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BACKWARD FORMALISM TO DERIVE THE SIZE OF SECONDARY
EJECTED DROPLETS PRODUCED BY CROWN SPLASHING OF
DROPS IMPINGING ON A SOLID WALL*

ZINIU WU t

Abstract. Crown splashing, produced by high speed impact of a droplet on a rough or wet wall,
is physically very complicated. It is impossible to determine the size of secondary ejected droplets
by literally solving the full set of nonlinear Navier-Stokes equations supplemented by complex initial
and boundary conditions. In order to get useful impact laws and, most importantly, to propose a
general concept of deriving useful results without going through the complex mathematical details,
we propose a backward formalism in which we determine the size of the secondary ejected droplets
by tracing the past event whenever it is required and just what is required. This procedure allows
us to discard those complex details of negligible importance. Such a formalism, conceptually very
simple and possibly meaningful for other complex problems, leads to a reasonably correct formula for
the most probable diameter of secondary ejected droplets, compared to known experimental data.
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1. Introduction

The impact of droplets on a solid wall involves complex physics and has many im-
portant engineering applications such as spray coating, erosion of soils, spray cooling,
spray injection in engines, etc. When the impact velocity is high enough, splash-
ing occurs (see F1G. 1.1 and the explanation in Appendix A). A number of exper-
imental studies have been made to measure the disintegration criterion (splashing
threshold)[1, 3, 6, 7, 8, 16, 19]. The size of the secondary ejected droplets [1, 3, 4,
6, 16, 20] is also of primary importance for physicists and engineers.

The detailed flow of the crown splashing is governed by the nonlinear Navier-
Stokes equations, supplemented by very complex boundary conditions since the gas-
liquid boundary breaks up to produce secondary droplets.

Conventionally, we solve a physical problem by following the forward procedure:

1. specify or determine the initial value and boundary conditions;

2. build up the governing equations;

3. simplify the mathematical model whenever it is possible;

4. solve the initial boundary value problem numerically or analytically when it is
simple enough;

5. put the solution into physically interpretable forms, draw the results in figures
to show the dependence of solutions on input conditions, or integrate the solution to
find global product such as the lift coefficient in aerodynamics.

Such a conventional procedure is impossible to be used to obtain the size of
secondary ejected droplets by splashing, since we are facing very complicated nonlinear
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58 BACKWARD FORMALISM FOR SECONDARY EJECTED DROPLETS

partial differential equations, though one can get some flow pictures just by solving
the problem numerically for a small time [11].

A physically complicated problem may involve a final physical law which does not
depend on all the complex intermediate details. If we follow a conventional solution
procedure, we have to go through all the details. For purpose of obtaining a useful law
which may not depend on the intermediate details, we propose a backward formalism.
Precisely, for the present problem, we determine the size of the secondary ejected
droplets by tracing the past event whenever it is required and just what is required.
This procedure allows us to discard those complex details which turn out to be not
needed. Such a formalism, conceptually very simple and possibly meaningful for
other complex problems, leads to a reasonably correct formula for the most probable
diameter of secondary ejected droplets, compared to known experimental data.

The backward formalism is a mathematical procedure. However, it must be com-
bined with the most fundamental physics of the problem under consideration. In
this paper, we avoid mixing up the formalism with the specific physics. It turns out
that some common knowledge of basic physics is enough to understand the physics of
impact relevant to the derivation of the model, actually zeroth order.

One would readily be disappointed with the fact that only algebraic equations are
involved in the formalism. How could the basic physics of impact be revealed since
the impact involves flow that should be described by nonlinear partial differential
equations? The trick is that, using the backward formalism to build up the formula
for the droplet size, we just need algebraic conservation laws at each step when going
back to the initial stage of impact.

The next section is devoted to schematic description of the backward formalism
and to the derivation of the most probable diameter of the secondary ejected droplets
using the backward formalism.

In Section 3, we propose to simplify the model, and then we make some compar-
ison with known experimental results.

In Appendix A, the main physics of crown splashing is described and the basic
notations are detailed.

More details emphasizing the physical aspects will be provided elsewhere.

2. The Most Probable Diameter by Backward Formalism

2.1. Principle of Backward Formalism. The principle of backward for-
malism can be explained by considering the tree structure of F1a. 2.1. Starting from
the initial time ¢t = 0, the initial data affect the subsequent events through the various
branches (which could represent information pipelines, flow pipes, etc.). Imagine that
we want to determine what will happen at the exit 1 at the final time. If we follow
a conventional forward formalism, then we have to take into account all the initial
inlets at time ¢ = 0 and follow all the pipelines. The small details in the pipe trees
may become very complicated to follow. Even though one can get through all the
pipelines, much work is useless since the information at the exit 1 has nothing to do
with the information going through a large number of small pipes connected to the
exits 2 and 3. However, if we use the backward formalism, then we just need to trace
straight back to the initial time ¢t = 0 by starting from the exit 1. The information
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ejection of
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Fic. 1.1. Crown-type splashing. The crown is in the shape of a conic sheet. At the top of the
crown, the sheet disintegrates into jets which further break up to produce droplets. See also FiG. 1
of Cossali et al. [3].

at exit 1 does not depend on the details which happen through the small and curved
pipes.

The above illustration is only informative. It simply means that if we use the
backward formalism, then we just need to determine what are useful at the previous
time levels. This could avoid a large number of unuseful, sometimes untractible,
details.

2.2. Most Probable Diameter. According to Appendix A, the real sequen-
tial events are: a) first contact of the impact droplet with the wall, b) spreading of the
liquid underneath the droplet in the form of a disc, ¢) creation of lamella by surface
tension force and by minimum potential energy requirement, d) formation of cusps on
the top of the lamella, e) breakup of cusps to form fingers (jets), f) breakup of jets to
produce secondary ejected droplets. See the Appendix A and the cited references for
details. To determine the most probable diameter of the secondary ejected droplets,
we consider the inverse of the above events. This is the essence of the backward
formalism, to be detailed below.

Step 1. We are looking for the most probable diameter of the secondary ejected
droplets. According to the above-mentioned argument, the ejected droplets are pro-
duced by the breakup of fingers according to the minimal surface energy principle.
This has been investigated by Rayleigh and is known to be the Rayleigh jet breakup
mechanism [9]. Assume that the finger diameter is dj, then, by the Rayleigh theory,
the diameter of the secondary droplets is given by

dy = 1.889d; (2.1)

Step 2. By (2.1), we need to evaluate the diameter d; of the fingers (jets). Since



60 BACKWARD FORMALISM FOR SECONDARY EJECTED DROPLETS

2 1 3 _
— final

t=0

F1c. 2.1. Schematic representation of the backward formalism.

the fingers form from the lamella, it should be determined by the thickness of the
lamella hgp. The formation of fingers from the lamella can be considered to take
place at a negligible distance (zeroth distance).

Let the magnitude of the liquid velocity in the lamella be V;, and let this velocity
inside the fingers be V;. Assume that each finger comes from a sheet element of width
[ and thickness of hg,. The mass flow rates at both sides of the finger/jet interface
must be equal; i.e.,

T 2
14%

where the left-hand side is the mass flow rate toward the interface from the lamella

IhenVin = (2.2)

and the right-hand side is toward the finger.
The surface energy of the sheet element of width I and length Vi, dt (where dt is
a time interval) is given by

Ssn, = 020V dt, (2.3)
and the surface energy of a finger of diameter d; and of length V;dt is given by
Sj - Uﬂdj‘/jdt. (24)

If the surface energy is assumed to be conserved during the transformation, then
we have, by equating (2.3) and (2.4),

2V, = 7d;V;
which, after eliminating [ from (2.2), reduces to

dj = 2hg. (2.5)
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If we conserve the total energy (kinetic energy plus surface energy), then we
obtain d; = 2.24h,,. But the physical arguments used to arrive at this are much
more complicated and will be presented elsewhere. We are satisfied with (2.5) since
it is essentially the same as a more complicated model. It is surprising that the
relation (2.5) does not depend on the velocity. The more complicated model, using
conservation of total energy, also leads to a relation that does not depend on the
velocity.

Hence by (2.1) and (2.5), we have

dy = 3.778hsy,. (2.6)

Step 3. By (2.6), it remains to find a relation for hg,. We know that if the top
edge of the lamella does not break up, then the surface tension force will drive the
edge to move into the liquid at the velocity [18]

20
Ve =14/ .
pihsn

The edge most possibly breaks up at the point that this velocity is equal to the
liquid velocity since at such a point there is enough time for the transformation to
take place. By writing

Ven = 2.7
sh pthh 3 ( )
we obtain
20
hsh = ——. 2.8
"V 28
Note that the balance condition (2.7) can be more elegantly written as
Wi, =2, (2.9)
where Wy, = % is the local Weber number.
By (2.6) and (2.8), we obtain
7.556
ds = d 2.10
y Wsh ! ( )
where
W, = pdi V2,
’ o

is the lamella Weber number.

Step 4. By (2.10), we finally need to know the velocity Vs, of the liquid inside the
lamella or the lamella Weber number Wy, . Note that we are working on a zeroth order
model, so that only an averaged value of Vyj, is needed. The detailed knowledge of the
velocity, which must be a complicated three-dimensional spatially varying function, is
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not needed here. This is obtained here by using the global energy conservation law.
Before impact, the total energy of the impact droplet is

1
Eimyp = mdio + §mVl2,

where m = Zdj}p; is the mass of the droplet. Within the framework of a zeroth order
model, the entire droplet is considered to be transformed into a lamella of thickness
hsn, and having a total surface area 2A where A is obtained by mass conservation

plAhsh =m,
which yields
T 1
A=—d}—.
6 " hgp

Assume that the energy loss due to viscous dissipation is E4. Then the total
energy of the lamella

1
Erametta = 20A + imeh

is equal to Eynp — Fq; i.e.,

1 1
A(20 + 5hshplvfh) + Eq = ndjo + Em‘/f. (2.11)

The energy lost in the creation of lamella against the viscosity can be estimated
by

ts 1 _
By = / / $dQdt ~ ~ndPt, P,
0 Q 6

where ) is the volume of the initial droplet, ¢, is the characteristic time scale, and
¢ (the averaged value over the droplet is denoted as ¢) is the local dissipation rate.
The characteristic time should be approximately d;/V}, and the averaged dissipation
rate should be approximately u;(V;/hs)?. Hence,

1 S U N
Ed ~ gﬂ'/.uwh—zh = ﬂR_eWShTrdl a. (212)
Physically, one may consider that the estimate (2.12) is crude. But it is still
within the framework of a zeroth order model. Using (2.12) and (2.9), the final form
for the conservation of energy (2.11) becomes
1 1w__, w

W+ —— W2 =1+ —. 2.1
4 h+24ReW3h T 12 (2.13)

The equation (2.13) can be solved to yield

2(W +12)

2W (W+12)

Wen = .
9+T+3

(2.14)
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Step 5. Finally, by combining (2.14) and (2.10), we obtain the formula

ds 2 12 _
T =3.778 Jw%w (W +12)7" (2.15)
1 e

For W large enough, we can replace W + 12 by W, so that w R QRﬁ and the
above formula can be simplified as

%:3.778('94—;%224_3).

3. Mathematical Simplification and Comparison with Experiments

(2.16)

3.1. Mathematical Simplification.  The formula (2.16) is not mathemati-
cally elegant. Universal physical laws generally have a very simple form. Fortunately,
we have the following theorem:

THEOREM 3.1. Let k and K (VK is called the impact number) be respectively defined
by

W2
k= 7 and K = W+/R,.

Then we have

d, 3.778
28 2000 ok
where
V9 +2k+3
pk) = ——1——
k2
satisfies
27\ > 27\ 27\ *
0(k) =4.70+1.2x 1073 <k— ;) -9.3x107° (k— ;) +0 <k— ;) )
Proof. First remark that .dﬁ—gck) =0 at k = 2. Then one can expand ¢(k) at
k= % to Taylor series to prove the conclusion. O
The above theorem means that, for & = Vg—j satisfying
27

(see F1G. 3.1 for the dependence of (k) on k), then one can replace ¢(k) by 4.70 so
that (2.16) reduces to

— = — 3.2

i~ Vi (32)
This means that for a large range of impact conditions (that is, for k = Vlg—2 sufficiently
close to 277), the most probable diameter d; is determined by the very simple law (3.2),
which simply says that the most probable diameter is inversely proportional to the
impact number.
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F1G. 3.1. Function y = ¢(k). The dot line corresponds to y = 4.7.

TABLE 3.1. Comparison between the theory and the data of Cossali et al. [3] for ((ii_:;

Impact conditions Data Theory
W=320
e i 0.08~025 0.105
=643
R i 0.06~0.15  0.07
=749
m 010N014 0066
3.2. Comparison with Experiments. The experimental data are rather

incomplete. Here we demonstrate some typical comparisons for which the data are
complete.

Levin and Hobbs [4] measured the diameters of ejected droplets from the impact
of a water drop 2.5 mm in diameter at an impact speed of 4.2 m/s. The Weber number
W is near 600 if we assume o = 0.071N/m. The Reynolds number is R, = 10500. In
the data of Levin and Hobbs, there are two maximums: one near d; = 120um, and
another near d; = 235um. The theoretical formula (2.16) yields ds ~ 187um which
is in the middle of two maximums.

Cossali et al. [3] measured the diameter of the ejected droplets as a function of
time and displayed a time-dependent diameter in their Fia. 13, with W = 320, 643,
and 749. The Reynolds numbers are 8131, 11526, and 12440, respectively. The impact
conditions can be expressed for K = W+/R, as K = 28855, 69032, and 83540, for
W = 320, 643, and 749, respectively. The corresponding values for vg_j are 12.6, 35.9,
and 45, which indeed satisfy the order of magnitude relation (3.1). The comparison
between theory (2.16) and data is shown in Table 3.1. The data of Cossali et al.
are not the most probable values but are a range of values taking into account the
unsteadiness. The theoretical results lie within the range of the experimental data
for the first two cases. But the third case does not work well. In fact, the data are
incomplete in the figure of Cossali et al. [3] for the third case.

Samenfink et al. [12] measured the size distribution of a droplet of diame-
ter 180um at an impact velocity 15.2m/s. The corresponding Weber number and
Reynolds number are W = 585, R. = 2736. Using (2.16), we obtain d; = 23um. The
measured value is around 26um.
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Appendix A. Recall of Known Physics of Crown Splashing.

Experimentally, it was found that the dynamics of impact is mainly characterized
by the impact Weber number and Reynolds number (or their combinations). The
impact Weber number is defined as W = %
R, = %. Here o is the surface tension, p; is the liquid density, y; is the viscosity,
d; is the diameter of the impact droplet, and V; is the impact velocity. Another
common parameter used to study splashing is defined by K = RSW" where ¢ and
n are some constants. The parameter K or VK was called splashing parameter by
Aziz and Chandra [1]. The splashing condition is often expressed as K > £(rq,h)
where £(rq, h) is a function of the roughness (r,) and the thickness of the initial film
(h). For instance, Stow and Hadfeld [16] expressed K as K = R231W %69 Cossali et

4 1
al. [3] used K = (Re% W) *, Mundo et al. [6] defined K = (Re% W) *. Under their
impact conditions, Range and Feuillebois [7, 8] correlated the following condition for
splashing?

and the impact Reynolds number as

2r
W >aln® =2
> aln a

where a and b are two constants which should be problem dependent.

Under suitable impact conditions, especially when the wall is wet or rough, crown
splashing occurs [3, 4, 6, 16, 20]: the droplet is first transformed into a crown and
the crown then disintegrates to produce much smaller secondary droplets (see FIaG.
1.1, see also F1a. 1 of Cossali et al. [3]).

To the zeroth order physics, the detailed mechanisms of crown splashing have
been reviewed by Rieber and Frohn [11] who showed numerically that the splash-
ing is composed of (a) lamella formation, (b) formation of a free rim at the top of
the lamella, (c) breakup of the rim (due to Rayleigh instability) to produce cusps,
(d) formation of fingers (jets), (e) breakup of fingers to produce secondary droplets.

In fact, lamella formation is due to the surface tension effect at the edge of the
liquid flowing on the wall during the initial state of impact. If there is no surface
tension, the liquid will flow on the wall in the form of a disc. For the same volume
of liquid, a flat disc has an surface area much larger than the corresponding lamella.
Hence the formation of lamella leads to a decrease in surface (potential) energy and
is consistent with the minimum potential energy principle.

The formation of a free rim at the top of the lamella also reduces surface energy.
The breakup of the rim, the formation of fingers, and the breakup of fingers all involve
a decrease of surface energy.

Hence, the physics of splashing can be simply interpreted as a cascade of surface
energy decreasing. First of all, the wall stops the impinging droplet so that the liquid
tends to flow on the wall, which tends to transform the total energy into surface
energy if the liquid forms a large flat disc. Then the flow follows the principle of
minimal potential energy in such a way that the deformation follows a cascade of
surface energy decreasing: from flat disc to lamella, from lamella to free rim, from
free rim to cusps, from cusps to fingers, and finally from fingers to droplets.

IThis formula was based on the work of the present author (Ph.D. Thesis of University of Paris
VI, 1992, unpublished).
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This is the simplest mechanism that we adopt in the analysis.

Appendix B. Size Distribution Functions.

In a real impact, coalescence, unsteadiness, and nonlinear effect make the size of
the droplets polyvalued, so that there is a well-defined distribution function. Exper-
imentally, it has been found that crown splashing leads to droplets of various sizes.
It has been discovered that the size distribution function obeys the log-normal law
[4, 12, 17]:

1 (In 1 —~%)?
fld) = \/Q—Twexp <_T> ; (B.1)

where f(z) is defined such that f(z)dxz is the probability of a droplet having its
diameter lying in (z,z + dx).

There are two free parameters in the log-normal distribution function: ds and .
Here d; is the most probable value of the diameter of the secondary ejected droplets
(alternatively ds can be replaced by the mean diameter), and + is the standard coeffi-
cient (characterizing the width of the distribution curve) in the log-normal distribution
function (alternatively this can be replaced by the variance). Then it lacks the pa-
rameter v. We discovered that we can determine v by using the principle of maximum
rate of entropy production [21]. Details are not given here. The Shannon entropy is
found to be given by

1 9 1 2
and the maximum rate of entropy production occurs at % = 0 which corresponds

to y = @ ~ 0.41. The experimental value of Stow and Stainer [17] for + varies from
0.348 to 0.699. Hence the estimated value v = 0.41 lies within the experimental range.
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