.10 6.01 6.19
Time (sec) 8.44 11.21 9.45 8.42 11.84 12.93 9.52
Absolute Error 0.178 0.990 Failed 0.222 15.71 0.256 0.148

TABLE 4.10. Adwvection Error: N =32, Simulation Time = 100, 6T =1

Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y  Weideman
o 1 1 12.2 2.99 1.62 1.05 9.78
b 16 1/2 10 2.99 6.58 6.01 12.04
Time (sec) 13.78 15.10 16.48 16.58 16.67 17.79 14.81
Absolute Error  0.347 5.14-10~ 3.21-10~ 1! 3.77-107 3.71-10~9 6.46-10~* 2.56-10~12

TABLE 4.11. Advection Error: N =128, Simulation Time = 100, 6T =10

Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y  Weideman
o 1 1 20 2.99 12.47 1.06 19.94
b 64 1/2 10 2.99 17.41 6.01 24.90
Time (sec) 12.62 6.29 8.67 7.11 14.82 11.29 9.23
Absolute Error  0.0244 0.979 Failed 3.80-10~8 8.32-1012 9.05-10~% 7.02-107°
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TABLE 4.12. Advection Error: N =128, Simulation Time = 100, T =1

Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
o 1 1 12.2 2.99 1.56 1.05 2.04
b 64 1/2 10 2.99 6.52 6.01 7.01
Time (sec) 28.14 24.64 28.10 27.15 26.71 28.27 27.95
Absolute Error  0.216 4.11-10713 1.65-10~ 1 3.78-10713 3.69-1071%  3.69-10713 3.71-10713

TABLE 4.13. Diffusion Error: N =232, Simulation Time = 1000, 6T =10

Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
o 1 1 9.8 2.90 1.04 1.05 1.06
b 16 1/2 10 3.15 1.27 1.27 1.28
Time (sec) 14.21 15.75 16.24 20.38 16.28 18.90 18.20
Relative Error  0.496 7.06-10" 14 2.19-10712 4.17-107™ 4.35.10714 3.39-10~ 3.10-10~4
Absolute Error  0.660 7.33-10714 1.84-10~12 5.07-10714 4.13-107%  2.80-107'% 2.87-1074
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Fic. 4.6. Advection equation solution norm difference. 128 coefficients §t=5 0=13.00 b=
17.94. Computation time=2.29 hours.
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Il Il Il Il
0 200 400 600 800 1000
Time

Fi1c. 4.7. Diffusion equation relative error. 32 coefficients 6t=10 0 =1.06 b=1.28. Com-
putation time=18.20 seconds.
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4.3. Parallel 1-1 Pade’ Nonparaxial Beam Propagation: Sparse Ma-

trices. Our second example stems from the field of computational optics. The
nonparaxial scalar beam propagation equation
ou 02
— =ifu—iy| | = +kZn2(z,y,2) |u 4.6
i \/(WH (w02)) (1.6

is commonly used to study photonic structures. It arises from a slowly varying enve-
lope assumption for the electric field

E=ue @02y (4.7)

and subsequent substitution into the electric field vector wave equation. The parame-
w

ters 3, ko and n(z,y,z) are the propagation constant, free space wavenumber ko= <,
where ¢ is the speed of light, and the refractive index, which describes the shape of
the simulated structure, respectively [20, 42].

The refractive index profile which we are interested in is shown in Fig. 4.8. This
structure is referred to as a multi-mode interference (MMI) coupler [27]. One of
its uses is to separate an optical signal arriving from the single port into multiple
signals. To accomplish this, the physical dimensions of the cavity and the indices of
refraction must be precisely tuned to generate an interference pattern at the outports.
This particular example is taken from the recent dissertation by Greedy [16]. The

dimensions are given in Table 4.14.

TABLE 4.14. MMI Parameters

Parameter Value

A 1.064pum
N 3.44746
Nbackground 1.0
Inport Length 25um
Outport Length 50pum
Base Length 564.5um
Port Width 4.4um
Base Width 26.4pum

Outport Center-Center Distance 6.6um

For the initial condition we choose the lowest order mode of the inport. The
propagation constant which corresponds to the solution is approximately (= 20.346.
For the propagation, we choose dz=0.5um and dx=0.25um.

With the problem constructed, we now apply Weeks method to its solution. Begin
by replacing the spatial derivatives in

ou | , 02 9 o
5 zﬂuz\/(w +kgn (x,y,z))u (4.8)

with second order centered differences to discretize space

di . . o
a:zﬂu—u/(D—&—kgn?)u. (4.9)
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The boundary conditions are chosen to be perfectly reflecting (Dirichlet). The goal is
thus to solve this system of linear ordinary differential equations accurately. If we now
assume that the index of refraction is constant over a z-step, as it is for the piecewise
defined MMI structure, and Laplace transform equation (4.9), then

st(s)—u(0)=ipa(s) —iy/ (D+k3n2)a(s) (4.10)
i(s) = [s[—i (ﬁ— (D+k§n2))] @0) (4.11)
i(s) = [sI ~iB(I~VITA)] i(0) (4.12)

where

D+kgn® — 51

Clearly d(s) = (sI — M)~ @(0) with M =i3(I — /(I + A)) is the Laplace transform of
the matrix exponential e(M%2).

M itself involves the square root of a matrix. Fortunately, this computation is
a well-studied problem with many possible algorithms [19, 43]. For our illustrative
purposes, a simple 1-1 Padé approximation to the square root provides sufficient
accuracy

A (4.13)

—2iBA _

~ =L"'R. 4.14
4T+ A . (4.14)

Note that L and R are still sparse matrices. Instead of explicitly generating L™'R
and forming the Schur decomposition, which will create a dense matrix, we opt for a
formalism which utilizes the sparsity of L and R and is amendable to parallelization.
Namely, since I = L~ 'L, we can write

i~ [sT— L 'R] ™ @(0) (4.15)

= (sL—R)" (Li(0)). (4.16)
Lii(0) need only be computed once and the matrix to invert (sL—R)~! is sparse.

Furthermore, since the inversions are independent, the sum in the computation of the
coefficients

—inw/(2M) M—1 2b WOmt1/2 -1
> € —inblm, _ € +1 _ =
G ZMe T ey K ey 1) L R} (Lii(0))

(4.17)
can be dispersed over parallel processors. The partial results are then passed to a
central processor which computes the sum for @(z) by the midpoint or FFT algorithms.
Due to the lack of a standard parallel implementation of MATLAB, it has been
necessary to program in C. Our particular code utilizes the Message-Passing Interface
(MPI) [17] to manage the parallelization over a cluster of workstations. To verify the
accuracy of the simulations a series MATLAB script also has been written.
Fig. 4.9 and 4.10 are simulations of the MMI structure in Fig. 4.8, using MAT-
LAB’s sqrtm and expmi functions and the 1-1 Padé approximant for the square root
with Weeks method, respectively. The anticipated interference effect is clearly seen
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FiG. 4.8. Multi-mode coupler

in both figures. The parameters for the Weeks method are fixed at the values from
Weideman’s algorithm for the structure at z=0, 0 ~3.898 and b~ 8.400 and the sum
is performed using 64 coefficients. The magnitude of the solution at z=625um com-
puted using the MATLAB and C codes with the 1-1 Padé is plotted in Fig. 4.11.
Also plotted in this figure is the ‘exact’ solution using the full square root matrix
and exponential matrix from MATLAB. This simulation required approximately 40.4
seconds.

TABLE 4.15. Parallel Computation Time: 64 Coefficients, 500 Steps

Number Processors Computation Time (sec)

Midpoint FFT
1 716 23
2 444 50
4 241 53

Shown in Table 4.15 is the time required for the simulation of the MMI structure
as a function of the number of processors. The sum is performed using the midpoint
and FFT methods with 64 coefficients. The total number of inversions is 256. A
factor of 2 arises from the fact that the coefficients a,, are computed using a sum from
m=—N,...,N —1. Another factor of 2 arises from doubling the number of coefficients
to compute an estimate of the error. Using §z =0.5um on a width of 40um, the matrix
has a total of 160 elements. The matrices involved in the computation are however
tridiagonal and thus can be efficiently inverted using the Thomas algorithm [29]. The
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Fic. 4.10. Multi-mode coupler intensity: 1-1 Padé approximation

time is the number of seconds required to advance 500 steps. As expected, the FFT
algorithm is considerably faster than the midpoint. Comparing computation times
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TABLE 4.16. Parameter Algorithms for the MMI Structure

Z(um) Parameters Weeks:N  Weeks:b Half MinMax:Grid MinMax:Search Pseudo:rmin Pseudo:Y Weideman
0 o 1 1 20 4.80 4.02 1.05 5.86
b 32 1/2 10 3.00 8.98 6.01 11.83
925 o 1 1 20 4.80 3.91 1.05 12.01
b 32 1/2 10 3.00 8.86 6.01 16.95
590 o 1 1 20 4.80 3.81 1.05 11.84
b 32 1/2 10 3.00 8.77 6.01 16.79
Absolute Error 12.28 Failed 1.19-1073 Failed 0.44 Failed 4.25-107%

z=0625um
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TABLE 4.17. Weideman Method vs Number of Coefficients

N  Z(um) o b Absolute Error at 625um
0 13.26  18.20
32 25 19.94 2490 2.63-1072
590 19.94 24.89
0 5.86 11.83
64 25 12.01 16.95 4.25-107%
590 11.84 16.79
0 3.02 7.96
128 25 6.53 11.47 9.16-107°
590 6.45 11.40

TABLE 4.18. Weideman Method vs Step Size

dz(pm)  Z(pm) o b Absolute Error at 625um
0 12.49 17.44

1 25 19.95 2490 1.15
590 19.94 24.90
0 5.86  11.83

0.5 25 12.01 16.95 4.25-107*
590 11.84 16.79
0 3.06  8.00

0.25 25 569 10.66 1.20-1076
590 5.60  10.54
0 1.78  5.38

0.125 25 2.86 584  8.04-107°

590 281 581

one finds that the difference is due primarily to the summation algorithms. The
increase in time for the FFT algorithm reflects the fact that the inversions can be
performed in a time interval shorter than that needed to setup the parallelization
and pass the ordered information between processors. For a dense matrix, where
the inversions dominate the computations, the FFT algorithm may also benefit from
parallelization.

In Fig. 4.12 we demonstrate the importance of adapting o and b to the changes
in the structure. The simulations were performed using the full square root matrix
from MATLAB and not the 1-1 Padé approximant. The parameters used are from
Weideman’s algorithm. The actual values as well as those from the other parameter
selection algorithms are provided in Table 4.16. What is surprising from this data is
the failure of the two parameter selection algorithms which utilize a search routine.
We see from the MinMax:Search and Pseudo:Y approaches, that even if the underlying
error minimization approach is reasonable, the lack of a robust search routine can be
catastrophic.

Finally, in Table 4.17 and 4.18 are the convergence analysis of Weeks method with
Weideman’s parameters. As expected, decreasing the time step leads to a dramatic
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increase in accuracy and there is a saturation in the accuracy of the method as the
number of Laguerre expansion coefficients increases.

5. Conclusions In this paper, we have investigated the feasibility of using
Weeks method to compute matrix functions. In particular, we have been interested
in the evaluation of the matrix exponential in order to spectrally accurately propagate
dispersive, diffusive, and advective equations. This has entailed an extension of the
scalar Weeks method to those matrix-valued functions with finite singularities, an
analysis of the errors and implementation costs, and the development of selection
algorithms for the method’s two tuning parameters ¢ and b. Applications involving
both pathological matrices and the numerical solution of the advection-diffusion and
nonparaxial beam propagation equation highlight the utility of this approach.

Our conclusion from this study is that Weeks method provides a stable and accu-
rate approach to the numerical calculation of the matrix exponential. The method is
however highly sensitive to a proper choice for the two tuning parameters. With the
regards to the selection algorithms, we have found that Weeks original suggestions
are wholly inadequate. They cannot be relied upon for a general matrix to yield a
spectrally accurate solution. A straight forward maximization of the radius of conver-
gence of the Maclaurin series in the method is an efficient alternative. It can fail if the
denominator in the expression for the radius of convergence is particularly small. By
far the most robust and accurate method is the adaption of Weideman’s method to
matrix functions. It is also applicable to a general matrix-valued function as opposed
to our own pseudospectra based approach which is limited to the matrix exponential.
Weideman’s algorithm is however very expensive for large matrices since it relies on
a calculation of the expansion coefficients. The pseudospectra based approach has
proved to be considerably less expensive than Weideman’s and nearly as accurate.
We have also found that, except for Weeks original suggestions, scaling and squaring
the matrix exponential leads to a dramatic improvement in the method.

With regards to efficiency, at least for our implementation and a fixed time step,
the Weeks method is not as fast as the scaling/Pade’ approach utilized in MATLAB’s
expm] function. We have also shown that although the midpoint method for the ex-
pansion coefficients lends itself to parallelization, the fast Fourier transform algorithm
is far more efficient.

To note is that there are still many possible improvements to the matrix Weeks
method. Omne which could particularly benefit the parameter selection algorithms
is a more sophisticated technique for a constrained search of the (o,b) plane. The
examples in this paper show that although the parameter selection approach may
be valid, the inability to constrain the search can lead to erroneous computations.
Another improvement is to automate the scaling factor for the matrix exponential.
This scaling may be particularly important for matrices with large eigenvalues. To
increase the speed, we have two suggestions. The first is to apply a Krylov subspace
method instead of a full Schur factorization. This will require a restructuring of the
parameter selection algorithms and an analysis of the critical singularities. Also, for
matrices with purely imaginary eigenvalues, we have shown that the singularity which
defines the radius of convergence is the eigenvalue with the largest magnitude. It is
thus not necessary to compute the expensive Schur decomposition to determine all the
eigenvalues of the matrix. Instead, a significant increase in the speed of the parameter
selection algorithms may be gained by computing only the largest, critical eigenvalue.
Finally, we conclude by pointing out that in this paper we have focused upon the
matrix exponential. The has allowed us to quantify our discussion and assess the
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qualities of the method for spectral propagation. However, the general theory of the
Weeks method is not limited to this function. The application of the Weeks method
to certain classes of matrix functions and highly nonnormal matrices may be of future
interest.
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