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A LEVEL SET METHOD FOR THREE-DIMENSIONAL PARAXIAL
GEOMETRICAL OPTICS WITH MULTIPLE POINT SOURCES ∗

SHINGYU LEUNG † , JIANLIANG QIAN ‡ , AND STANLEY OSHER §

Abstract. We apply the level set method to compute the three dimensional multivalued ge-
ometrical optics term in a paraxial formulation. The paraxial formulation is obtained from the
3-D stationary eikonal equation by using one of the spatial directions as the artificial evolution
direction. The advection velocity field used to move level sets is obtained by the method of char-
acteristics; therefore the motion of level sets is defined in phase space. The multivalued travel-time
and amplitude-related quantity are obtained from solving advection equations with source terms.
We derive an amplitude formula in a reduced phase space which is very convenient to use in the
level set framework. By using a semi-Lagrangian method in the paraxial formulation, the method
has O(N2) rather than O(N4) memory storage requirement for up to O(N2) multiple point sources
in the five dimensional phase space, where N is the number of mesh points along one direction.
Although the computational complexity is still O(MN4), where M is the number of steps in the
ODE solver for the semi-Lagrangian scheme, this disadvantage is largely overcome by the fact that
up to O(N2) multiple point sources can be treated simultaneously. Three dimensional numerical
examples demonstrate the efficiency and accuracy of the method.

Key words. Hamilton-Jacobi, paraxial geometrical optics, level set method, semi-Lagrangian
method
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1. Introduction
Consider the geometrical optics (high frequency) approximation for 3-D acoustic

wave equations. According to the Debye procedure, the leading order term defining
the geometrical optics term consists of two functions, one being the eikonal satisfying
the eikonal equation,

|∇τ |= 1
c
, (1.1)

and the other being the amplitude solving the transport equation,

∇·(A2∇τ)=0, (1.2)

where τ and A are the eikonal, a.k.a., traveltime in many applications, and the ampli-
tude function respectively; c is the given wave velocity in an acoustic medium. These
two equations appear in a variety of applications: high resolution seismic imaging
[15, 4, 25, 31], underwater acoustics, semi-classical limit for quantum mechanics [23],
and optical instruments, to name just a few.

As a first order scalar nonlinear PDE, equation (1.1) usually does not admit a
global, smooth solution in physical space. By viewing the gradient components as
independent functions of some parameter, for a given non-characteristic boundary
condition the method of characteristics yields a smooth solution for equation (1.1) in
phase space; but once projected to physical space, the solution usually is multival-
ued. The concept of viscosity solution singles out a unique, physically relevant weak
solution among these multivalued branches of solutions, so that a continuous, global
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solution is well defined in this class. However, in many applications, the multival-
ued solution is necessary and also physically relevant. In seismics, the later arrival
travel-times which do not correspond to the viscosity solution of the eikonal equation
may carry more significant energy than the viscosity solution-based first arrivals do
[12, 25].

Naturally, one may use the method of characteristics to derive a set of ODEs
to compute travel-times and amplitudes in phase space, which essentially yields ev-
erything. However, the major disadvantage of the approach is that it lacks control
of resolution of the solution in physical space. Certainly, the shortcoming can be
overcome to some extent by extra bookkeeping of data structures [41]. On the other
hand, one may look for a PDE framework to compute these multivalued solutions in
phase space; this results in the so-called Eulerian geometrical optics [3, 8]. In the past
decade, there have been a lot of efforts in this direction: domain decomposition along
caustic curves [2], the slowness matching method [38, 39], methods based on kinetic
formulation [13, 16, 14], dynamical surface extension methods [32, 34], and Liouville
equation based methods, such as the segment projection method [9], the vector-valued
level set method [26, 28, 18, 5, 6, 30, 29, 17], the method based on escape parameters
[11].

Extend the travel-time function τ=τ(x,y,z) defined in a bounded spatial domain
Ω to T=T (x,y,z,θ,φ) defined in a reduced phase space via the slowness vector, equa-
tion (2.6). Consider its t-wavefront in the reduced phase space:

T (x,y,z,θ,ψ)= t, (1.3)

which consists of all the wavefronts starting from all the point sources on the boundary
∂Ω and all the take-off directions pointing into the domain Ω and reaching the spatial
location (x,y,z) with arrival angles (θ,ψ). Here, by a point source problem for (1.1)
and (1.2) in the physical space, we mean that rays emit from that point in all directions
with zero initial travel-times and prescribed amplitudes [20].

Now differentiate this identity w.r.t. t and use the ray tracing system (2.7),

w ·∇x,y,z,θ,ψT =1, (1.4)

where w denotes the right hand side of the system (2.7).
As pointed out in [5], the main issue is to identify those (θ,ψ) such that the

slowness vector satisfies

p(θ,ψ)=∇x,y,zT ; (1.5)

then the eikonal equation is satisfied locally.
In the slowness matching method developed in [38, 39], this condition is enforced

by solving many point source problems, equation (2.13), directly in physical space,
which amounts to constructing many local fundamental solutions for the eikonal equa-
tion and identifying those slownesses satisfying (1.5) by the slowness matching con-
dition. This method is highly efficient if travel-times from multiple point sources are
desired as argued carefully in [39]. In fact it is the only method so far that stays in
the physical space and at the same time resolves multivalued solutions.

To use the Liouville equation based phase space formulation more efficiently, we
developed level set methods for the two-dimensional paraxial multivalued geometrical
optics in [30, 29]. In this work, we continue to develop efficient level set methods for
three dimensional multivalued geometrical optics in a paraxial formulation. In this
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case, the full Liouville equation is five dimensional; by using the paraxial assumption,
we essentially reduce the problem by one dimension and equation (1.4) becomes

Tz +u ·∇x,y,θ,ψT =
1

csinθcosψ
; (1.6)

see Section 3.2 for further details. Our framework provides multivalued geometrical
optics terms for multiple point sources simultaneously in that we are able to make use
of the information from not only the zero level set but also all the nonzero level sets.
By using a global semi-Lagrangian method to solve level set equations, the physical
space variables are directly linked to the phase variables so that the condition (1.5)
can be resolved efficiently and the computational memory requirement is reduced
from O(N4) to O(N2) for up to O(N2) multiple point sources, where N is the num-
ber of mesh points along one direction. In comparison to the usual finite difference
discretization of the level set equations which requires O(N4) memory storage, this
savings is very significant in the computational space of five dimensions. Although
the method proposed here has the computational complexity O(MN4), where M is
the number of steps in the ODE solver for the semi-Lagrangian scheme, it can handle
up to O(N2) multiple point sources simultaneously without increasing computational
complexity; therefore, overall it is still very efficient if the geometrical optics terms
for multiple point sources are needed as in seismics [39].

In the method based on escape parameters [11], to identify those (θ,ψ) such that
the condition (1.5) holds, the authors made use of the fact that the point source loca-
tions and takeoff angles are constant along the rays; therefore, five Liouville equations
are used to advect these constants as tags for the rays so that the travel-time T at
(x,y,z,θ,ψ) from different point sources can be distinguished by checking the tags at
(x,y,z,θ,ψ). Then post-processing is used to solve for (θ,ψ) satisfying (1.5) at (x,y,z)
for specified point source locations. This approach is efficient if travel-times from up
to O(N2) multiple point sources are desired by using a similar argument as in [39]. In
terms of the paraxial formulation (1.6), the computational complexity and memory
requirement of this approach are both of O(N5).

Our approach shares some similarities with [11], but their formulation is only
for static HJ equations, and ours can be viewed for “artificial time” dependent HJ
equations in terms of z-dependent paraxial formulation. In [11], the Liouville equa-
tions are solved by combining a local semi-Lagrangian and Dijkstra-like fast marching
method, and the resulting computational memory requirement is O(N5) in the five
dimensional reduced phase space. In this work, we explore a global semi-Lagrangian
approach to solve paraxial Liouville equations so that high order ODE solvers can be
used right away, and the resulting method in our setup has the advantage that the
computational memory requirement is only of O(N2).

In the five dimensional reduced phase space, the condition (1.5) defines an object
of dimension 2; therefore the object can be resolved by the intersection of zero level
sets of three functions defined in (x,y,z,θ,ψ) space. This is a commonly used level
set method, first proposed to compute multivalued travel-times in the high frequency
asymptotics for acoustic wave equations in [26], where the multivalued travel-times are
implicitly represented as self-intersecting wavefronts in the physical space. Later it was
extended to compute multivalued travel-times in the high frequency asymptotics for
anisotropic elastic wave equations in [28, 6], where the multivalued solutions for a class
of steady Hamilton-Jacobi equations were computed and illustrated as self-intersecting
wavefronts as well. It was also extended to compute multivalued wavefronts and
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multivalued phases in the high frequency asymptotics for the Schrödinger equation
in [5], where multivalued solutions for time dependent Hamilton-Jacobi equations
were constructed in a general level set framework; it was also extended to compute
the multivalued gradient of the solution for time dependent and steady Hamilton-
Jacobi equations in [18], where a level set formulation for handling the gradient of the
solution was used to obtain the Liouville equation, but the formulation only yields the
multivalued gradient of the solution and does not provide the multivalued solution
itself. The multivalued solution was provided by adding more Liouville equations and
independent variables without increasing the formal complexity in [5, 21]. In [17],
the level set method is applied to computing multivalued physical observables for the
semi-classical limit of the Schrödinger equation.

The advantage of following only zero level sets is that local level set methods
can be designed so that the memory requirement and computational complexity are
optimal to some extent [1, 27]. The PDE based local level set method, first proposed
in [27] for single level set motions and generalized in [26, 29] for vector-valued level
set motions, is one of the possible approaches to reduce the computational complexity
from O(N5) to O(N3LogN) in the paraxial formulation; but its memory requirement
is still of O(N4). The tree-based local level set method also only follows the zero
level set by putting more nodes near the zero level set [35, 24]; this reduces the
computational complexity from O(N5) to O(N3LogN), and the memory requirement
O(N4) to O(N2LogN) on average. The semi-Lagrangian method proposed in [24],
which in turn is an extension of [35], is based on short time evolution of an Euler
step, so that the zero level set can be tracked locally using a dyadic tree structure.
Since such local level set methods follow only zero level sets, they can handle only
wave propagation with a single point source.

Given multiple point sources, we can certainly initialize the level set function so
that their initial zero level sets represent those multiple point sources. With this
initialization, one can still get all the multi-arrival rays from multiple point sources.
However, on the later times, one cannot distinguish rays from different point sources
because all rays are represented by the same intersection of zero level sets essentially.
To treat multiple point sources in the framework of using only zero level sets, it is
possible to use the idea proposed in [5] by augmenting the reduced phase space with
one more dimension such that the solutions for multiple point sources are viewed as
graphs in the augmented phase space. This idea is worth exploring further.

If limited to a single point source, then our approach can also be viewed in the
framework of [5]. Thus the work presented here serves as a link between the work in
[26, 28, 5] and that in [11].

The rest of the paper is organized as follows: Section 2 presents the paraxial for-
mulation for the 3-D eikonal equation; Section 3 presents the level set formulation for
multivalued wavefronts, travel-times and amplitudes; Section 4 gives implementation
details for the level set method; Section 5 demonstrates the accuracy of the pro-
posed semi-Lagrangian level set method with extensive numerical examples; Section
6 concludes the paper.

2. Three dimensional Paraxial Formulation for Eikonal Equation
Consider a point source condition for the 3-D eikonal equation defined in an

open, bounded domain Ω⊂R3. To emphasize the point source condition the eikonal
equation is rewritten as follows,

|∇xτ(x,xs)|= 1
c(x)

, (2.1)
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limx→xs

τ(x,xs)
|x−xs| =

1
c(xs)

, τ ≥0, (2.2)

where xs is a given source point. Here by a point source, we mean that rays emit from
that point in all directions with zero initial travel-times and prescribed amplitudes.

To apply the method of characteristics, we first parameterize the 3-D unit vectors
by spherical coordinates. Points on a unit sphere away from the x-axis can be uniquely
represented by the following rotated spherical coordinates,

x=cosθ,
y =sinθsinψ,

z =sinθcosψ, (2.3)

where θ∈ (0,π) is the angle between the point and the positive x-axis, and ψ∈ [−π,π)
is the angle between the positive z-axis and the projection of the point onto the y-z
plane. Figure 2.1 shows the standard and rotated spherical coordinates. Then the
slowness vector ∇τ=p can be represented as

p1 =
cosθ

c
, (2.4)

p2 =
sinθsinψ

c
, (2.5)

p3 =
sinθcosψ

c
. (2.6)

By using the above parameterization we have the following ray tracing system

dx

dt
= ccosθ,

dy

dt
= csinθsinψ,

dz

dt
= csinθcosψ,

dθ

dt
=sinθ

∂c

∂x
−cosθ

(
cosψ

∂c

∂z
+sinψ

∂c

∂y

)
,

dψ

dt
=

1
sinθ

(
sinψ

∂c

∂z
−cosψ

∂c

∂y

)
, (2.7)

with initial conditions

x|t=0 =xs,

y|t=0 =ys,

z|t=0 =zs,

θ|t=0 =θs,

ψ|t=0 =ψs, (2.8)

where xs =(xs,ys,zs), and θs and ψs vary from 0 to π and from −π to π respectively.
One can compare this formulation with the one from [19, 26]. We use these rotated
spherical coordinates rather than the standard spherical coordinates system because
points on the z-axis can now be uniquely represented. Although points on the x-axis
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Fig. 2.1. Spherical coordinates and rotated spherical coordinates

in this rotated coordinate system may still cause problems, these points are actually
out of our computational domain according to the paraxial assumption which will be
discussed below.

Next we extend the arrival-time function τ(x,y,z) to the reduced phase space
{(x,y,z,θ,ψ)}, denoting it as T (x,y,z,θ,ψ), and consider the t-wavefront expanding
from the source point:

T (x,y,z,θ,ψ)= t. (2.9)

Differentiating this identity with respect to t, we have

dx

dt
Tx +

dy

dt
Ty +

dz

dt
Tz +

dθ

dt
Tθ +

dψ

dt
Tψ =1 (2.10)

with the boundary condition

T (xs,ys,zs,θs,ψs)=0 , (2.11)

for 0≤θs≤π and −π≤ψs≤π.
Since equation (2.10) is a linear advection equation, one may be tempted to

solve it directly with the condition (2.11). However, for a given (x,y,z) 6=(xs,ys,zs),
T (x,y,z,·,·) is well defined for at least one (θ,ψ) corresponding to the first arrival, but
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it is not necessarily well defined for all θ and ψ; these facts imply that the solution
surface T in phase space is extremely singular. In other words, equations (2.10) and
(2.11) are not well-posed. To obtain a well-posed problem, we will assume the paraxial
condition and use a level set formulation.

In some applications, for example wave propagation in reflection seismics [7],
the arrival-times of interest are carried by the so-called sub-horizontal rays [15, 37,
31], where sub-horizontal means “oriented in the positive z-direction”. A convenient
characterization for sub-horizontal rays is that

dz

dt
≥ csinθmax cosψmax >0 (2.12)

for some θmax and ψmax with π/2<θmax <π and 0<ψmax <π/2.
This inequality holds for rays making angles θ and ψ satisfying |θ|≤θmax <π and

|ψ|≤ψmax <π/2. Therefore, in the paraxial formulation we are interested in only
a part of the ray field. The travel-times corresponding to these sub-horizontal rays
satisfy the following paraxial eikonal equation

∂τ

∂z
==

√√√√max

(
1
c2
−

(
∂τ

∂x

)2

−
(

∂τ

∂y

)2

,
sin2θmax cos2ψmax

c2

)
. (2.13)

To be specific, consider

Ω={(x,y,z) :xmin≤x≤xmax,ymin≤y≤ymax,0≤z≤zmax} (2.14)

and assume that the point source is located on the surface: xmin≤xs≤xmax, ymin≤
y≤ymax and zs =0. By the sub-horizontal condition we can use depth z as the running
parameter so that we have the following reduced system

xz =
1

cosψ tanθ
,

yz =tanψ,

θz =
cx

ccosψ
− cz +cy tanψ

ctanθ
,

ψz =
cz tanψ−cy

csin2θ
, (2.15)

where x∈ [xmin,xmax], y∈ [ymin,ymax], θ∈ [εθ,π−εθ] and ψ∈ [εψ−π/2,π/2−εψ].

3. Level Set Formulation

3.1. Representation of a Point Source. We first assume that a single
point source is located at the origin. Therefore, rays from this point source can
now be represented as the intersection of zero level sets of two level set functions,
φ1(z;x,y,θ,ψ) and φ2(z;x,y,θ,ψ).

Differentiating level sets of these functions with respect to z, we get the following
level set equations which govern the motion of the corresponding zero level sets,

φm
z +

dx

dz
φm

x +
dy

dz
φm

y +
dθ

dz
φm

θ +
dψ

dz
φm

ψ =0 (3.1)

for m=1,2. These equations can be rewritten as

φm
z +u ·∇x,y,θ,ψφm =0 (3.2)
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for m=1,2, where the velocity field u=(u1,u2,u3,u4) is given by the ray tracing
system (2.15).

On z =0, we initialize the level set functions by

φ1(0;x,y,θ,ψ)=x and φ2(0;x,y,θ,ψ)=y , (3.3)

so that the intersection of zero level sets represents the location of the point source
at the origin.

3.2. Arrival-time. Arrival-time can be computed by inverting the third
equation in (2.7) locally. This gives

Tz +u ·∇x,y,θ,ψT =
1

csinθcosψ
, (3.4)

where T =T (z;x,y,θ,ψ); this equation will be solved along with (3.2).
On z =0, we initialize the traveltime function by

T (0;x,y,θ,ψ)=0 , (3.5)

so that the initial traveltime is zero.
To obtain the multivalued arrival-time on z =z∗, we first solve equations (3.2) and

(3.4) up to z =z∗. We then compute the intersection of the zero level sets, denoted
by

Σ0 ={(x,y,θ,ψ) :φ1(z∗;x,y,θ,ψ)=φ2(z∗;x,y,θ,ψ)=0}⊂R4 . (3.6)

The arrival-times at (z∗;x,y) can be determined by projecting T (z∗;Σ0) onto the x-y
plane.

3.3. Representation of Multiple Point Sources. However, we have no-
ticed that the level set functions contain much more information than what we have
used in the above algorithm, since not only the zero level set but also the non-zero
level sets are useful. Rays emanating from a point source in phase space are not nec-
essarily represented by the intersection of two zero level sets only. We can define rays
from a point source at location (xs,ys) by the intersection of {φ1 =xs} and {φ2 =ys}.

Under the same velocity field, given by u, to find all rays on z =z∗ from this point
source (xs,ys), one only needs to determine the set

Σxs
={(x,y,θ,ψ) :φ1(z∗;x,y,θ,ψ)−xs =φ2(z∗;x,y,θ,ψ)−ys =0}, (3.7)

rather than the one defined by (3.6). In other words, using the initial conditions (3.3),
a point (xi,yj ,θk,ψl) on z =z∗ can be connected to the point

(φ1(z∗;xi,yj ,θk,ψl),φ2(z∗;xi,yj ,θk,ψl),θ0,ψ0)

on z =0 through the characteristic curve of (3.2) for some initial values (θ0,ψ0). More
importantly, the initial conditions (3.3) can be reinterpreted as follows. All points,
not only (xi,yj), but also ∀x∈ [xmin,xmax] and ∀y∈ [ymin,ymax], can be treated as
locations of point sources. Therefore, we are able to determine multi-arrival rays
from multiple point sources.

The representation of point sources discussed above is of course not the only
way that we can represent rays from multiple point sources. One can actually define
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Σ0 to denote all rays from multiple point sources. For example, φ1(0;x,y,θ,ψ) and
φ2(0;x,y,θ,ψ) need to be independent of the angles θ and ψ, and {φ1(0;x,y,θ,ψ)=
0}∩{φ2(0;x,y,θ,ψ)=0} at locations of those point sources. With this formulation,
one can still get all the multi-arrival rays from multiple point sources. But, on the
level z =z∗, one cannot distinguish rays from different point sources because all rays
are represented by the same intersection of zero level sets essentially. However, using
the formulation proposed here, we can separate the rays from different point sources
by using only one set of level set functions and making use of all the available level
sets.

3.4. Amplitude. The amplitude of the rays can also be computed using the
current formulation. Defining Ã= Ã(z;x,y), we have

Ã(z;x,y)=
c

4π
√

c0

√√√√sinΘ̃

∣∣∣∣∣
∂(T̃ ,Θ̃,Ψ̃)
∂(x,y,z)

∣∣∣∣∣ (3.8)

where T̃ = T̃ (z;x,y), Θ̃=Θ̃(z;x,y) and Ψ̃=Ψ̃(z;x,y) are the arrival-time, take-off an-
gles of θ and ψ from the point source located at x=xs, respectively; see Appendix
for derivation.

Following the approach in [29], we first extend all the above functions into phase
space, denoted as T , Θ and Ψ, respectively. Using (3.2) and (3.4), we obtain

A(z;x,y,θ,ψ)=
1
4π

√
csinΘ

c0 sinθcosψ

√
∆1

∆2
, (3.9)

where Θ and θ are the takeoff angle and the arrival angle respectively, and ∆1 and
∆2 are the Jacobians of the transformation given by

∆1 =

∣∣∣∣∣∣∣∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣∣∣∣∣∣∣∣
(3.10)

and

∆2 =
∣∣∣∣
φ1

θ φ2
θ

φ1
ψ φ2

ψ

∣∣∣∣ . (3.11)

See the Appendix for derivation of these formulae.

4. Numerical Method

4.1. Level Set Equations. One way to solve equations (3.2) and (3.4) is to
use, for example, RK3 in the z-direction and WENO5 upwind scheme in the x-y-θ-ψ
space [22, 33]. This is a typical Eulerian approach, where grid points are fixed in
space. Computational complexity of such methods is therefore O(N5LogN). This
approach is not efficient in high dimensional space.

One reason is that, if we want to compute the multivalued arrivals from multiple
point sources, we probably do not want to use some localized level set methods, like
the one proposed in [27]. In this case, tracking of multiple layers of level set functions
with re-initializations and extensions will take a large portion of computational time.
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Fig. 4.1. Semi-Lagrangian method to solve the advection equations.

Another potential difficulty is the limitation from the CFL condition when solving
these hyperbolic equations. For this Eulerian approach, each z-direction marching is
of O(min(∆x,∆y,∆θ,∆ψ)). This is acceptable for lower dimensional computations,
like those in [30, 29], where the dimension involved is only 1+2 (time-like direction
plus space directions). However, for the current problem, it is unreasonable to spend
days of computation in solving these linear advection equations.

Therefore, we implement a semi-Lagrangian method [36, 10] to determine the
values of φm at z =z∗ for m=1,2. Solving the level set equations with the method of
characteristics, we have

φm = const (4.1)

for m=1,2 along the characteristics given by (2.15). Following the idea of semi-
Lagrangian methods, we trace back in the z-direction until z =z0, i.e. we solve

d(x̂, ŷ, θ̂,ψ̂)
dz

=u (4.2)

for (x̂, ŷ, θ̂,ψ̂)|z=z0 with “initial” conditions (x̂, ŷ, θ̂,ψ̂)|z=z∗ =(x,y,θ,ψ) at the current
point, as shown in Figure 4.1. Then the level set values are assigned as

φ1(z∗;x,y,θ,ψ)= x̂|z=z0 ,

φ2(z∗;x,y,θ,ψ)= ŷ|z=z0 , (4.3)

according to the initial conditions (3.3).
Numerically, the above ODE system is solved using RK3, and the step size is

independent of the number of grid points used in the computational domain. By using
this semi-Lagrangian approach, the computational complexity drops to O(MN4),
where M is the number of steps in the z-direction and N is the number of grid points
in each of x-y-θ-ψ direction. Different from the finite difference Eulerian approach,
the factor M is independent of N and is chosen mainly for the purpose of accuracy.
In the current implementation, we choose M large enough so that the errors from the
RK3 ODE solver are negligible comparing to the errors from the linear interpolation
for finding intersections of level set functions on the uniform mesh. Certainly, one
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Fig. 4.2. Determining the intersection of level set functions.

may maximize the efficiency of the whole implementation by balancing the two errors
from the ODE solver and the linear interpolation, but it is left for future study.

A simpler case is to consider only one point source on z =z0. Then the order of
complexity of using the global level set method approach as in [30] can still be reduced
by a factor of N2 to O(N3LogN) if a local level set method, for example the one from
[27], is applied. However, the memory requirement, which will be addressed later in
Section 4.3, may still make the local level set method difficult to implement. Moreover,
to compute arrival solutions from N2 point sources individually, one may need to
solve N2 times localized level set equations which makes the overall computational
complexity back to O(N5LogN).

4.2. Arrival-time Equation. For the arrival-time equation, we have

DT

Dz
=

1
csinθcosψ

, (4.4)

where D
Dz is the material derivative given by

D

Dz
=

∂

∂z
+u ·∇=

∂

∂z
+xz

∂

∂x
+yz

∂

∂y
+θz

∂

∂θ
+ψz

∂

∂ψ
. (4.5)

Therefore, we get

T =
∫

Γ

ds

csinθcosψ
(4.6)

where T (0;x,y,θ,ψ)=0 by the reciprocity, and Γ is the characteristic given by the
system (4.2). Again, RK3 is used to integrate the arrival-time function of rays.

4.3. Multivalued Arrival-times. After we solve for φm (m=1,2) and T
on the grid points at the time level z=z∗, we need to compute the intersection of the
level surface {φ1 =xs}∩{φ2 =ys}. To simplify this computation, we discretize the
θ-ψ space for each point (xi,yj) in the following way. We first use rectangular grids in
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the θ-ψ space, giving (θk,ψl). One more grid point, denoted by (θk+1/2,ψl+1/2), will
then be added to the center of each cell, as seen in Figure 4.2. Therefore, each grid
cell with vertices at (θk,ψl), (θk+1,ψl), (θk,ψl+1) and (θk+1,ψl+1) will be sub-divided
into 4 triangles, denoted by TN , TE , TS and TW . For each point (xi,yj) fixed, φm (m=
1,2) and T will be computed at all points (xi,yj ,θk,ψl) and (xi,yj ,θk+1/2,ψl+1/2). On
each triangle T(.), φ1 and φ2 are interpolated linearly. Intersection of the level curves
of φ1 and φ2 in each triangle T(.), {φ1 =xs}|T(.) ∩{φ2 =ys}|T(.) , is computed, if any,
for every given source location (xs,ys). The arrival-time at this intersection point will
be interpolated linearly using the values of T at the vertices of the triangle T(.).

We emphasize that we need to solve each of the level set equations (3.2) and
the arrival-time equation (3.4) only once, even if we care about more than one point
source on z =z0. It is the intersection of the level surfaces that we need to repeat for
each of the point sources.

Another advantage of using this semi-Lagrangian method concerns the memory
requirement. In the original level set method, where the level set equations are usually
solved using WENO5-LF method, values at grid points are coupled together through
the ENO-type reconstruction [30, 29]. Therefore, the memory requirement would be
O(N4).

In the Lagrangian or the semi-Lagrangian approach, on the other hand, grid
points in the x-y space are independent of each other throughout all processes above.
Level set function values at any two points (xi,yj ,·,·) and (xi′ ,yj′ ,·,·), with i 6= i′ or
j 6= j′, are determined independently through solving a system of ODE’s with different
initial conditions. Although points in the θ-ψ space are dependent upon each other
through the processes in determining Σxs

and T (z∗;Σxs
), numerically the memory

allocation can still be reduced to O(N2) and the computational complexity is kept
to be O(MN4), as long as the locations of O(N2) multiple point sources are given at
the beginning.

This reduction in the memory requirement may not be significant in the formu-
lation as in [30, 29]. However, it is important in the current implementation in the
1+4 dimensions (time-like direction plus x-y-θ-ψ directions). Parallel computation is
also possible, although it is not implemented at this moment.

4.4. Reinitialization and Intersection. In our current formulation, all the
values of the level set functions are used rather than only the zero value. The usual
reinitialization is a process of reconstructing a signed distance function to the zero
level set so that the only useful information from the original level set function is
concentrated at/near the zero level set. Therefore, the information at other places is
no longer meaningful. Hence, it is impossible to apply such a technique in our setup.

On the other hand, we have to find the intersections of the level sets eventually,
i.e. to determine (3.7). Since we use a semi-Lagrangian method to solve the level set
equations, the accuracy of the level set functions solely depends on the ODE solver
rather than on the number of grid points in the (x,y,θ,ψ) space. However, to obtain
accurate intersections of both zero level sets and non-zero level sets, we may refine
the grids in the (θ,ψ) space, as illustrated in Figure 4.2.

4.5. Amplitude. We notice that the takeoff angles Θ and Ψ are the by-
products in the above computations of φ1 and φ2. We can simply set

Θ(z∗;x,y,θ,ψ)= θ̂(z =z0)

Ψ(z∗;x,y,θ,ψ)= ψ̂(z =z0). (4.7)
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However, to compute ∆1, instead of numerically differentiating these four functions
with respect to x, y, θ and ψ respectively, we notice that this quantity satisfies the
equation

D∆1

Dz
=−(∇·u)∆1, (4.8)

where ∆1(0;x,y,θ,ψ)=1 by the reciprocity principle and

∇·u=
(1+cos2ψ)cz +(tanψcos2ψ)cy

csin2θcos2ψ
. (4.9)

In turn, we solve this equation by introducing ∆̃1 =log(∆1). Then, similar to the
computation of the arrival-time, we integrate

∆̃1 =
∫

Γ

−(∇·u)ds (4.10)

with ∆̃1(0;x,y,θ,ψ)=0 using RK3. Finally, we have

∆1 =exp(∆̃1). (4.11)

For the quantity ∆2, we can simply use the linear interpolants of φ1 and φ2 in
the triangle T(.) when determining Σxs . Assuming that those linear interpolants are

φ1
T =a11θ+a12ψ+b1,

φ2
T =a21θ+a22ψ+b2 , (4.12)

we have ∆2 = |a11a22−a12a21| defined on the triangle T(.).
To compute A(z∗;Σxs

), we first determine the quantity

α=
∆1 sinΘ
cosψ sinθ

(4.13)

at each grid point. Next we use linear interpolation to find its value at the intersection
{φ1 =xs}|T(.) ∩{φ2 =ys}|T(.) .

Overall, we have

A(z∗;Σxs)=
1
4π

√
c

cs

√
(α)Σxs

(∆2)T(.)

. (4.14)

5. Numerical Examples
In the following numerical examples, the computational domain is chosen to be

Ω={(x,y,θ,ψ) :x∈ [−1,1],y∈ [−1,1],θ∈ [π/20,19π/20],ψ∈ [−9π/20,9π/20]}. (5.1)

Multiple point sources are located on z=0. Their coordinates (xs,ys) (s=1, ···,
4) are given by (0,0), (0.3,0.4), (−0.1,0.2) and (0.2,−0.3).
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Fig. 5.1. (Example 1) Computed arrival-time in physical space using 1≤ i,j,k,l≤50 grids in
phase space at z =0.5 and the corresponding convergence test result. Second row shows the amplitude
of the arrival rays at the same z in physical space using 1≤ i,j≤40 and 1≤k,l≤200. Last sub-figure
shows the amplitude at the cross section, y =0, together with the exact solution.

5.1. Example 1: Constant Velocity Model. This example is a constant
velocity model where the velocity field is given by c≡1. Exact solution of arrival-times
is given by

T (z;x,y)=
√

z2 +x2 +y2 , (5.2)

which is the distance function to the point source at the origin.
The sub-figures on the first row of Figure 5.1 show the computed solution. Con-

vergence rate of the proposed method is also shown on the same row. We performed
computations using M =5 and N=10n for n=2 to 5, where M is the number of steps
in the ODE solver and N is the number of mesh points in every one of the x, y, θ and
ψ directions. The x-axis on the graph represents the logarithm value of ∆x∆y, and
the y-axis is the logarithm value of the error of the solution measured in the L1-norm
and the L∞-norm. The numerical rates of convergence, twice of the slopes of the
least-squares fitted lines, are 1.90 and 1.86 in terms of two different norms.

The sub-figures in the second row show some results for the amplitude. To have
accurate results, we use 4 times the number of grids in the θ-ψ space as that in the
x-y space. We also plot the computed solution (in circles) together with the exact
solution (in solid line), given by

A(z;x,y)=
1

4πR
(5.3)

where R is the distance from the point source at the origin.
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Fig. 5.2. (Example 2) Arrival-times in physical space at z =1.2 using M =24, 1≤ i,j≤41 and
1≤k,l≤201 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4, respectively. Compare
to Figure 5.3.

5.2. Example 2: Waveguide Model. This velocity model is the same as
the one in [30, 29], where

c(x,y,z)=1.1−exp(−0.5x2). (5.4)

Figure 5.2 shows the computed multivalued arrival-times at z=1.2 using M =24,
1≤ i,j≤41 and 1≤k,l≤201 for point sources located at (xs,ys) (s=1,···,4), respec-
tively. As the location of point sources varies, the travel-time varies for a ray to reach
a specific location. There are three sheets of travel-time surfaces at z=1.2 for those
given point sources. When two sheets connect to each other in the phase space, they
connect along the caustic curves, which are shown in the sub-figures; this can also be
seen more clearly in Figure 5.4. In all the sub-figures, we can see that the caustics
develop and the travel-time becomes triple valued around caustics.

Solutions using the ray tracing method are given in Figure 5.3. Rays are emitted
from the point sources located at (xs,ys) with initial take-off angles (θ,ψ) uniformly
sampled in the angle space with a 50 by 50 grid. The paraxial ray tracing system
(2.15) is then solved using RK45 until z =1.2. As expected, we can not have uniform
resolution of the solution. Rays are more concentrated on the later arrivals. Solutions
from the first arrivals, on the other hand, are resolved relatively poorly. Comparing
Figure 5.2 and Figure 5.3, the solutions have the same structure.

Because of the non-uniform resolution in the ray-tracing solution, it is difficult to
compare the solutions from the current level set formulation with that from the ray
tracing method directly. However, since in this case cy=cz=0, this implies

u3 =
cx

ccosψ
and u4 =0 . (5.5)
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Fig. 5.3. (Example 2) Arrival-times in physical space at z =1.2 using ray tracing method; point
sources located at (xs,ys) for s=1, ·· · ,4, respectively. Compare to Figure 5.2.
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Fig. 5.4. (Example 2) Arrival-times in physical space at z =1.2 on the cross section y =0 using
M =24, 1≤ i,j≤41 and 1≤k,l≤201 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4,
respectively. Solution from the ray tracing method plotted using solid line in the first sub-figure.
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Fig. 5.5. (Example 2) Arrival-times in physical space at z =1.2 on different cross sections
y =(j−21)/20 for j=6,11,16,26,31,36 using M =24, 1≤ i,j≤41 and 1≤k,l≤201 in phase space; a
point source located at (xs,ys)=(0,0).

Considering rays shooting out from the origin with ψ =0 and using the paraxial
ray tracing system (2.15), we get ψ(z)≡0. This means that all the rays with ψ(z =
0)=0 from the origin will stay on the cross section y =0 (one can compare our solution
with that in [30, 29]). We compare the solution of this cross section with the one from
the ray tracing method, as shown in the first sub-figure of Figure 5.4. The solution
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Fig. 5.6. (Example 2) First, second and third arrival-times in physical space at z =1.2 using
M =24, 1≤ i,j≤41 and 1≤k,l≤201 in phase space; a point source located at (xs,ys)=(0,0).

from the ray tracing method is plotted in the solid line, while the circles represent the
solution from the current formulation. They match with each other very well.

To look at solutions more closely, we concentrate on the solution for the point
source located at (xs,ys)=(0,0). More cross sections of the multivalued arrival-
time are plotted in Figure 5.5. The locations of the slices are y =(j−21)/20 for
j=6,11,16,26,31,36. One can imagine that the leftmost slice is shifted from the left
to the right and scaled according to the distance to the origin, since the velocity is a
function of the x variable only.

Figure 5.6 shows the surface plots of the arrival-time solutions according to the
arrival orders. If the eikonal equation is solved directly, one would get the viscosity
solution, which corresponds to the first arrival-time, i.e. the solution on the first
sub-figure.

Amplitudes of the arrival rays are also calculated. Figures 5.7 to 5.10 show the
amplitude solutions corresponding to the corresponding results in Figures 5.2, 5.4 to
5.6.

In the calculation of the amplitude, one needs to calculate the Jacobian ∆2. This
quantity can be zero which corresponds to the location of caustics. Near caustics, the
usual asymptotic expansion of the wave field is not valid anymore. This reflects in
the fact that the amplitude blows up, as seen clearly in these figures.

In Figure 5.10, we can see that the amplitude becomes infinity along the caustic
curves in the sub-figures of amplitudes corresponding to the second and third arrivals.
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5.3. Example 3: Vinje’s Gaussian Model. This velocity model comes
from [40] where

c(x,y,z)=3−1.75exp
(
−x2 +y2 +(z−0.75)2

0.52

)
. (5.6)
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Fig. 5.7. (Example 2) Amplitudes in physical space at z =1.2 using M =24, 1≤ i,j≤41 and
1≤k,l≤201 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4, respectively.

Figure 5.11 shows the multivalued arrival-times at z=1.5 using M =15, 1≤ i,j≤
51 and 1≤k,l≤401 with sources located at (xs,ys) for s=1,··· ,4, respectively. As
the source varies, the travel-time varies for a ray to reach a specific location. There
are three sheets of travel-time surfaces at z=1.5 for those given sources. When two
sheets connect to each other in phase space, they connect along the caustic curves,
which are shown in the figures; this can also be seen more clearly in Figure 5.13.

Solutions using ray tracing method are given in Figure 5.12. Rays are emitted
from the point sources located at (xs,ys) with initial take-off angles (θ,ψ) uniformly
sampled in the angle space with a 50 by 50 grid. The paraxial ray tracing system
(2.15) is then solved using RK45 until z =1.5. As expected, we can not have uniform
resolution of the solution. Rays are more concentrated on the later arrivals. Solutions
from the first arrivals, on the other hand, are resolved relatively poorly. Comparing
Figure 5.11 and Figure 5.12, the solutions have the same structure.

In this case, although u4 cannot be simplified to 0, rays from the origin with
the initial ψ =0 are still staying on the cross section y =0. From the last equation in
(2.15), if ψ(z =0)=0 and y=0, which implies cy=0, we can obtain ψ(z)≡0. Therefore,
we can still compare our solution with the one obtained from the ray tracing method
on the cross section y=0, as shown in Figure 5.13. Again, the solid line represents the
solution using the ray tracing method. The solutions by the method presented here
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are plotted using circles. Two solutions match with each other very well. In all the
sub-figures, we can see that the caustics develops and the travel-time becomes triple
valued around caustics.

To look at the solutions more closely, we concentrate on the solution for the
source located at (xs,ys)=(0,0). More cross sections of the multivalued arrival-time
are plotted on Figure 5.14. The locations of the slices are y =(j−26)/25 for j =
11,21,31,41. One can see the obvious symmetry since the velocity has rotational
invariance for z fixed.

Figure 5.15 shows the surface plots of the arrival-time solutions according to the
arrival orders. If the eikonal equation is solved directly, one would get the viscosity
solution, which corresponds to the first arrival-time, i.e. the solution on the first
sub-figure.

Amplitudes of the arrival rays are also calculated. Figures 5.16 to 5.19 show the
amplitude solutions corresponding to Figures 5.11, 5.13 to 5.15.

In Figure 5.19, we can see that the amplitude becomes infinity along the caustic
lines in the sub-figures of amplitudes corresponding to the second and third arrivals.

6. Conclusion
We developed a level set method to compute the three dimensional multivalued

geometrical optics term in the paraxial formulation. This method has two new fea-
tures: it does not require reinitialization and it can handle multiple point sources
simultaneously. By using a semi-Lagrangian method in the paraxial formulation, the
method has O(N2) rather than O(N4) memory storage requirement for up to O(N2)
multiple point sources in the five dimensional phase space, where N is the num-
ber of mesh points along one direction. Although the computational complexity is
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Fig. 5.8. (Example 2) Amplitudes in physical space at z =1.2 on the cross section y =0 using
M =24, 1≤ i,j≤41 and 1≤k,l≤201 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4,
respectively.
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Fig. 5.9. (Example 2) Amplitudes in physical space at z =1.2 on different cross sections y =
(j−21)/20 for j =6,11,16,26,31,36 using M =24, 1≤ i,j≤41 and 1≤k,l≤201 in phase space; point
sources located at (xs,ys) for s=1, ·· · ,4, respectively.

still O(MN4), this disadvantage is largely overcome by the fact that O(N2) multiple
point sources can be treated simultaneously. Numerical examples demonstrated the
efficiency and accuracy of the new method.
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Fig. 5.10. (Example 2) First, second and third arrival amplitudes in physical space at z =1.2
using M =24, 1≤ i,j≤41 and 1≤k,l≤200 in phase space; a point source located at (xs,ys)=(0,0).
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Fig. 5.11. (Example 3) Arrival-times in physical space at z =1.5 using M =15, 1≤ i,j≤51 and
1≤k,l≤401 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4, respectively. Compare
to Figure 5.12.
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Fig. 5.12. (Example 3) Arrival-times in physical space at z =1.5 using a ray tracing method;
point sources located at (xs,ys) for s=1, ·· · ,4, respectively. Compare to Figure 5.11.
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Fig. 5.13. (Example 3) Arrival-times in physical space at z =1.5 on the cross section y =0 using
M =15, 1≤ i,j≤51 and 1≤k,l≤401 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4,
respectively. Solution using ray tracing method plotted in solid line in the first sub-figure.
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Fig. 5.14. (Example 3) Arrival-times in physical space at z =1.5 on different cross sections
y =(j−26)/25 for j =11,21,31,41 using M =15, 1≤ i,j≤51 and 1≤k,l≤401 in phase space; a point
source located at (xs,ys)=(0,0).
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Fig. 5.15. (Example 3) First, second and third arrival-times in physical space at z =1.5 using
M =15, 1≤ i,j≤51 and 1≤k,l≤401 in phase space; a point source located at (xs,ys)=(0,0).
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Fig. 5.16. (Example 3) Amplitudes in physical space at z =1.5 using M =15, 1≤ i,j≤51 and
1≤k,l≤401 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4, respectively.
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Fig. 5.17. (Example 3) Amplitudes in physical space at z =1.5 on the cross section y =0 using
M =15, 1≤ i,j≤51 and 1≤k,l≤401 in phase space; point sources located at (xs,ys) for s=1, ·· · ,4,
respectively.



668 A LEVEL SET METHOD FOR PARAXIAL GEOMETRICAL OPTICS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

Fig. 5.18. (Example 3) Amplitudes in physical space at z =1.5 on different cross sections
y =(j−26)/25 for j =11,21,31,41 using M =15, 1≤ i,j≤51 and 1≤k,l≤401 in phase space; a
point source located at (xs,ys)=(0,0).
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Fig. 5.19. (Example 3) First, second and third arrival amplitudes in physical space at z =1.5
using M =15, 1≤ i,j≤51 and 1≤k,l≤401 in phase space; a point source located at (xs,ys)=(0,0).
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Appendix A. Derivation of equation (3.8).
The amplitude is transported by

∇·(A2∇T̃ )=0 . (A.1)

Integrating along a ray tube and using the divergence theorem, we get

A

√
dσ

c
=A0

√
dσ0

c0
, (A.2)

where σ is the transverse section area of the ray tube. Furthermore,

A=A0

√
cdσ0

c0dσ
. (A.3)

For a point source in an isotropic medium we suppose that the point source emits
a directional spherical wave having a normalized radiation function 1/4π with unit
strength,

A0(Θ̃,Ψ̃)=
1

4πR0
, (A.4)

where Θ̃ and Ψ̃ are the spherical take-off angles, and R0 is the radius of the small
sphere centered at the point source.

Then at small distances from the point source,

dσ0 =R2
0 sinΘ̃dΘ̃dΨ̃. (A.5)

Now consider an elementary ray tube,

dV =dxdydz =dσds, (A.6)

where ds is the differential element of arc length. Furthermore,

dV =
∂(x,y,z)

∂(T̃ ,Θ̃,Ψ̃)
dT̃dΘ̃dΨ̃, (A.7)

ds= cdT̃ , (A.8)

so

dσ =
1
c

∂(x,y,z)
∂(T̃ ,Θ̃,Ψ̃)

dΘ̃dΨ̃. (A.9)

Thus,

Ã(z;x,y)=
c

4π
√

c0

√√√√sinΘ̃

∣∣∣∣∣
∂(T̃ ,Θ̃,Ψ̃)
∂(x,y,z)

∣∣∣∣∣. (A.10)
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Appendix B. Derivation of equation (3.9).
Now, consider the term

∣∣∣∣∣
∂(T̃ ,Θ̃,Ψ̃)
∂(x,y,z)

∣∣∣∣∣ . (B.1)

First, we extend all T̃ , Θ̃ and Ψ̃ to phase space. Then, we replace the x,y,z-derivatives
by

∂(̃.)
∂x

=(.)x +(.)θ
∂θ

∂x
+(.)ψ

∂ψ

∂x

∂(̃.)
∂y

=(.)y +(.)θ
∂θ

∂y
+(.)ψ

∂ψ

∂y

∂(̃.)
∂z

=(.)x +(.)θ
∂θ

∂z
+(.)ψ

∂ψ

∂z
. (B.2)

Next, one can expand the determinant and get
∣∣∣∣∣
∂(T̃ ,Θ̃,Ψ̃)
∂(x,y,z)

∣∣∣∣∣=
1

csinθcosψ
∆1

∆2
. (B.3)

This gives

A=
√

sinΘ
4π

c√
c0

√
1

csinθcosψ
∆1

∆2
, (B.4)

where Θ and θ are the takeoff angle and the arrival angle of the ray from the point
source, respectively.

Appendix C. Derivation of equation (4.8).
∆1 is given by

∆1 =

∣∣∣∣∣∣∣∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣∣∣∣∣∣∣∣
. (C.1)

Differentiating this with respect to z, we have

(∆1)z =

∣∣∣∣∣∣∣∣

(φ1
z)x (φ2

z)x (Θz)x (Ψz)x

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

φ1
x φ2

x Θx Ψx

(φ1
z)y (φ2

z)y (Θz)y (Ψz)y

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

(φ1
z)θ (φ2

z)θ (Θz)θ (Ψz)θ

φ1
ψ φ2

ψ Θψ Ψψ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

(φ1
z)ψ (φ2

z)ψ (Θz)ψ (Ψz)ψ

∣∣∣∣∣∣∣∣
(C.2)

Using (3.2) and the fact that the take-off angles Θ and Ψ are constant along the
characteristics given by the system (4.2), i.e.

Θz +u ·∇Θ=0
Ψz +u ·∇Ψ=0 , (C.3)
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we expand the right hand side of (C.2) and replace all z-derivative by x, y, θ, ψ-
derivatives. Finally, we can get equation (4.8) with some algebra.
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