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MULTI-FACTOR FINANCIAL DERIVATIVES ON FINITE
DOMAINS∗

YOU-LAN ZHU† AND JINLIANG (ERIC) LI‡

Abstract. In this paper, we introduce reversion conditions for stochastic models. Also we prove
that if the models satisfy reversion conditions and the market prices of risks are bounded, then the
final-value problem of general two-factor financial derivative equations on rectangular domains has
a unique solution. For such problems we can obtain their numerical solutions without using any
artificial conditions. Examples show that if the singularity-separating method and extrapolation
techniques are used, then very good solutions can be obtained even on very coarse meshes.

1. Introduction
In finance, a stochastic model usually describes a random variable which can take

its value on an infinite domain. Using such a model, many problems of financial
derivative pricing can be written as parabolic problems defined on an infinite do-
main. One usual way to obtain numerical solutions of such problems is to solve the
problem on a large finite domain. Since parabolic problems on a finite domain need
boundary conditions, some approximate boundary conditions on artificial boundaries
need to be added (see [4]). In this case, we have to make sure that the formula-
tion of the approximate problem is well-posed and that the error introduced by the
approximate boundary conditions is small enough so that the accuracy of numerical
solutions is not affected. Can we have stochastic models which describe random vari-
ables on finite domains so that such problems can be avoided? In [5], for the one
dimensional case, we provided so-called reversion conditions1) under which parabolic
equations in finance degenerate, and proved that these conditions are sufficient and
necessary for an initial-value problem of corresponding degenerate parabolic equations
on finite domains to have a unique solution. In this paper, for the two-dimensional
case, we will give some conditions and prove that under such conditions a final-value
problem2) of corresponding degenerate parabolic equations on finite domains has a
unique solution3) , and provide examples to explain that numerical solutions of such
final-value problems can be obtained by the degenerate parabolic partial differential
equation and final condition; that is, no artificial boundary conditions are needed.

The rest of this paper is organized as follows. In the next section, we introduce
the reversion conditions and show how a model can be modified so that the reversion
conditions are satisfied. In Section 3, we prove that the solution of a final-value
problem of corresponding degenerate parabolic equations on finite domains is unique
if the stochastic models satisfy reversion conditions. Then, we apply the result to the
options on assets with stochastic volatilities and show that such a two-factor European
option problem is a final-value problem on a finite domain and has a unique solution
if the stochastic model for the volatility satisfies the reversion conditions. In Section
5, a numerical method without using any artificial conditions and numerical results
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for this final-value problem on a finite domain are given. We also show that if the
singularity-separating method and extrapolation techniques are used, then numerical
solutions are very good even on quite coarse meshes. Finally, our conclusions are
given.

2. Reversion Conditions for Stochastic Models
Suppose that a financial derivative depends on the time t and two random vari-

ables S1 and S2, and that S1 and S2 follow

dS1 = a1(S1, S2, t)dt + b1(S1, S2, t)dX1, (2.1)

and

dS2 = a2(S1, S2, t)dt + b2(S1, S2, t)dX2, (2.2)

where dX1 and dX2 are two Wiener processes. They are correlated and E[dX1dX2] =
ρdt, where |ρ| ≤ 1. Such financial derivatives are referred to as two-factor ones in this
paper.

In real life, S1 and S2 usually have lower and upper bounds. Let Sil, Siu be the
lower and upper bounds of Si respectively, i = 1, 2. In this paper for Si we require
the following so-called reversion conditions:





[
ai(S1, S2, t)− bi(S1, S2, t)

∂bi(S1, S2, t)
∂Si

]∣∣∣∣
Si=Sil

≥ 0,

bi(S1, S2, t)|Si=Sil
= 0

(2.3)

and




[
ai(S1, S2, t)− bi(S1, S2, t)

∂bi(S1, S2, t)
∂Si

]∣∣∣∣
Si=Siu

≤ 0,

bi(S1, S2, t)|Si=Siu
= 0.

(2.4)

Here conditions (2.3) and (2.4) for S1 should hold for all S2 ∈ [S2l, S2u] and con-
ditions (2.3) and (2.4) for S2 should hold for all S1 ∈ [S1l, S1u]. It is clear that if
∂bi(S1, S2, t)

∂Si

∣∣∣∣
Si=Sil

and
∂bi(S1, S2, t)

∂Si

∣∣∣∣
Si=Siu

are bounded, then the two conditions

(2.3) and (2.4) can be reduced to

{
ai(S1, S2, t)|Si=Sil

≥ 0,
bi(S1, S2, t)|Si=Sil

= 0 (2.5)

and
{

ai(S1, S2, t)|Si=Siu
≤ 0,

bi(S1, S2, t)|Si=Siu
= 0.

(2.6)

In finance, if a model satisfies the inequality conditions in (2.5) and (2.6), then it
is said that the model has the property of mean reverting. However, if the equality
conditions in (2.5) and (2.6) do not hold, then there is still a chance for the random
variable to go to infinity. It is easy to modify those models so that they satisfy all
the reversion conditions. For example, suppose that for S2 the equality conditions in
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reversion conditions do not hold. We can modify the model for S2 as follows: the
coefficient of dX2 is multiplied by a function, for example,

Φ(x) =
1− (1− 2x)2

1− 0.975(1− 2x)2
,

where x = (S2−S2l)
(S2u−S2l)

. Because Φ(x) are equal to zero at S2 = S2l and S2 = S2u and
very close to one at S2 ∈ (S2l, S2u), almost all the properties of the original model
are kept and the reversion conditions will hold after the modification is made. In the
next section we are going to explain that if (2.3) and (2.4) hold, then the two random
variables S1 and S2 are guaranteed to be in [S1l, S1u], [S2l, S2u] respectively.

3. Uniqueness of Solutions for Final-Value Problems
Suppose that a financial derivative depends on the time t and two random vari-

ables S1 and S2, which satisfy (2.1) and (2.2) and the reversion conditions, and let
V (S1, S2, t) be the price of the financial derivative. By arbitrage argument, it can be
shown that V (S1, S2, t) should satisfy the following equation (see [8]):

∂V

∂t
+

1
2
b2
1

∂2V

∂S2
1

+ ρb1b2
∂2V

∂S1∂S2

+
1
2
b2
2

∂2V

∂S2
2

+ (a1 − λ1b1)
∂V

∂S1
+ (a2 − λ2b2)

∂V

∂S2
− rV = 0,

where λ1 and λ2 are two bounded functions and called market prices of risk on S1

and S2 respectively, and r is the spot interest rate. Also, many financial derivatives
should be solutions of the final-value problem





∂V

∂t
+ 1

2b2
1

∂2V

∂S2
1

+ ρb1b2
∂2V

∂S1∂S2
+ 1

2b2
2

∂2V

∂S2
2

+(a1 − λ1b1)
∂V

∂S1
+ (a2 − λ2b2)

∂V

∂S2
− rV = 0,

S1 ∈ [S1l, S1u], S2 ∈ [S2l, S2u], t ∈ [0, T ],

V (S1, S2, T ) = f(S1, S2), S1 ∈ [S1l, S1u], S2 ∈ [S2l, S2u].
(3.1)

Now let us discuss when problem (3.1) has a unique solution. For this question,
we have the following theorem:

Theorem 3.1. If
(i). the reversion conditions (2.3) and (2.4) hold;
(ii). there exists a constant c1 such that

max
S1l≤S1≤S1u
S2l≤S2≤S2u

∣∣∣∣
∂

∂S1

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)

+
∂

∂S2

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
+ 2r

∣∣∣∣ ≤ c1; and

(iii). solutions of problem (3.1) exist and their first derivatives are bounded,
then the solution of (3.1) is unique.
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Proof. Suppose that u1 and u2 are two solutions of (3.1) and let u = u1 − u2. It
is clear that u is the solution of the problem (3.1) with f(S1, S2) ≡ 0. Let τ = T − t
and define

W (τ) =
∫ S2u

S2l

∫ S1u

S1l

u2(S1, S2, T − τ)dS1dS2. (3.2)

Since the partial differential equation in (3.1) can be rewritten as

∂u

∂τ
=

1
2

∂

∂S1

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)
+

1
2

∂

∂S2

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)

+
(

a1 − λ1b1 − b1
∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)
∂u

∂S1

+
(

a2 − λ2b2 − b2
∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
∂u

∂S2
− ru,

we have

1
2

dW (τ)
dτ

=
∫ S2u

S2l

∫ S1u

S1l

u
∂u

∂τ
dS1dS2

=
∫ S2u

S2l

∫ S1u

S1l

u

2
∂

∂S1

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)
dS1dS2

+
∫ S2u

S2l

∫ S1u

S1l

u

2
∂

∂S2

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)
dS1dS2 (3.3)

+
∫ S2u

S2l

∫ S1u

S1l

u

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)
∂u

∂S1
dS1dS2

+
∫ S2u

S2l

∫ S1u

S1l

u

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
∂u

∂S2
dS1dS2

−
∫ S2u

S2l

∫ S1u

S1l

ru2dS1dS2.

Now let us look at the first four terms in the right hand side of (3.3). Using integration
by parts and the equality conditions in (2.3) and (2.4), we can rewrite the first and
second terms as follows:

∫ S2u

S2l

∫ S1u

S1l

u

2
∂

∂S1

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)
dS1dS2

=
1
2

∫ S2u

S2l

{[
u

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)]∣∣∣∣
S1u

S1l

−
∫ S1u

S1l

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)
∂u

∂S1
dS1

}
dS2

= −1
2

∫ S2u

S2l

∫ S1u

S1l

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)
∂u

∂S1
dS1dS2 (3.4)
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and

∫ S2u

S2l

∫ S1u

S1l

u

2
∂

∂S2

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)
dS1dS2

=
1
2

∫ S1u

S1l

{[
u

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)]∣∣∣∣
S2u

S2l

−
∫ S2u

S2l

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)
∂u

∂S2
dS2

}
dS1

= −1
2

∫ S2u

S2l

∫ S1u

S1l

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)
∂u

∂S2
dS1dS2. (3.5)

Also according to the equality condition in (2.3), b1(S1l, S2, t) = 0 is equal to zero

for any S2, so
∂

∂S2
(ρb1b2)

∣∣∣∣
S1=S1l

= 0. Similarly, we have
∂

∂S2
(ρb1b2)

∣∣∣∣
S1=S1u

= 0,

∂

∂S1
(ρb1b2)

∣∣∣∣
S2=S2l

= 0 and
∂

∂S1
(ρb1b2)

∣∣∣∣
S2=S2u

= 0. Noticing these facts and the

inequality conditions in (2.3) and (2.4), for the third and fourth integrals in the right
hand side of (3.3) we have

∫ S2u

S2l

∫ S1u

S1l

u

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)
∂u

∂S1
dS1dS2

=
1
2

∫ S2u

S2l

{[
u2

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)]∣∣∣∣
S1u

S1l

−
∫ S1u

S1l

u2 ∂

∂S1

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)
dS1

}
dS2

≤ −1
2

∫ S2u

S2l

∫ S1u

S1l

u2 ∂

∂S1

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)
dS1dS2 (3.6)

and

∫ S1u

S1l

∫ S2u

S2l

u

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
∂u

∂S2
dS2dS1

=
1
2

∫ S1u

S1l

{[
u2

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)]∣∣∣∣
S2u

S2l

−
∫ S2u

S2l

u2 ∂

∂S2

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
dS2

}
dS1

≤ −1
2

∫ S2u

S2l

∫ S1u

S1l

u2 ∂

∂S2

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
dS1dS2. (3.7)
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Adding (3.4) and (3.5) together, due to |ρ| ≤ 1, we have
∫ S2u

S2l

∫ S1u

S1l

u

2
∂

∂S1

(
b2
1

∂u

∂S1
+ ρb1b2

∂u

∂S2

)
dS1dS2

+
∫ S2u

S2l

∫ S1u

S1l

u

2
∂

∂S2

(
ρb1b2

∂u

∂S1
+ b2

2

∂u

∂S2

)
dS1dS2

= −1
2

∫ S2u

S2l

∫ S1u

S1l

[(
b1

∂u

∂S1

)2

+ 2ρb1b2
∂u

∂S1

∂u

∂S2
+

(
b2

∂u

∂S2

)2
]

dS1dS2 ≤ 0.(3.8)

Substituting (3.4)-(3.7) into (3.3) and applying (3.8) and condition (ii), we have

1
2

dW (τ)
dτ

≤ −1
2

∫ S2u

S2l

∫ S1u

S1l

u2

{
∂

∂S1

(
a1 − λ1b1 − b1

∂b1

∂S1
− 1

2
∂

∂S2
(ρb1b2)

)

+
∂

∂S2

(
a2 − λ2b2 − b2

∂b2

∂S2
− 1

2
∂

∂S1
(ρb1b2)

)
+ 2r

}
dS1dS2

≤ 1
2
c1W (τ).

Therefore, according to the Gronwall inequality, we arrive at

0 ≤ W (τ) ≤ ec1τW (0).

Because W (0) = 0, we get W (τ) ≡ 0. Then, u ≡ 0, or u1 ≡ u2; that is, the solution
of (3.1) is unique.

Here we would like to make some remarks. The first one is about the conditions
given in the theorem. If a1, a2, b1, b2, λ1, λ2, r, the first derivatives of a1, a2, λ1

and λ2, and the first and second derivatives of ρ, b1 and b2 are bounded, then condi-
tions (2.3), (2.4) are reduced to (2.5), (2.6) respectively, and condition (ii) is always
satisfied. The partial differential equation in (3.1) is called a degenerate parabolic
partial differential equation because of the equality conditions in (2.3) and (2.4). It is
clear that the result can be applied to any degenerate parabolic problems from various
fields.

When there are K random variables governed by

dSi = ai(S1, S2, · · · , SK , t)dt + bi(S1, S2, · · · , SK , t)dXi, i = 1, 2, · · · ,K,

similar results can still be proven. For the proof above, a key fact we used is |ρ| ≤ 1,
which means that

(
1 ρ
ρ 1

)

is semi-positive definite, i.e., all its eigenvalues are greater than or equal to zero. For
multi-dimensional cases, we need the fact that the correlation matrix




1 ρ12 · · · ρ1K

ρ21 1 · · · ρ2K

...
...

. . .
...

ρK1 ρK2 · · · 1




is semi-positive definite. Here ρi,j = E[dXidXj ]/dt.
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The meaning of the final-value problem (3.1) having a unique solution is that the
solution of (3.1) is completely determined by the final condition. This also means that
the random variables will never reach the boundaries if they are inside the domain at
the beginning [3]. This is because if the random variables reach the boundaries, then
the solution must also be affected by what happens at the boundaries. Therefore, if
stochastic models satisfy the reversion conditions, then those random variables should

be guaranteed on the finite domain [S1l, S1u]× [S2l, S2u]. When
∂bi(S1, S2, t)

∂Si

∣∣∣∣
Si=Sil

and
∂bi(S1, S2, t)

∂Si

∣∣∣∣
Si=Siu

are bounded, then conditions (2.3) and (2.4) are reduced to

(2.5) and (2.6). Under conditions (2.5) and (2.6), the fact that the random variable
will never reach the boundaries has been proven for the one dimensional case in [3].
It can be expected that the same result is still true for multi-dimensional cases and
when conditions (2.3) and (2.4) cannot be reduced to (2.5) and (2.6).

At present, a stochastic model in finance usually describes a random variable
which can take its value on an infinite domain. In many cases, closed-form solutions
can be found for such a model. This is an advantage of such a model. However,
it seems that assuming a random variable (such as interest rates, volatilities) to be
defined on a finite domain and designing a model from market data are more realistic.
In this case, we need to require conditions (2.3) and (2.4). Also indeed, condition
(2.3) is satisfied by models defined on [0,∞) and having unique solutions for the
corresponding final-value problems. For example, in the popular model [1]

dS = µSdt + σSdX,

condition (2.3) is satisfied at S = 0. In the Cox-Ingersoll-Ross interest rate model [2]

dr = (µ̄− γ̄r)dt +
√

αrdX, µ̄, γ̄, α > 0,

condition (2.3) is reduced to µ̄ − α/2 ≥ 0 if the lower bound is zero. Actually,
this condition is required in order to let r be nonnegative. As will be pointed in
the next section, a random variable on [0,∞) can be transferred to a new random
variable on [0, 1). When a random variable is transferred to a new random variable
on a finite domain, the new final-value problem should still have a unique solution
if the original final-value problem does. This means that for these models defined
on [0,∞) and having unique solutions for the corresponding final-value problems, the
new random variable must satisfy condition (2.4) at the upper bound of the domain
[0, 1]. Therefore, it can be said that these models satisfy reversion conditions in some
sense. For those models defined on (−∞,∞) and having unique solutions for their
final-value problems, the situation is similar.

Stochastic models satisfying such conditions can describe various stochastic vari-
ables, such as stochastic volatilities, stochastic spot interest rates and London Inter-
bank Offer Rates, stock prices, and bond prices. Stochastic spot interest rates and
volatilities satisfying such conditions have been applied to derivative security problems
with free boundaries ([7] and [6]). In this paper, taking a problem whose correspond-
ing stochastic models satisfy the reversion conditions as an example, we will show
that numerical solutions of such final-value problems can be obtained without using
any artificial boundary conditions and that if the singularity-separating method and
extrapolation techniques are used, then numerical solutions are very good even on
quite coarse meshes.
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4. Uniqueness of Solutions for European Options on Assets with
Stochastic Volatilities

In this section, we consider a special two-factor financial derivative: options on as-
sets with stochastic volatilities. We assume that the asset price S follows the following
stochastic process

dS = µSdt + σSdX1, 0 ≤ S (4.1)

and that the volatility σ is also a random variable, and its evolution is governed by

dσ = p(σ, t)dt + q(σ, t)dX2, σl ≤ σ ≤ σu, (4.2)

where the two random increments dX1 and dX2 are two Wiener processes. dX1 and
dX2 are correlated and E[dX1dX2] = ρdt. Furthermore, we assume that the stochastic
model for σ satisfies reversion conditions; that is, the following relations hold:

{
p(σl, t)− q(σl, t)

∂q

∂σ
(σl, t) ≥ 0,

q(σl, t) = 0
(4.3)

and
{

p(σu, t)− q(σu, t)
∂q

∂σ
(σu, t) ≤ 0,

q(σu, t) = 0,
(4.4)

or when
∂q

∂σ
(σl, t) and

∂q

∂σ
(σu, t) are bounded,

{
p(σl, t) ≥ 0,
q(σl, t) = 0 (4.5)

and
{

p(σu, t) ≤ 0,
q(σu, t) = 0 (4.6)

hold. Suppose that V (S, σ, t) is the value of such an option. V (S, σ, t) satisfies

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ ρσqS

∂2V

∂S∂σ
+

1
2
q2 ∂2V

∂σ2

+(r −D0)S
∂V

∂S
+ (p− λq)

∂V

∂σ
− rV = 0.

(4.7)

This equation holds for S ∈ [0,∞). In order to convert the problem on an infinite
domain into one on a finite domain, we introduce the following transformation:





ξ =
S

S + Pm
,

σ = σ,

t = t,

V =
V

S + Pm
,

(4.8)
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where Pm is a positive constant. Since there are the following expressions:

S =
ξPm

1− ξ
, S + Pm =

Pm

1− ξ
,

dξ

dS
=

(1− ξ)2

Pm
,

∂V

∂t
=

Pm

1− ξ

∂V

∂t
,

∂V

∂S
= V + (1− ξ)

∂V

∂ξ
,

∂V

∂σ
=

Pm

1− ξ

∂V

∂σ
,

∂2V

∂S2
=

(1− ξ)3

Pm

∂2V

∂ξ2
,

∂2V

∂S∂σ
=

∂V

∂σ
+ (1− ξ)

∂2V

∂ξ∂σ
,

∂2V

∂σ2
=

Pm

1− ξ

∂2V

∂σ2
,

(4.7) can be rewritten as

∂V

∂t
+

1
2
σ2ξ2(1− ξ)2

∂2V

∂ξ2
+ ρσξ(1− ξ)q

∂2V

∂ξ∂σ
+

1
2
q2 ∂2V

∂σ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

+(p− (λ− ρσξ)q)
∂V

∂σ
− (r − (r −D0)ξ) V = 0.

Since the transformation above converts a value of S ∈ [0,∞) into a value of ξ ∈ [0, 1],
V (ξ, σ, t) is defined on the domain [0, 1]×[σl, σu]×[0, T ]. Therefore, the determination
of European option prices in this case reduces to finding the solution of the following
final-value problem:





∂V

∂t
+ 1

2σ2ξ2(1− ξ)2
∂2V

∂ξ2
+ ρσξ(1− ξ)q

∂2V

∂ξ∂σ
+ 1

2q2 ∂2V

∂σ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

+ (p− (λ− ρσξ)q)
∂V

∂σ
− (r − (r −D0)ξ) V = 0,

ξ ∈ [0, 1], σ ∈ [σl, σu], t ∈ [0, T ],

V (ξ, σ, T ) = f(ξ, σ), ξ ∈ [0, 1], σ ∈ [σl, σu].
(4.9)

This problem is in the form of (3.1) with

a1 = (r −D0)ξ(1− ξ) + λσξ(1− ξ),
b1 = σξ(1− ξ),
a2 = p(σ, t) + ρσξq(σ, t),
b2 = q(σ, t)

and the coefficient of V here is −(r − (r −D0)ξ). In order to have a unique solution,
the key is that a1, b1, a2 and b2 should satisfy the reversion conditions (2.3) and
(2.4). In this case, a1 and b1 always satisfy (2.3) and (2.4). That a2 and b2 satisfy
the reversion conditions is equivalent to fulfillment of (4.3) and (4.4). Therefore, if
(4.3), (4.4), conditions (ii) and (iii) of Theorem 1 are satisfied, then (4.9) has a unique
solution.
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5. Examples
Here, examples are given to explain (i) if conditions (4.3) and (4.4) hold, then

we can solve problem (4.9) numerically by using the partial differential equation and
final condition only; that is, without using any artificial conditions, and (ii) if the
singularity-separating method and extrapolation techniques are used, then very good
results can be obtained even on very coarse meshes.

Consider a two-factor European vanilla call option problem and let its value be
c(S, σ, t). Suppose that the volatility model satisfies the reversion conditions. Then
no boundary conditions need to be given at the boundaries σ = σl and σ = σu.
Therefore, the value of the two-factor European vanilla call option is the solution of
the following final-value problem:





∂c

∂t
+ Lc = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

c(S, σ, T ) = max(S − E, 0), 0 ≤ S, σl ≤ σ ≤ σu,

(5.1)

where

L =
1
2
σ2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂σ
+

1
2
q2 ∂2

∂σ2
+ (r −D0)S

∂

∂S
+ (p− λq)

∂

∂σ
− r (5.2)

and E is the exercise price of the call option. In order to make numerical methods
more efficient, we introduce

c(S, σ, t) = c(S, σ, t)− c0(S, σ, t). (5.3)

Here c0(S, σ, t) is the price of a one-factor European vanilla call option; that is, the
price of the European vanilla call option with a constant σ. Its value is given by (see
[1], [8])

c0(S, σ, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2),

where

N(z) =
1√
2π

∫ z

−∞
e−ξ2/2dξ,

d1 =
[
ln

Se−D0(T−t)

Ee−r(T−t)
+

1
2
σ2(T − t)

]/ (
σ
√

T − t
)

,

d2 = d1 − σ
√

T − t.

Since c0(S, σ, t) satisfies the Black-Scholes equation, the difference c is the solution of
the following final-value problem:





∂c

∂t
+ Lc = f(S, σ, t), 0 ≤ S, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

c(S, σ, T ) = 0, 0 ≤ S, σl ≤ σ ≤ σu,

(5.4)

where

f(S, σ, t) = −ρσSq
∂2c0

∂S∂σ
− 1

2
q2 ∂2c0

∂σ2
− (p− λq)

∂c0

∂σ
.
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From the expressions of c0(S, σ, t), noticing

∂c0

∂S
= e−D0(T−t)N(d1),

∂d1

∂σ
=
√

T − t−
[
ln

Se−D0(T−t)

Ee−r(T−t)
+

1
2
σ2(T − t)

]/
(σ2

√
T − t)

=
√

T − t− d1

σ
,

∂d2

∂σ
=

∂d1

∂σ
−
√

T − t = −d1

σ
,

N ′(z) =
1√
2π

e−z2/2,

we can easily find

∂c0

∂σ
= Se−D0(T−t)N ′(d1)

∂d1

∂σ
− Ee−r(T−t)N ′(d2)

∂d2

∂σ

= S
√

T − te−D0(T−t)N ′(d1),
∂2c0

∂σ2
= S

√
T − te−D0(T−t)N ′′(d1)

∂d1

∂σ

= −S
√

T − te−D0(T−t)d1N
′(d1)

∂d1

∂σ
,

∂2c0

∂S∂σ
= e−D0(T−t)N ′(d1)

∂d1

∂σ
.

As we see from (5.1), the derivative of c(S, σ, t) with respect to S is discontinuous
at t = T and S = E. However, (5.4) shows that at t = T the derivative of c(S, σ, t)
with respect to S is identically zero. Therefore, when a numerical method is used, the
truncation error for problem (5.4) will be much smaller than that of problem (5.1). In
what follows, we will refer to such a technique as the singularity-separating method
(SSM), since the original weak singularity has been separated.

The final-value problem (5.4) is defined on an infinite domain. In order to convert
this problem into an initial-value problem on a finite domain, let ξ be defined as in
(4.8) with Pm = E, and define

τ = T − t, u(ξ, σ, τ) =
c(S, σ, t)
S + E

. (5.5)

In the {ξ, σ, τ}-space, problem (5.4) becomes





∂u

∂τ
= a1

∂2u

∂ξ2
+ a2

∂2u

∂ξ∂σ
+ a3

∂2u

∂σ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u + a7,

0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu, 0 ≤ τ ≤ T,

u(ξ, σ, 0) = 0, 0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu,

(5.6)
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where

a1 =
1
2
σ2ξ2(1− ξ)2,

a2 = ρσξ(1− ξ)q,

a3 =
1
2
q2,

a4 = (r −D0)ξ(1− ξ),
a5 = p− (λ− ρσξ)q,
a6 = −[r(1− ξ) + D0ξ],
a7 = −f(ξE/(1− ξ), σ, T − τ)(1− ξ)/E

= ρσξqe−D0(T−t)N ′(d1)
∂d1

∂σ
− 1

2
q2ξ

√
T − te−D0(T−t)d1N

′(d1)
∂d1

∂σ

+(p− λq)ξ
√

T − te−D0(T−t)N ′(d1)

=
1√
2π

ξe−D0τ−d2
1/2

[
q(
√

τ − d1/σ)(ρσ − q
√

τd1/2) + (p− λq)
√

τ
]
.

Once we have a solution of (5.6), u(ξ, σ, τ), we can get the value of the two-factor
European call option by

c(S, σ, t) = c(S, σ, t) + c0(S, σ, t)

= (S + E)u
(

S

S + E
, σ, T − t

)
+ c0(S, σ, t).

(5.7)

We calculate the solution of problem (5.6) by the following method. Let un
m,i be

the approximate value of u at ξ = m∆ξ, σ = σl+i∆σ and τ = n∆τ , where ∆ξ = 1/M ,
∆σ = (σu − σl)/I and ∆τ = 1/N , M , I, N being integers. This partial differential
equation can be discretized by the following scheme. If σ 6= σl and σ 6= σu, then at
a point (ξm, σi, τ

n+1/2) the partial differential equation in (5.6) can be discretized by
the following second order approximation:

un+1
m,i − un

m,i

∆τ
=

a1

2∆ξ2

(
un+1

m+1,i − 2un+1
m,i + un+1

m−1,i + un
m+1,i − 2un

m,i + un
m−1,i

)

+
a2

8∆σ∆ξ
(un+1

m+1,i+1 − un+1
m+1,i−1 − un+1

m−1,i+1 + un+1
m−1,i−1

+ un
m+1,i+1 − un

m+1,i−1 − un
m−1,i+1 + un

m−1,i−1) (5.8)

+
a3

2∆σ2
(un+1

m,i+1 − 2un+1
m,i + un+1

m,i−1 + un
m,i+1 − 2un

m,i + un
m,i−1)

+
a4

4∆ξ
(un+1

m+1,i − un+1
m−1,i + un

m+1,i − un
m−1,i)

+
a5

4∆σ
(un+1

m,i+1 − un+1
m,i−1 + un

m,i+1 − un
m,i−1)

+
a6

2
(un+1

m,i + un
m,i) + a7,

m = 0, 1, · · · , M, i = 1, 2, · · · , I − 1.

Here all the coefficients a1 - a7 should be evaluated at the point (ξm, σi, τ
n+1/2) in

order to guarantee second order accuracy.



YOU-LAN ZHU AND JINLIANG (ERIC) LI 355

At the boundaries σ = σl and σ = σu, due to q = 0 the partial differential
equation in (5.6) becomes a hyperbolic equation with respect to σ:

∂u

∂τ
= a1

∂2u

∂ξ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u + a7.

From the reversion conditions, we see that a5 = p− (λ− ρσξ)q = p ≥ p− q∂q/∂σ ≥
0 4) at the boundary σ = σl and a5 = p−(λ−ρσξ)q = p ≤ p−q∂q/∂σ ≤ 0 at σ = σu.
These facts tell us that the value of u on the boundaries σ = σl and σ = σu should
be determined by the value of u inside the domain. Hence, we can approximate the
partial differential equation in (5.6) at the boundaries σ = σl and σ = σu by

un+1
m,0 − un

m,0

∆τ
=

a1

2∆ξ2
(un+1

m+1,0 − 2un+1
m,0 + un+1

m−1,0 + un
m+1,0 − 2un

m,0 + un
m−1,0)

+
a4

4∆ξ
(un+1

m+1,0 − un+1
m−1,0 + un

m+1,0 − un
m−1,0) (5.9)

+
a5

4∆σ
(−un+1

m,2 + 4un+1
m,1 − 3un+1

m,0 − un
m,2 + 4un

m,1 − 3un
m,0)

+
a6

2
(un+1

m,0 + un
m,0) + a7,

m = 0, 1, · · · ,M

and

un+1
m,I − un

m,I

∆τ
=

a1

2∆ξ2
(un+1

m+1,I − 2un+1
m,I + un+1

m−1,I + un
m+1,I − 2un

m,I + un
m−1,I)

+
a4

4∆ξ
(un+1

m+1,I − un+1
m−1,I + un

m+1,I − un
m−1,I) (5.10)

+
a5

4∆σ
(3un+1

m,I − 4un+1
m,I−1 + un+1

m,I−2 + 3un
m,I − 4un

m,I−1 + un
m,I−2)

+
a6

2
(un+1

m,I + un
m,I) + a7,

m = 0, 1, · · · ,M

respectively. Here ∂u/∂σ is discretized by a one-sided second order scheme in order
for all the node points involved to be in the computational domain, and a1 and
a4 - a7 are also evaluated at the point (ξm, σi, τ

n+1/2), i = 0 or I. When un
m,i,

m = 0, 1, · · · ,M , i = 0, 1, · · · , I are known, from (5.8)-(5.10) we can determine un+1
m,i ,

m = 0, 1, · · · ,M , i = 0, 1, · · · , I. The initial condition gives u0
m,i, m = 0, 1, · · · ,M ,

i = 0, 1, · · · , I. Therefore, we can do this procedure for n = 0, 1, · · · , N−1 successively
and finally find uN

m,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I. Since truncation errors are
second order everywhere and the solutions are smooth, it can be expected that the
error is O(∆ξ2,∆τ2) and extrapolation techniques will be very useful (see [5]).

In Figure 5.1, the price of a European call option obtained in this way is plotted.
The mesh used is 20 × 20 × 20, where the first, second and third numbers are M ,
I and N respectively. The parameters of the problem are E = 50, T = 1, r = 0.1,

4) Since q2 ≥ 0 on the interval [σl, σu], the derivative ∂q2/∂σ = 2q∂q/∂σ must be greater than
or equal to zero at the lower boundary σ = σl and less than or equal to zero at the upper boundary
σ = σu.



356 MULTI-FACTOR FINANCIAL DERIVATIVES

0

50

100

150

200

0.1
0.2

0.3
0.4

0.5
0.6

0.7

0

50

100

150

S($)

E=50, T=1.0, r=10%, D0=5%, rho=0.2, lambda=0, t=0, 20x20x20 (a=0.1, b=0.06, c=0.12, d=0, e=0)

Sigma(%)

C
al

l P
ric

e(
$)

Fig. 5.1. Price of a two-factor European call option

D0 = 0.05, t = 0 and the parameter functions are

p = a(b− σ), σl ≤ σ ≤ σu,

q = c

1−
(

1− 2
σ − σl

σu − σl

)2

1− 0.975
(

1− 2
σ − σl

σu − σl

)2 σ, σl ≤ σ ≤ σu,

ρ = 0.2,

λ = d + eσ, σl ≤ σ ≤ σu,

where a = 0.1, b = 0.06, c = 0.12, d = 0, e = 0, σl = 0.05 and σu = 0.8. It is easy to
check that the reversion conditions are satisfied for p and q here.

When the singularity-separating technique is not adopted, the scheme above can
also be used. In that case,

a7 = 0 and u(ξ, σ, 0) = max(2ξ − 1, 0).

In order to give some idea about the performance of the method described in this
section, we list the values of the option obtained by the method here and by the
same difference method without using singularity-separating in Tables 5.1 and 5.2
for S = 50 and σ = 0.2. From the tables, we see that the exact solution up to the
sixth decimal place is 4.848069, which we obtain by a very fine mesh. Therefore, we
can find out the errors of the results up to the sixth decimal place, which are also
listed there. Table 5.1 shows that for a 20 × 20 × 20 mesh with extrapolation, the
error relative to E is 0.0047/50 ≈ 10−4 and the error relative to the option value is
0.0047/4.848069 ≈ 10−3. In practice, requiring such an accuracy is reasonable. The
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Table 5.1. SSM with and without extrapolation

S = 50, E = 50, T = 1, σ = 0.2, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, d = 0, e = 0.

Exact solution is 4.848069 · · · .
Without Extrapolation With Extrapolation

Meshes Solution |Errors| Solution |Errors|
10× 10× 10 4.8143085 0.033761 — —
20× 20× 20 4.8361039 0.011966 4.8433691 0.004700
40× 40× 40 4.8460151 0.002054 4.8493188 0.001249
80× 80× 80 4.8476154 0.000454 4.8481488 0.000079

160× 160× 160 4.8479592 0.000110 4.8480738 0.000004
320× 320× 320 4.8480421 0.000027 4.8480697 less than 10−6

640× 640× 640 4.8480626 0.000007 4.8480694 less than 10−6

960× 960× 960 4.8480664 0.000003 4.8480694 less than 10−6

Table 5.2. Implicit Method with and without extrapolation

S = 50, E = 50, T = 1, σ = 0.2, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, d = 0 and e = 0.

Exact solution is 4.848069 · · · .
Without Extrapolation With Extrapolation

Meshes Solution |Errors| Solution |Errors|
10× 10× 10 3.1774889 1.670580 — —
20× 20× 20 4.2406270 0.607442 4.5950063 0.253063
40× 40× 40 4.7179697 0.130100 4.8770840 0.029015
80× 80× 80 4.8171183 0.030951 4.8501678 0.002098

160× 160× 160 4.8404088 0.007661 4.8481722 0.000103
320× 320× 320 4.8461590 0.001910 4.8480758 0.000006
640× 640× 640 4.8475923 0.000477 4.8480700 0.000001
960× 960× 960 4.8478575 0.000212 4.8480697 less than 10−6

CPU time on a computer with chips Pentium III 800mHZ is 0.07 seconds. If the
singularity-separating technique is not used, in order to reach a similar accuracy, a
mesh close to 80× 80× 80 should be used and the CPU time is about 8 seconds.

Noticing

∂p0

∂σ
=

∂c0

∂σ
,

∂2p0

∂σ2
=

∂2c0

∂σ2
,

∂2p0

∂S∂σ
=

∂2c0

∂S∂σ
,

we see that the difference between the two-factor and one-factor put options is also
the solution of (5.6). Therefore, in order to have the price of a European put option,
we can first solve (5.6) and then obtain the put price by

p(S, σ, t) = (S + E)u
(

S

S + E
, σ, T − t

)
+ p0(S, σ, t),

where p0(S, σ, t) is the price of the one-factor put option (for its concrete expression,
see [8]). In Figure 5.2, the price of a two-factor European put option obtained by this
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Fig. 5.2. Price of a two-factor European put option

way is shown. The parameters of the problem and the parameter functions are the
same as those for the two-factor European call option.

Finally, we give an example to explain that if the reversion conditions are not
satisfied, then the final-value problem (4.9) is not well-posed and we cannot determine
the solution using only the partial differential equation and the final condition in (4.9).
Consider a problem with a = 1, b = 0, c = 0.012, d = 0, e = 0 and T = 2. The other
parameters are the same as before. We still use the numerical method above to find
the numerical solution. In Figure 5.3, we give the variation of u with S on the line
σ = σl at time t = 0. From there, we can see some “non-physical” oscillations. This
shows that for this case the solution is not determined only by the partial differential
equation and final condition. The reason is that a proper boundary condition is needed
at the boundary σ = σl because the inequality condition of (4.5) is not satisfied at
σ = σl due to b = 0 < σl = 0.05. If a reasonable condition cannot be given, then an
artificial boundary condition has to be added. If the artificial boundary condition is
not proper, then one will encounter some difficulty during computation.

6. Conclusion
In this paper, we introduce reversion conditions for stochastic models. Also we

prove that if the models satisfy reversion conditions, then the final-value problem
of general two-factor financial derivative equations has a unique solution. For such
problems, we can obtain their numerical solutions without using any artificial con-
ditions. Examples show that if the singularity-separating method and extrapolation
techniques are used, then very good solutions can be obtained even on very coarse
meshes.
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