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COMPUTATION OF A MOVING DROP/BUBBLE ON A SOLID
SURFACE USING A FRONT-TRACKING METHOD *

HUAXIONG HUANG f, DONG LIANG f, AND BRIAN WETTON §

Abstract. In this paper we outline a front-tracking method for computing the moving contact
line. In particular, we are interested in the motion of two-dimensional drops and bubbles on a partially
wetting surface exposed to shear flows. Peskin’s Immersed Boundary Method is used to model the
liquid-gas interface, similar to the approach used by Unverdi and Traggvason. The movement near
the moving contact line is modelled by a slip condition, the value of the dynamic contact angle is
determined by a linear model, and the local forces are introduced at the moving contact lines based
on a relationship of moving contact angle and contact line speed. Numerical examples show that the
method can be applied to the motion of drops and bubbles on a solid surface over a wide range of
parameter values.

Key words. Moving drop on surface, moving contact line, dynamic contact angle, and numerical
computation.

1. Problem Description

The motion of a drop on a solid surface has been a subject of extensive research
since 1970s not only because of its relevance to many industrial and engineering
applications, but also due to the complication caused by the moving contact line.
In this paper we consider a two dimensional liquid drop (or a gas bubble) with a
given volume V resting on a flat solid surface with the fluid outside the drop also at
rest initially. At time ¢ >0, the outside fluid (air) starts moving, driven by a shear
flow parallel to the flat surface. The objective of the study is to develop a numerical
method which can be used to investigate the behaviour of moving drops and bubbles
on a solid surface under the influence of flow conditions of the external fluid and the
wetting properties of the flat solid surface.

Most of the existing work considers thin drops so that the lubrication theory can
be applied, cf. [4, 5, 7, 10] and references therein. In the limit of creeping flows,
a boundary integral method can be used, see for example [1]. A combination of
the Levelset method and the immersed interface method has been used in [9] to
study the reactive spreading of thin drops on a solid surface based on lubrication
theory approximation. However, for a fat drop immersed in flows with finite Reynolds
numbers, the full Navier-Stokes equations have to be used. In this paper, we extend
the method in [21] to compute the motion of liquid drops (and bubbles) on a solid
surface with moving contact lines. The main challenge, in addition to capturing the
moving interface between the liquid and gas phases, is to incorporate conditions at
the moving contact lines. The method developed in [21] is based on the immersed
boundary method, originally developed by Peskin for simulating blood flows in the
heart [12]. One of the main advantages of the immersed boundary formulation is its
ease for implementation even though Peskin’s original formulation is not as accurate
as the more recent immersed interface method developed by LeVeque and Li [11].
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To simplify the problem, we consider a rectangular domain Q= (0:1) x (0:1). The
left boundary is a solid surface with a drop resting in the middle initially. The right
boundary is either a slip-free surface or a no-slip wall with a given velocity. In-flow
conditions are given at the bottom boundary and the outflow conditions are applied
at the top boundary. An alternative setup is to impose a periodic condition at the
bottom and top boundaries. The liquid-gas interface is modelled by the front-tracking
method [21]. The movement along the solid boundary is modelled by a slip condition
[3, 8], the dynamic contact angle is based on a linear model in [2, 4], and a local
force is introduced at the moving contact lines based on a relationship of the moving
contact angle and the contact line speed. In addition, we use cubic splines to fit the
interface so that it maintains high accuracy of both interface and the its curvature.
Numerical examples and grid refinement tests show that the method can be applied
to the motion of drops and bubbles on a solid surface over a wide range of parameter
values.

The rest of this paper is organized as follows. In Section 2, we describe the detailed
mathematical model. Numerical method and implementation are discussed in Section
3. Numerical experiments are given in Section 4, followed by a short summary and a
discussion of future work in Section 5.

2. Mathematical Model
We assume that the motion of the fluids is governed by the Navier-Stokes equa-
tions
apv s .
ﬁ-l-v-(pvv):—Vp—i—g—&-V-(QuD), (2.1)
where ¥ is the velocity vector, p the pressure, g the gravity, 2uD the stress tensor
and D=V7+VT¥, u the viscosity, and p the density. The equations are valid both
inside and outside the drop except at the interface. Furthermore, we assume that the
viscosity and density are constants for each fluid and that the fluids are incompressible

V- 7=0. (2.2)

The interface I' between liquid and gas is a free boundary where the following condi-
tions hold

[—pit+2uD - fi|p = ok, (2.3)
dX ,
—:ﬁ(X,t) ,onT,
dt
where [ - |r denotes the jump of the values at the interface T', @ and 7 are the unit

vectors in the normal and tangential directions, respectively, o is the surface tension
coeflicient between liquid-gas, k is the curvature of the interface, and X is the position
vector of the interface. The first two equations in (2.3) are the dynamical conditions
and the last one is a kinematic condition.

When a partially wetting liquid drop stays on a solid surface, the interface in-
tersects with the flat surface and they form a contact angle (f). In the absence of
external force, surface forces acting at the contact line are given by the well-known
Young’s equation

Osg=0s+0cosb, (2.4)
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when there is no motion. Here 6 is the static equilibrium contact angle. o4, 05, and
o are the surface tension coefficients between solid-gas, solid-liquid, and gas-liquid
phases, respectively. In the presence of a shear flow, the liquid-gas interface of the
drop normally deforms and the contact angles at the front (advancing) and at the
back (receding) of the drop may differ from the static equilibrium contact angle (6p).
Determination of the dynamic equilibrium contact angle 8,4 that occurs when the drop
moves on a solid surface is the subject of much theoretical and experimental research.
Equation (2.4) has to be modified when the contact line moves due to the well-known
contact angle hysteresis. Dussan V. [4] derived a relationship between the speed (U)
of the contact line and the dynamic contact angle 6y,

0a—00=H(U), (25)

with H(-) being a function that is determined by experiments. Linear functions are
most common but non-linear ones also have been used by Brochard-Wyart and Gennes
in [2].

In addition, the no-slip boundary condition leads to the unrealistic prediction
of unbounded stresses and viscous dissipation at the contact line. To avoid a non-
integrable singularity, the no-slip condition can be replaced with the Navier slip con-
dition
1 0v,
B on’

where v, =v-T is the velocity component tangential to the surface and [ is the slip
coefficient. The slip condition has been used in the previous work on the liquid
spreading (see, Dussan V [3], Hocking [8] and Leger & Joanny [10]).

3. Numerical Method

(2.6)

vy

3.1. A front-tracking method. To solve the problem stated in the previous
section, we use the front-tracking method and follow the approach used in [20, 21].
We reformulate the problem as follows. First of all, the Navier-Stokes equations are
modified as

opv

——+V- (pm)z—vp+g*+v.(2up)+/

ot | owiio (7-X)ds, (3.1)

where ¢ (f -X ) is a two-dimensional Dirac-delta function and the integral is along

the interface I'. The viscosity and the density are now piecewise constant functions
with a jump at the interface. Compared to the original Navier-Stokes equations, (3.1)
has an extra singular term which accounts for the forces at interface. Because of the
nature of the delta function, (3.1) is the same as the original Navier-Stokes equations
(2.1) away from the interface. On the interface, it can be shown that (3.1) is equivalent
to the first two conditions of (2.3). As the Dirac-delta function has a finite support,
the integral along the interface for every point in the flow is practically only on a
small part of it. This technique was first used by Peskin [12] and the advantage of
using (3.1) is that it can be applied to the entire domain including the interface, even
if the density p and the viscosity p change discontinuously.

To solve (3.1), we need to know the location of the interface, which can be tracked
by using the last condition in (2.3)

—:6<X,t>, onT, (32)
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starting from a given initial position of the interface.

Once we know the interface location, we will update the distributions of the
density p(Z,t) and the viscosity u(#,t). We can introduce an indicator function I(Z,?)
(the Heaviside step function) such that its value is zero outside the drop and one
inside the drop. This indicator function can be viewed as the solution of the following
Poisson equation

Vi =-V.G (3.3)

with proper boundary conditions. Here the right side vector function
é:/a (f—i) fids (3.4)
r

is an integral of the two-dimensional Dirac-delta function along the interface. Equa-
tion (3.3) can be solved by using standard numerical methods, such as the finite
difference method. We will follow the method used in [20, 21] and more details can
be found in Section 3.3.

Using the indicator function, density and viscosity of the fluid (inside and outside
the drop) can be represented as

p(f,t) :Pg“f‘(/)l _pg)I(fat)»
(%, 8) = pug + (pu — pg) I(Z,8).

Another useful identity concerning the tracking of the interface (3.2) is
U(X',t):/ﬁ(f,t)é (f—)?) dz, (3.5)

which can be used to obtain the average velocity at X point by further using the
discrete Dirac-delta function. The integral on the right hand side can be evaluated
by averaging over a small area around the interface.

3.2. Boundary conditions. It is well-known that the standard no-slip
condition for the velocity leads to a non-integrable singularity in stress at the
moving contact line. Various models have been proposed to resolve this singular-
ity [3, 8, 10, 18, 19]. Among them, Dussan V [3], Hocking [8] introduced a model
which produces a slip-velocity at the contact line, similar to the Navier slip condi-
tion (2.6). The slip coefficient 8 is determined by a measure of surface roughness.
Shikhmurzaev [18, 19] used matching asymptotic expansions to analyze the moving
contact line in great detail from hydrodynamics point of view. In this study we use the
slip condition (2.6). The velocity component tangential to the solid surface, v, =7- 7,
is given by

Oy = fu,. (3.6)

on
For the static drop on the solid surface, the static equilibrium contact angle 6
is obtained by Young’s equation (2.4). When the liquid drop moves on the surface,
the contact angle  will differ from 6y until an equilibrium is established. At the
equilibrium, the advancing contact angle at the front of the drop 6, is greater than
o; and at the back of the drop the receding contact angle 6, is smaller than 6, (see
Figure 3.1).
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(a) (b)

FiG. 3.1. Sketch of (a) a static drop on a solid surface and (b) a moving drop on a solid surface.

Let 64 represent the dynamic equilibrium contact angle at the contact line, it
satisfies the following equation (see, Brochard-Wyart & Gennes [2], Shanahan & Carre

[17])
Fy=04y— 05 —0cosby, (3.7

where F is the friction force at the contact line. Using Einstein’s equation, the
force Fs and the slip velocity v, of the drop at the contact line have the following
relationship (see, [14])

d

=—F,, 3.8
kTany, (3.8)

vy

where d is the surface diffusion coefficient with d= gye_E/ kT “and ¢ is the distance

between two successive potential wells located on the solid surface, v is the vibration
frequency of a molecule in the potential well; k is the Boltzmann constant, E is an
activation energy, T is the absolute temperature; ny, is the number of the molecules
of liquid per unit volume of liquid; and a is the volume of the liquid per unit area of
the solid surface. Applying the Young’s equation (2.4), equation (3.7) and equation
(3.8) lead to that

kTany,
d

U =0 (cosby—cosby), (3.9)

where U (:=v,) is the contact line speed. When 6, is close to 6y and 6 is not small,
(3.9) can be further simplified as

04— 00=C;U. (3.10)

where Cy =kTany /dosinfy is called the friction parameter here. We note that other
approaches were used in [2, 4, 14] where similar versions of (3.10) were derived us-
ing energy arguments. Another model is used for nanometric deformations on soft
substrates recently in [17] where a general form of (2.5) is given.
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3.3. Discretization. = We are now ready to discuss the numerical scheme in
more detail. First we set up a staggered grid with grid size h to cover the computation
domain. The pressure p and indicator function I are defined at the center of each
rectangle, the values of the horizontal velocity are defined at the midpoints of the
vertical sides, and the values of the vertical velocity are defined at the midpoints of
the horizontal sides. The marker mesh for the interface is a fine grid with a small step
size. We start by assuming that the drop is at rest and the position and shape of the
drop are known. And we solve the problem by marching in time.

Following Peskin [12] (see also [21]), the delta function is regularized as a distri-
bution function with a compact support

5 (f—)?) _ { (4h) 11, (1+cosﬁ (z; in)) y|xs — X5 <2hi=1, (3.11)

0, otherwise

where « is the number of dimensions. Essentially, the sharp interface is now replaced
by a transition layer with a thickness 4h. The interface corresponds to a level set of
the indicator function represented by a set of markers {X ()}, The indicator function
is solved by a discrete version of (3.3) with a discretization of (3.4) as

G@)=3 s (f—)ﬁl)) 70 AsO (3.12)
l

where As(") is the arc-length of the interface (or distance) between two markers X1

and X The values of the physical parameters, i.e., p and p are updated using the
indicator function.

The forcing term from the interface in the Navier-Stokes equations is discretized
by using the discrete Delta function as follows

F(@)=% "o (f—X(l)>ﬂl)+Z§h (f—X'(C)> 7, (3.13)
l c

where
FO =000 A", (3.14)

acts at the marker point X® on the interface T, f(c) acts on the contact line X (©)
and restores the contact angle to 6; =00+ H(U).

During the dynamic process, the contact angle 6 at the moving contact line
changes until it equals the dynamic equilibrium contact angle 84. Similar as equation
(3.7), the force acting on the contact line is given as

19 7F=0cosf—(04g— g —Fy). (3.15)

When 6 reaches 6y, it holds the dynamic equilibrium equation (3.7) and thus f(c) T =
0. Using Young’s equation (2.4), equation (3.7) and (2.5), the force at the moving

contact line can be further derived as
f_‘(c)'F:a[cosefcos (00+H(U))], (3.16)

at the contact line, where 6 is the moving contact angle. The linear formulation for
H(U) is H({U)=CU which is derived in equation (3.10). In order to obtain the
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average velocities U at the contact line, we use the identity relation (3.5) combining
the discrete delta function

U:Zui,jdh (fi,j—i(c)), (317)
i,

and apply the extension of the horizontal velocity component u(Z,t) based on the
Navier-slip boundary condition (2.6). As the sharp interface is replaced by a layer,
F' is non-zero inside the layer. The Navier-Stokes equations can now be solved using
the Marker and Cell (MAC) approach on the staggered mesh, i.e., the velocity is
computed using (3.1) and pressure is solved using a Poisson equation derived from
(3.1) and the divergence-free constraint (2.2).

Once the values of velocity and pressure are obtained, we calculate the velocity
of the interface, indicated by a level set of the indicator function, using the discrete
version of (3.5) with the delta function again replaced by (3.11). The new location
of the markers on the interface is computed using (3.2). In addition, in order to
maintain accuracy, we use a clamped cubic spline to fit the interface using the new
marker location and a new set of markers is chosen based on the splines. The cubic
spline is also used to compute the curvature of the interface, which thus maintains
the accuracy of the approximation curvature.

Let At be the time step size, At=T/N, where T is the time period and N is an
integer number. The algorithm can be described as follows:

Algorithm:
Step 1. Initialization: n=0
Input the initial velocity and the marker points of the initial interface.
Step 2. for n=1,2,...,N do

Step 3. Compute indicator function by solving (3.3), and define the dis-
tributions of the density and viscosity.

Step 4. Compute pressure using a Poission equation derived from the
Navier-Stokes equation (3.1) and the divergence-free constraint
(2.2).

Step 5. Compute velocity from the Navier-Stokes equation (3.1) with
the slip-condition (2.6) and the force term (3.13) on the stag-
gered mesh.

Step 6. Calculate the new interface using (3.2) and the cubic spline
method. Calculate the curvature of the interface.

end do

REMARK 3.1. The MAC type of staggered grid formulation is chosen here so that
the incompressibility condition can be strictly enforced away from the interface. We
note that in Peskin’s original formulation of the immersed boundary method, incom-
pressibility is not strictly preserved at the interface. In other words, the drop/bubble
may “lose its mass” during the computation. This could be a problem if computations
are carried out over a long period of time. To handle the incompressibility better,
one can either use the immersed interface method [11] or the improved version of the
immersed boundary method.

4. Numerical Experiments
To illustrate the numerical method proposed in this study, we present three
numerical examples and grid refinement tests in this section. In the first example,
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(a) (b)

F1G. 4.1. Falling drop due to gravity at t=0, 0.1, 0.2, and 0.3. (a) E,=0.0025; (b) E,=2,500.

a circular drop (fluid inside the circle is heavier and more viscous than that outside
the circle) is initially placed in the middle of the computation domain. At ¢>0,
gravity force is applied and the velocity of the fluid at the boundary of the domain
is maintained as zero. In the second and third examples, we consider the motion of a
two dimensional liquid drop (or a gas bubble) with a given volume Q= (0:1) x (0:1)
on a flat solid surface. At ¢=0 the drop (or bubble) is resting on the solid surface
with the fluid outside the drop also at rest. At time ¢ >0, the outside fluid (air) starts
moving, driven by a shear flow parallel to the flat surface. The examples focus on
investigating the behaviour of moving drops and bubbles on a solid surface under the
influence of flow conditions of the external fluid and the wetting properties of the flat
solid surface. The second example considers the motion of the bubble (fluid inside
the circle is lighter and less viscous than that outside the circle) on the left boundary
and an upward uniform velocity is applied at the right boundary at ¢>0. In the
third test, we replace the bubble in the second example by a drop and compute the
motion of the liquid drop on a solid surface. Finally, we show that the computations
are grid-independent by taking grid refinement tests.

Example 4.1. In this test, we consider the motion of a liquid drop falling in a two
dimensional domain due to gravity g=9.8. The diameter of the liquid drop is set to

be d. =0.1. The boundary conditions are given as

u(0,y,t) =u(l,y,t) =u(z,0,t) =u(x,1,t) =0,
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(a) Cr=0.5 (b) Cr=1 (C) Cf=1.5 (d) Cf=2

Fic. 4.2. Motion of a bubble on a solid surface under shear at t=0, 0.2, 0.4, 0.6 and 0.8.
Vary the friction parameter Cy from 0.5 to 2. Other data are fized as 0o =m/2, 0 =0.001, M, =40,
M,, =40, d.=0.1, 8=0.03, and Vj =2.

and
v(0,y,t)=v(1,y,t) =v(z,0,t) =v(x,1,t)=0.

The initial conditions are u(z,y,0)=v(z,y,0)=0. The density and viscosity ratios
pi/po= i/ 1to =40, where subscripts o and 4 stand for values outside and inside the
drop, respectively. In addition, we set p;, =1.0 and p; =0.01. The surface tension o
is varied as it determines the shape of the interface separating the two fluids. More
precisely, we use a non-dimensional parameter called the Eotvos number (or Bond
number) E, = p,gd? /o, which is the ratio of the gravity and the surface tension force.
The main purpose of this example is to test our method before the simulations for
more complicated cases are carried out.

Figure 4.1(a) is the evolution of the interface which separates the two fluids at t =
0,t=0.1,t=0.2 and t=0.3 with E, =0.0025 while the shape of the falling drop with
E,=2,500 at the same time intervals is shown in Figure 4.1(b). It can be seen that
the shape of the drop is clearly affected by the value of the Eotvos number (or Bond
number). The shape of the liquid drop remains circular when the Eotvos number is
small (corresponding to a large surface tension coefficient). When the Eotvos number
is large (corresponding to a small surface tension coefficient), however, significant
deformation can be observed. In another words, the surface tension coefficient affects
the shape of the drop. This is consistent with experimental observations.

Example 4.2. We consider the motion of a bubble attached to the left boundary (a
solid surface) under a shear flow parallel to the solid surface. Since ad hoc models are
used to compute the moving contact line and dynamic contact angle, it is necessary to
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address the effect of the slip parameters (3, static contact angle 6, friction parameter
C'y on the motion of the bubble. Meanwhile, we also consider the impact of the value
of the shear velocity. In this example, the boundary conditions are given as

u(07y7t) = u(l’y’t) :u(x707t) :u(x’ 17t) = 07

Ov/0x(0,y,t) = Bv(0,y,t), v(l,y,t)=Vs, v(x,0,t)=v(z,1,t)=Vpz,

with a given shear velocity V4, >0. The initial conditions are u(x,y,0)=wv(z,y,0)=0.
No gravity force is applied. And we choose the density of outside liquid p, =1.0 and
the viscosity of outside liquid p, =0.01, and let M, =p,/p; > 1, M, = po/p; > 1 denote
the ratios of the densities and viscosities of the two liquids, respectively.

First, we investigate the effect of the friction parameter C'y to the motion of
the bubble. We change C; from Cr=0.5 to Ct=2.0. The diameter of the initial
gas bubble is set to be d. =0.1. Other parameters are chosen as the surface tension
coefficient 0 =0.001, the ratio of densities M, =40, the ratio of viscosities M, =40,
the slip coefficient 5=0.03, the static contact angle 8y =7/2, and the shear velocity
V,=2. The Weber number is defined as W, = p,v2d. /o, which is usually used to
characterize the bubble (or drop). In this case, W, =400. The numerical results of
the motion of the bubble are given in Figure 4.2 at t=0,t=0.2,t=0.4,t=0.6, and
t=0.8. We can see the impact of the friction parameter Cy on the shape of the
bubble while the initial shape of the bubble is a half circle at t=0. It is clear in
Figure 4.2 that the shapes of the bubble are changed as the time increases and the
advanced contact angle becomes bigger than the static one 8y =7 /2 but the backward
contact angle gets smaller than it at t=0.4,0.6 and 0.8. Moreover, the increasing of
the friction parameter C'y from C'y =0.5 to C'y =2.0 will increase the advanced contact
angle and decease the backward contact angle as shown in Figure 4.2(b)-(d).

Now we study numerically the impact of the slip coefficient 8 by choosing four
values 3=0.03, 0.3, 1 and 3 with a static contact angle 8y =27/3. We compute
the motion of the bubble with the following data. The diameter of the gas bubble
is d.=0.08, The friction parameter is Cy=0.5, and the surface tension coefficient
0 =0.001, the ratio of densities M, =40, the ratio of viscosities M,, =40 and the shear
velocity along the right boundary V, =2. The numerical results of the effect of the
slip coefficient 0 are given in Figure 4.3 at t=0, 0.2, 0.4, 0.6, and 0.8. The bubble
is allowed to slip more easily when § is small Figure 4.3(a). A bigger value of g
clearly makes it difficult for the bubble to slide along the surface, indicated by the
less distance travelled by the bubble as shown in Figure 4.3(d). It also can be seen
that the deformation is more visible and the dynamic contact angles are affected by
the slip coefficient 8 in Figure 4.3(b)-(d).

In Figure 4.4, the shape and the motion of the bubble are shown though different
static contact angles 0y: (a). 6p=m/6 and d.=0.36; (b). 6p=m/3, and d.=0.16;
(¢c). Op=7/2, d.=0.1; (d). 6p=27/3 and d.=0.08. Other parameters are chosen
as $=0.03, 0=0.001, C;y=0.5. M,=40, and M, =40. The shear velocity is chosen
as V,=2.0. The effect of the static angle is clear to the shape of the bubble and
the dynamic contact angles. In Figure 4.4(a) with the static contact angle 6y =/6,
we can see that the advanced angle becomes bigger than 7/6 while the backward
contact angle becomes less than w/6. For the case with 6yp=7/3 in Figure 4.4(b),
the advanced contact angle is bigger than 7/3 while the backward contact angle is
less that 7/3. Similar results are shown for the cases with 8y =m/2 and 6y =27/3
in Figure 4.4(c)-(d). Thus, it is clear that the advanced dynamic angle would be
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DD DD

(a) =003  (b) B=0.3 (c) f=1 (d) f=3

Fic. 4.3. Motion of a bubble on a solid surface under shear at t=0, 0.2, 0.4, 0.6, and 0.8.
Change slip coefficient B from 0.03 to 3. Other parameters are chosen as 6o =27/3, Cy=0.5,
0=0.001, M, =40, M, =40 , d.=0.08, and V, =2.

larger than the static contact angle when the bubble moves, however, the backward
dynamic angle would normally be smaller than the static one. This has been shown
in experimental researches.

To investigate the effect of shear velocity V; along the right boundary, the shapes

of the bubble are given in Figure 4.5 at t=0, 0.2, 0.4, 0.6 and 0.8. The data are
chosen as 3=0.03, Cy=1.0, 0 =0.001, and M,=40 and M, =40. The diameter of
the bubble is d. =0.1 and the static contact angle is 6y = /2. Vary the shear velocity
V4, from V=1 to V;, =2.5. The larger shear velocity causes the bubble to move faster
than that with a smaller applied shear velocity as shown in Figure 4.5. And it can
also be seen that the dynamic contact angle is affected by the value of the applied
shear velocity.
Example 4.3. We now consider the motion of a drop attached to the left boundary (a
solid surface) under a shear flow parallel to the solid surface. The boundary conditions
are given as in Example 4.2. The ratios of the densities and viscosities are defined as
M,=pi/po and M, = ;/ o, respectively. The density of the inside liquid is chosen
as p; =1.0 and the viscosity of the inside liquid is chosen as p; =0.01. The diameter
of the drop is given as d. =0.1. No gravity force is applied.

In Figure 4.6, the shape of the drop is shown at t=0,t{=0.2,{=0.4,t=0.6, and
t=0.8 for the following cases.

a) 0 =10-6, M, =40, M, =40, By=7/2, B=5, C; =10, and Vj, =2:
Iz jz f
(b) 0=10"5, M, =40, M,, =40, 6y =7/2, B=5, Cy =10, and V, =3;
(c) 0=10"5, M,=20, M, =20, 6p=m/2, 3=0.5, Cy =10, and V;, =2;
d) 0 =105, M, =20, M, =20, Oy =7/2, B=5, C; =10, and V=2
p n !
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(a) p=7/6  (b) Og=7/3  (c) Bp=7/2 (d) p=27/3

Fic. 4.4. Shape of a bubble on a solid surface under shear at t=0, 0.2, 0.4, 0.6 and 0.8.
Consider the effect of the static contact angle 6g. The data are given as 3=0.03, Cy =0.5, 0 =0.001,
M, =40, and M, =40. The shear velocity V;, =2.0. The static angle and the diameter of the bubble
are chosen as: (a). Op=m/6, de=0.36; (b). Op=7/3, de=0.16; (c). Op=m/2, de=0.1; (d).
0o =2m/3, de =0.08.

Figure 4.6(a) shows the motion of the drop with the shear flow V;, =2 at t=0,t=
0.2,t=0.6 and t=0.8. Figure 4.6(b) shows the shape of the drop with v, =3 at the
same time period. We can see that the drop pushed by a large shear velocity in
Figure 4.6(b) moves faster than that in Figure 4.6(a) by applied small shear flow.
And it is clear that the advanced dynamic angle in Figure 4.6(b) is bigger than that
in Figure 4.6(a) while the backward dynamic contact angle in case (b) is smaller
than that in case (a). We compute the motion of the drop with different ratios of
M,=M, =40 and M,= M, =20 in Figure 4.6(a),(d). The densities of outside liquids
are p,=0.025 in case (a) and p,=0.05 in case (d), the associated Weber number in
case (d) is two times than that in case (a). The shape of the bubble in Figure 4.6d
with bigger Weber number is much easier to be changed than that in Figure 4.6(a)
with smaller Weber number. Meanwhile, the speed of the motion of the drop is
clearly affected by the value of the Weber number. Figure 4.6(c),(d) shows the effect
of different B, with f=0.5 in case (c) and =5 in case (d). It is obvious that the
motion of the drop in Figure 4.6(c) is faster than the one in Figure 4.6(d) due to a
small 3 value. And the shape of the drop is also affected by the value of 3, as shown
in Figure 4.6(c),(d).

If we consider the case with the ratios M, =10 and M, =10 but with the density
and the viscosity of outside liquid p,=0.1 u,=0.001. The liquid inside the drop
has high density p; =1.0 and high viscosity p; =0.01. In Figure 4.7 we compute the
motion of the drop by choosing different  values from 8=0.03 to §=15. Other data
are chosen d. =0.1, 6y =7/2, 0 =0.0001, Cy =0.5 and V;, =2. In this case the Weber
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(a) V=1

(b) V=15

(c) Vo=2

(d) V=25
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Shape of a bubble on a solid surface under shear at t=0, 0.2, 0.4, 0.6 and 0.8.
Apply different shear velocities from Vi, =1 to V;, =2.5. Other data are g =n/2, $=0.03, Cy=1.0,
0=0.001, M, =40, M, =40 and de =0.1.

()

(d)

F1G. 4.6. Motion of a liquid drop on a solid surface under shear att=0, 0.2, 0.4, 0.6 and 0.8. The
data are o =109, Cy =10, 0o =7/2. Other parameters are (a) 3=5, M,=M, =40, V;,=2; (b)
B=5, M,=M, =40, V, =3; (c) 3=0.5, Mp=M, =20, V;,=2; (d) =5, Mp=M, =20, V,=2.
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(a)3=0.03 (b)g=3 (c)3=10 (d)B=15

Fic. 4.7. Motion of a liquid drop on a solid surface under shear at t=0,0.2,0.4,0.6 and 0.8.
Vary the slip coefficient 3 from 3=0.03 to B3=15. Other parameters are determined as de =0.1,
0o=7/2, 0=0.0001, Cy =0.5, M, =10, M, =10, and V;=2.

(a) M,=10 (b) M, =20 (c) M, =40 (d) M, =60

Fic. 4.8. Motion of a liquid drop on a solid surface under shear at t=0,0.2,0.4,0.6 and 0.8.
Vary the ratios M, and M, of the density and viscosity. Other parameters are determined as
de =0.1, o =7/2, 0=0.00001, =3.0, Cy=1.0, V};, =2, and M, = M,.
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(a) (b) () (d)

Fi1G. 4.9. Grid refinement tests for the motion of a drop (¢, d) and a bubble (a, b) at t=
0.0,0.4,0.8,1.2,1.6 and 2.0. (a, c): use the grid with Ax=Ay=1/50. (b, d): use the refine grid
with Az =Ay=1/100.

number is W, =400. The shape of the drop is clearly to be affected by the value of the
slip coefficient 3. With the same kind of data d. =0.1, 6y =7/2, p,=0.1 , u, =0.001
but ¢=0.00001, Cy=1.0, 8=3.0, we consider the effect of the ratios of densities and
viscosities with the value from M,=10 to M,=60. The shape of the moving drop
and speed of the motion of the drop are affected by the ratio values of densities and
viscosities, which are shown in Figure 4.8.

Finally, we take the grid refinement tests and show that the computations pre-
sented in this paper are grid-independent. Figure 4.9(a) shows the shape of a bubble
in Example 4.2 at t=0, t=0.4, t=0.8, t=1.2, t=1.6 and t=2.0, with the diame-

ter d. =0.1, the surface tension ¢ =0.001, the ratios of the outside and inside liquid

densities and outside and inside liquid viscosities M, = Po =40 and M, = Ho =40,
, 1L

the slip coefficient 3=0.03, the friction parameter C' :0,.0517 the static contauctZ angle
6o =m/2, and the shear velocity V, =1 along the right boundary, computed using the
step sizes Ax=Ay=1/50. Figure 4.9(b) are the numerical results using a smaller
grid sizes Az =Ay=1/100. Figure 4.9(c)-(d) shows the effect of the grid refinement
on the shape of the drop in the Example 4.3 at t=0,t=0.4,t=0.8,t=1.2, t=1.6 and
t=2.0. The data are chosen as d.=0.1, 0=10"5, 3=0.05, C;=0.05 and 6y =7/2,
V, =1. The inside liquid density and viscosity are p; =1.0, u; =0.01, and the ratio of
the inside and outside liquid densities M, = % =40, the ratio of the inside and outside
liquid viscosities M, = % =40. Figure 4.9(c) is the shape of the drop obtained using
the grid sizes Ax=Ay 201/50. Figure 4.9(d) is the result using a smaller grid sizes

Ax=Ay=1/100. It is clear that the shapes of the bubble and the drop are almost
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similar, as shown in Figure 4.9.

T
"position_a_1" ——
“position_a_2" ------
“position_b_1" ------
“position_b_2"

T
“position_a_1" ——
“position_a_2" ------
“position_b_1"
"position_b_2"

F1G. 4.10. Comparison of the positions of moving contact lines on grid refinement tests. (a)
The positions of moving advanced and backward contact lines of the bubble. (b) The positions of
moving advanced and backward contact lines of the drop.

0.15

005

0.15

0.15
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Fic. 4.11. The errors of moving contact lines on grid refinement tests. (a) The errors of moving
contact lines of the bubble; (b) The errors of moving contact lines of the drop. Where errorg is the
error at the advance contact line and errory is the error at the back contact line.

The computed positions of moving contact lines of the bubble and the drop us-
ing the grid (Ax=Ay=1/50) and refined grid (Az=Ay=1/100) are shown in Fig-
ure 4.10. In Figure 4.10(a) the two upper curves are the moving curves of the advanced
contact line of the bubble computed with these two grids. The two lower ones are
the moving positions of the backward contact line of the bubble. The Figure 4.10(b)
shows the case of the drop. The errors of moving contact lines with these two grids
are given in Figure 4.11. Figure 4.11(a) shows the errors of advanced and backward
contact lines of the bubble. Figure 4.11(b) gives the contact line errors of the drop.
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From Figures 4.9-4.11, we can see that the results are grid-independent.

5. Discussion

In this study, we have developed a front-tracking method to compute the motion of
a two-dimensional drop/bubble attached to a plane surface. For the motion of contact
line and the determination of the dynamic contact angle, we use ad hoc models. The
motion of fluids near the contact lines along the solid surface is modelled by a Navier
slip condition and the local forces are introduced at the moving contact lines, based
on a relationship of moving contact angle and contact line speed. Numerical tests
are carried out to investigate the effect of the slip coefficient g, friction parameter
C and the static contact angle 6. It is clear that the values of 3, Cy and 60, affect
the motion and the shape of the interface besides the dynamic contact angles. Grid
refinement tests are given to show the computations grid-independent. The method
developed in this paper can be applied to the motion of drops and bubbles on a solid
surface over a wide range of parameter values.

Ideally we would like to compare our computations with experimental measure-
ments or existing numerical results. However experiments for two dimensional drops
were done only for thin strips of silicon oil spreading down a vertical glass plate [6].
The thickness of the strip (50um) in the experiments is thin compared with the length
(3mm in diameter), thus it falls into the lubrication approximation region. Most of
the existing numerical and analytical studies were also done for thin drops or in the
limit of creeping flows. Our paper has focused on fat drops/bubbles where lubrication
approximation breaks down. Thus a direct comparison with experimental measure-
ments and existing numerical results was not attempted in this paper.

As a next step, a more careful study on the slip velocity model will be conducted
near the moving contact lines. Since the no-slip condition is considered a good
approximation away from the contact line, it is more reasonable to consider 8 as a
function of the distance from the contact line. It will be interesting to investigate
whether a range of  exists in which the motion of the bubble/drop and the shape
of the interface is not affected by the value of 5. Finally, in order to determine the
value (or function) of 3 and Cf, a more fundamental approach must be employed.
To accurately simulate the behavior of the moving bubble near the contact line, local
refinement near the contact line and a refined mark point grid for the free surface
will be developed. Microscopic approaches may be considered as well. As the direct
numerical simulation using molecular dynamics is still beyond the reach of current
computing power, approaches using the lattice Boltzmann equation [15] or a diffusive
interface model [16] provide two interesting alternatives. Alternatively, results from
the molecular dynamics simulations [13] may be incorporated into our numerical
method.
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