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ANALYSIS OF 1+1 DIMENSIONAL STOCHASTIC MODELS OF
LIQUIDS CRYSTAL POLYMER FLOWS∗

TIEJUN LI † , PINGWEN ZHANG† , AND XIANG ZHOU†

Abstract. We consider the stochastic model of concentrated Liquid Crystal Polymers(LCPs)

in the plane Couette flow. The dynamic equation for the liquid crystal polymers is described by a

nonlinear stochastic differential equation with Maier-Saupe interaction potential. The stress tensor

is obtained from an ensemble average of microscopic polymer configurations. We present the local

existence and uniqueness theorem for the solution of the coupled fluid-polymer system. We also

analyze the error of a fully finite difference-Monte Carlo hybrid numerical scheme by investigating

the asymptotic behavior of weakly interacting processes. It is proved that the rate of convergence of

the full discretized scheme is O(h2 + δt + 1√
M

).

1. Introduction
The analysis and computation of complex fluids, i.e., non-Newtonian fluids, have

attracted much attention in recent years, see, e.g., [29, 30, 12, 23, 8, 9, 16, 17, 24,
34, 4, 5, 20, 25]. Mathematically speaking, the dynamics of a polymer-solvent system
may be modeled by a Navier-Stokes-like equation

∂tu + (u · ∇)u + ∇p = ∇ · τ ,

∇ · u = 0,
(1.1)

where u is the velocity field and p is the pressure. The stress is given by τ = τ s +τ p,
where τ s is the stress due to the solvent and τ p is the polymer contribution.

One typical model is the elastic dumbbell model. The macromolecule is idealized
as a coarse-grained dumbbell with two beads joined by an elastic spring. These
dumbbells may be transported and stretched by the spring force, frictional force and
the thermal force. The polymeric stress τ p is derived by the Kramers expression that
τ p = 〈Q ⊗ F (Q)〉[2], where Q is the connector vector of the two beads, F (Q) is the
spring force vector, and the ensemble average 〈 · 〉 is integrated over the configuration
space. Another typical model is the rod-like model for liquid crystal polymers, where
each polymer is assumed to be a stiff rod which can translate, rotate and interact
with each other in the fluid. The polymeric stress τ p is given by Doi theory through
virtual work principle [6].

The dumbbell model has been extensively studied in theory, numerics and com-
putations. On the theoretical side, the short time well-posedness of the coupled
system has been established both in deterministic version[22, 29, 30] and stochas-
tic version[9] when the spring is infinitely stretched and the force F (Q) satisfies the
polynomial growth condition at the infinity. For the singular finitely extendable non-
linear elastic (FENE) force F (Q) = Q

1−Q2/β2 , where β is a prescribed maximal ex-
tension for spring, only a short time well-posedness for the shear flow is given in [17].
There the stochastic differential equation for Q is analyzed in detail to guarantee
its existence and supply the a priori estimate for the shear stress. For the chemical

∗Received: February 2, 2004; accepted (in revised version): May 17, 2004. Communicated by Shi

Jin.
†LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China.

295



296 LIQUIDS CRYSTAL POLYMER FLOWS

engineers, the multi-scale stochastic simulation algorithms such as CONNFFESSIT
(Calculation Of Non-Newtonian Flows: Finite Element and Stochastic Simulation
Technique), BCF (Brownian Configuration Fields) and LPM (Lagrangian Particle
Methods) have been introduced to handle the complex configurations for the dumb-
bell chains [27, 21, 15, 13]. The convergence of the BCF method for a simple case
with linear force law and shear flow is first given by [8, 16]. The special advantage of
the simplicity of the model is taken in the analysis. This result is generalized to high
dimensional case in [10].

For the LCP model, the Doi-Hess theory is the simplest and the most studied
model[14, 6]. Many interesting dynamics were found for the shear flow in [11, 25,
19, 20] via spherical harmonic function expansion and stochastic simulations. But
simulation results in more general cases haven’t come out yet for its large scale com-
putations. This direction is very promising because these phenomena will be beneficial
to understand the defects and patterns in liquid crystal materials from the molecu-
lar theory for inhomogeneous systems of rod-like molecules [26, 31]. Mathematically,
the structure of the solution for the Smoluchowski equation in the absence of flow
is analyzed in [4, 5] recently. The equilibrium structure of the probability density
function in 1D case is obtained in [4, 24]. Recently the global existence of solution
and the convergence of finite difference scheme for 1+1 case of hydrodynamic coupling
Smoluchowski equation is given in [34].

In this work, we are interested in the well-posedness and numerical analysis of the
stochastic model of LCPs in the plane Couette flows. We call it “1+1” model because
the flow is one dimensional and the configuration variable of the rod is restricted to
the circle which is also of dimension one.

For the incompressible plane pressure driven flow, we have

u = (u(t, y), 0)T , ∇ = (0, ∂y)T , ∇p = (c, 0)T , (1.2)

where c is a prescribed pressure gradient. It follows that the deterministic “1+1”
model for highly concentrated LCPs reads [34]:

∂tu =
γ

Re
∂yyu +

1 − γ

ReDe
∂yτ − c, (1.3)

∂tψ =
1

De
∂θθψ +

1
De

∂θ(ψ ∂θU) + ∂yu ∂θ(ψ sin2 θ), (1.4)

U =
∫ 2π

0

sin2(θ − θ′)ψ(t, y, θ′)dθ′, (1.5)

τ = 2〈sin 2θ〉 + 〈∂θU cos2 θ〉 +
De

2
∂yu〈sin2 2θ〉, (1.6)

where De, Re are Deborah and Reynolds numbers, respectively, γ is the viscosity
ratio, 〈g(θ)〉 =

∫ 2π

0 g(θ)ψ(t, y, θ) dθ, ψ = ψ(t, y, θ) is the orientational distribution
function of the rods at time t and the position y, U is the Maier-Saupe excluded
volume interaction potential and τ is the polymeric stress. The space variable y

varies in � = (0, 1).
The initial condition is u(0, y) = u0(y) and ψ(0, y, θ) = ψ0(y, θ) ≥ 0 which is non-

negative and normalized
∫ 2π

0
ψ0(y, θ) dθ = 1 at each position y. The no-slip boundary
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condition u(t, 0) = u(t, 1) = 0 for the velocity u and periodic boundary condition for
θ are assumed.

We now rewrite (1.3)-(1.6) into another version by replacing the Smoluchowski
equation (1.4) with a stochastic differential equation. For the sake of simplicity, we
will ignore all constant coefficients later since they do not have a major influence in
the proof. We denote by Wt 1-dimension Brownian motion on the probability space
(Ω,F ,Ft, P), M the set of probability measures on R, and L(ξ) the distribution of a
random variable ξ under the probability measure P. Then (1.3)-(1.6) are equivalent
to (See Remark 1 below):

∂tu = ∂yyu + ∂yτ − c, (1.7)

dΘt = −
(
a(Θt,L(Θt)) + ∂yu sin2 Θt

)
dt + dWt, (1.8)

τ = E
[
sin 2Θt + a(Θt,L(Θt)) cos2 Θt + ∂yu sin2 2Θt

]
, (1.9)

where

a(θ, µ) =
∫ +∞

−∞
sin 2(θ − θ′)µ(dθ′), ∀ θ ∈ R, µ ∈ M (1.10)

with initial condition Θ(0, y, ω) = Θ0(y, ω). In the above system, Θ(t, y, ω) that takes
value in R is a stochastic process presenting at time t, which is the orientational angle
of microscopic rod-like polymers at the position y in the flow field.

The nonlinear SDE (1.8) is closely related to the model of the weakly interacting
particle system. In [33], some results on chaos propagation for this kind of system are
reviewed. Here we have a two-scale coupled system which is very similar to the FENE
model studied in [17]. The idea in [17] of eliminating the term ∂yu with the Girsanov
transformation is not applicable directly here since the nonlinear term a(Θt,L(Θt))
involves the distribution of Θ. In this work, we take the fixed point strategy as in [33]
by first freezing the nonlinear term and then applying the Girsanov transformation to
establish a contraction mapping argument, which enables us to obtain the existence
and uniqueness of the SDE. For local time well-posedness of the momentum equation,
the standard Galerkin method is applied. The a priori estimates are obtained by using
the distribution theory in y space because the white noise Ẇt is only in time[9]. Then
we study the numerical analysis of a full discretization scheme for the coupled system.
We introduce M (i.e. the number of rods per cell) weakly interacting processes to
numerically deal with nonlinear term in (1.8) together with Monte-Carlo realization
(approximating the probability expectation in τ with the empirical average). The
velocity field is discretized by the finite difference method with mesh size h. With the
Euler discretization in time with time step δt, we finally show that the full scheme
converges to the continuous solution at the order O(h2 + δt + 1√

M
).

The paper is organized as follows. In section 2, we give the existence and unique-
ness result for the SDE (1.8). The local time well-posedness of the system is es-
tablished in section 3. In section 4 the full discretization scheme will be analyzed
theoretically. The conclusions will be given in the final section.

Remark 1. It is observed that the configuration space of the Smoluchowski equa-
tion (1.4) is essentially [0, 2π) while the configuration space of the SDE (1.8) is R,



298 LIQUIDS CRYSTAL POLYMER FLOWS

which implies that the two equations are not consistent. However, we can “fold” the
configuration space of Θt to [0, 2π) and prove the equivalence between (1.3)-(1.6) and
(1.7)-(1.9). More precisely, we can have the Fokker-Plank equation associated to (1.8).
It says that (1.8)-(1.9) are equivalent to the following integro-differential system

∂tp = ∂θθp + ∂θ

(
p

∫
R

sin 2(θ − θ′)p(t, y, θ′)dθ′
)

+ ∂yu ∂θ(p sin2 θ), (1.11)

τ=
∫

R

{
sin 2θ+

∫
R

sin 2(θ−θ′)p(t, y, θ′)dθ′ cos2 θ+∂yu sin2 2θ
}
p(t, y, θ)dθ, (1.12)

where p(t, y, θ) is the probability density function of the random variable Θt. We
define

p̃(t, y, θ) =
+∞∑

k=−∞
p(t, y, θ + 2kπ) for θ ∈ [0, 2π) (1.13)

and it can be easily verified that p̃ satisfies (1.4)-(1.6). That is to say p̃ and ψ are the
same (with minor adjustment for neglection of constants in equations) .

Remark 2. It may seem strange that the white noise in (1.8) is only dependent
on time. The validity can be assured from two viewpoints. The first one is that the
Fokker-Planck equation (1.11) is mathematically equivalent to (1.8), which supplies
the correct deterministic version as equation (1.4). Secondly, it can be regarded as a
variance reduction technique as BCF. In the BCF algorithm, the Gaussian white noise
is also only dependent on time, which introduces correlation between spatial particles
and reduces the variance of stress [28].

2. Existence of a solution to the stochastic differential equation
In this section, we only consider the SDE (1.8) and regard the space variable y as

a fixed parameter. The contracting technique to be used in the proof may be referred
to [33].

Theorem 2.1 (Existence and uniqueness). If ∂yu ∈ L2
t ([0, T ]) for T > 0, then

there exists a unique solution to the equation (1.8).
We introduce the Kantorovitch-Rubinstein or Vaserstein metric DT (·, ·) on the

set M(C) of probability measures on C = C([0, T ], R), defined by

DT (m1, m2) = inf
m

{∫
C×C

(
|w1

T − w2
T |∗ ∧ 1

)
dm(w1, w2),

m ∈ M(C × C), p1 ◦ m = m1, and p2 ◦ m = m2
}
,

(2.1)

where |w1
T −w2

T |∗ = sup
t≤T

|w1
t −w2

t | with w1, w2 ∈ C and p1, p2 being a projection map

from M(C × C) to M(C) with respect to the first and second components, respec-
tively. The definition (2.1) defines a complete metric on M(C), which gives to M(C)
the topology of weak convergence[7]. Take now T > 0, and define a map Υ which
associates to m ∈ M(C) the law of the solution Θt of

Θt = Θ0 −
∫ t

0

∫
C

sin 2(Θs − ws) dm(w) ds −
∫ t

0

∂yu sin2 Θs ds + Wt. (2.2)
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The existence of the strong solution of (2.2) can be obtained by Girsanov and Yamada-
Watanabe theorem provided that ∂yu ∈ L2

t ([0, T ])[17, 32].
One easily observes that if Θt(t ≤ T ) is a solution of (1.8) then its law on

C([0, T ], R) is a fixed point of Υ. Conversely, if m is a fixed point of Υ, then (2.2)
defines a solution of (1.8). Actually, it can be verified that Υ is a contraction map.

Lemma 2.2. If ∂yu ∈ L2
t ([0, T ]) for T > 0, then for t ≤ T ,

Dt(Υ(m1), Υ(m2)) ≤ C

∫ t

0

Ds(m1, m2) ds, m1, m2 ∈ M(C). (2.3)

Proof : By the definition of the map Υ, we have

Θ1
t = Θ0 −

∫ t

0

∫
C

sin 2(Θ1
s − w1

s) dm1(w1) ds −
∫ t

0

∂yu sin2 Θ1
s ds + Wt,

Θ2
t = Θ0 −

∫ t

0

∫
C

sin 2(Θ2
s − w2

s) dm2(w2) ds −
∫ t

0

∂yu sin2 Θ2
s ds + Wt.

For any m ∈ M(C × C) satisfying p1 ◦ m = m1 and p2 ◦ m = m2, we find that

|Θ1
t − Θ2

t |∗ ≤
∫ t

0

∫
C×C

| sin 2(Θ1
s − w1

s) − sin 2(Θ2
s − w2

s)| dm(w1, w2)ds

+
∫ t

0

|∂yu|| sin2 Θ1
s − sin2 Θ2

s| ds

≤ 2
∫ t

0

∫
C×C

(|w1
s − w2

s |∗ ∧ 1) dm(w1, w2) ds (2.4)

+2
∫ t

0

(1 + |∂yu|)(|Θ1
s − Θ2

s|∗ ∧ 1) ds. (2.5)

Using Gronwall’s lemma and taking infimum for m, we have

|Θ1
t − Θ2

t |∗ ∧ 1 ≤ 2 exp

(
2

∫ T

0

1 + |∂yu| ds

) ∫ t

0

Ds(m1, m2) ds (2.6)

from which the lemma follows. �
From Lemma 1, we can immediately deduce uniqueness in law for the solution of

(1.8) (since Υ(m1) = m1 and Υ(m2) = m2 in (2.3), direct application of Gronwall’s
inequality makes this fact obvious). The existence part also follows now from a stan-
dard contraction argument. More precisely, for any T > 0, and m ∈ M(C([0, T ], R)),
we can iterate the lemma to obtain:

DT (Υk+1(m), Υk(m))

≤ C

∫ T

0

Dt1(Υ
k(m), Υk−1(m)) dt1 (2.7)

≤ C2

∫ T

0

∫ t1

0

Dt2(Υ
k−1(m), Υk−2(m)) dt2 dt1 (2.8)

≤ CkDT (Υ(m), m)
∫ T

0

∫ t1

0

∫ t2

0

· · ·
∫ tk−1

0

dtk dtk−1 · · · dt2 dt1 (2.9)

≤ Ck T k

k!
DT (Υ(m), m). (2.10)
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This indicates that Υk(m), k ≥ 1 is a Cauchy sequence, and converges to a fixed point
of Υ.

Now we check the pathwise-uniqueness property of the SDE (1.8). If ∂yu ∈
L2

t ([0, T ]) and assume (1.8) has two solutions Θ1 and Θ2 in C([0, T ], R), then

Θ1
t − Θ2

t = −
∫ t

0

a(Θ1
s,L(Θ1

s)) − a(Θ2
s,L(Θ2

s)) + ∂yu(s, y)(sin2 Θ1
s − sin2 Θ2

s) ds.

We can deduce that

E
[
|Θ1

t − Θ2
t |

]
≤ E

[∫ t

0

|a(Θ1
s,L(Θ1

s))−a(Θ2
s,L(Θ2

s))|+|∂yu(s, y)|| sin2(Θ1
s)− sin2(Θ2

s)|ds

]

≤ 2E

[∫ t

0

|Θ1
s − Θ2

s| + E
[
|Θ1

s − Θ2
s|

]
+ |∂yu(s, y)|| sin(Θ1

s) − sin(Θ2
s)|ds

]

≤
∫ t

0

2
(
2 + |∂yu(s, y)|

)
E

[
|Θ1

s − Θ2
s)|

]
ds. (2.11)

Since ∂yu ∈ L2
t ([0, T ]), the Gronwall’s lemma shows that Θ1

t = Θ2
t almost surely (t

fixed). This and the continuity of both processes imply that Θ1
t = Θ2

t for all t ≤ T

with probability 1. Therefore, for any y ∈ �, the SDE (1.8) has a pathwise-unique
strong solution in time [0, T ], provided that ∂yu(·, y) ∈ L2

t ([0, T ]).

3. Existence and uniqueness of the solution to the coupled system
We now begin to consider the coupled system (1.7)-(1.9). From now on we suppose

that the space variable y varies in � = (0, 1). The notation L2
t (L2

y) is a shortcut for
L2

t ([0, T ], L2
y(�)).

The aim of this section is to prove the following theorem:
Theorem 3.1 (Local-in-time existence and uniqueness). Given u0 ∈ H1

0,y,
T > 0, and a probability space (Ω,F , (Ft)t≤T , P). If Θy

0 is an F0-measurable random
variable for a.e. y ∈ � satisfying Θy

0 ∈ H1
y (L2

ω), and Wt is an (Ft) one dimensional
standard Brownian motion, then there exits T ′ ∈ (0, T ) (only depending on data) such
that the coupled system admits a unique solution u(t, y) ∈ L∞

t (H1
0,y) ∩ L2

t (H
2
y ) and

Θy
t ∈ Ct(H1

y (L2
ω)).

3.1. Formal a priori estimates. We first establish a priori estimates on
the solution (u, Θ) of the system (1.7)-(1.9). These estimates will be made rigorous
at the spatially discrete level in the next subsection. Here and in the following C will
be a generic positive constant.

Lemma 3.2 (Global-in-time first energy estimate). Let (u, Θ)t≤T be the solution
of the system (1.8)-(1.9). If u0 ∈ L2

y then we have formally on [0, T ]

‖u‖2
L∞

t (L2
y) + ‖u‖2

L2
t(H

1
y) ≤ C, (3.1)

where constant C only depends on ‖u0‖L2
y
, c and T . Here c is defined in (1.2).

Proof : One can multiply (1.7) by u and integrate the resulting equation in space and
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in time [0, t]. The main step in the proof is to use the following inequality∫ t

0

∫
�

∂yτu dy ds = −
∫ t

0

∫
�

τ∂yu dy ds

≤ 2
∫ t

0

∫
�

|∂yu| dy ds −
∫ t

0

∫
�

|∂yu|2E
[
sin2 2Θs

]
dy ds

≤ 1
2
‖∂yu‖2

L2
t(L

2
y) + C

where C only depends on T . The remaining part of the proof is standard. �
Lemma 3.3 (Local-in-time second energy estimate). If u0 ∈ H1

0,y then we have
the formal second energy estimate on [0, T ′], with T ′ ≤ T only dependent on c and
‖∂yu0‖L2

y
,

‖u‖L∞
t (H1

y) + ‖u‖L2
t(H

2
y) + ‖∂tu‖L2

t(L
2
y) ≤ C (3.2)

where constant C depends only on ‖∂yu0‖L2
y

and c.
Proof : Multiplying (1.7) by −∂yyu, and integrating spatially and temporally, we
obtain

‖∂yu‖2
L2

y
(t) +

∫ t

0

‖∂yyu‖2
L2

y
(s)ds ≤ ‖∂yu0‖2

L2
y

+ c2t − 2
∫ t

0

∫
�

∂yτ∂yyudyds. (3.3)

We will focus on the estimate of −
∫ t

0

∫
�

∂yτ∂yyudyds. Define Φt = ∂yΘt. From the
definition of τ ,

τ = E

[
sin 2Θt + cos2 Θt

∫
Ω

sin 2(Θt − Θt(ω′))P( dω′) + ∂yu sin2 2Θt

]
, (3.4)

we have

∂yτ = K11 + K12 + K2 + ∂yyuE
[
sin2 2Θt

]
, (3.5)

where

K11 = 2E [Φt cos 2Θt] − E

[
Φt sin 2Θt

∫
Ω

sin 2(Θt − Θt(ω′))P( dω′)
]

,

K12 = 2∂yuE [Φt sin 4Θt] ,

K2 = 2E

[
cos2 Θt

∫
Ω

(Φt − Φt(ω′)) cos 2(Θt − Θt(ω′))P( dω′)
]

.

By using Sobolev’s interpolation inequality ‖∂yu‖L∞
y

≤ ‖∂yu‖1/2
L2

y
‖∂yu‖1/2

H1
y
, we have

∫ t

0

∫
�

K12∂yyu dy ds ≤ 2
∫ t

0

‖∂yu‖L∞
y
‖∂yyu‖L2

y
‖Φs‖L2

y(L2
ω) ds

≤ 2
∫ t

0

‖∂yu‖L2
y
‖∂yyu‖L2

y
‖Φt‖L2

y(L2
ω) ds + 2

∫ t

0

‖∂yu‖
1
2
L2

y
‖∂yyu‖

3
2
L2

y
‖Φt‖L2

y(L2
ω) ds

≤ ε‖∂yyu‖2
L2

tL2
y

+
2
ε

∫ t

0

‖∂yu‖2
L2

y
‖Φt‖2

L2
y(L2

ω) ds +
27
2ε3

∫ t

0

‖∂yu‖2
L2

y
‖Φt‖4

L2
y(L2

ω) ds,
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where ε is a fixed small positive number. Energy estimate shows

−
∫ t

0

∫
�

∂yτ∂yyu dy ds ≤ 1
4
‖∂yyu‖2

L2
tL2

y
+ C

(
‖K11‖2

L2
tL2

y
+ ‖K2‖2

L2
tL2

y

+
∫ t

0

‖∂yu‖2
L2

y
‖Φt‖2

L2
y(L2

ω) ds +
∫ t

0

‖∂yu‖2
L2

y
‖Φt‖4

L2
y(L2

ω) ds
)
, (3.6)

where C is a fixed positive real number. By the definition of K11 and K2, it is easy
to show that ‖K11‖2

L2
y
≤ 9‖Φt‖2

L2
y(L2

ω) and ‖K2‖2
L2

y
≤ 4‖Φt(ω) − Φt(ω′)‖2

L2
y(L2

ω(L2
ω′))

≤
16‖Φt‖2

L2
y(L2

ω). By (1.8), we have

dΦt = −
(∫

Ω

2 cos 2(Θt − Θt(ω′))(Φt − Φt(ω′)) dP(ω′)

+∂yyu sin2 Θt + ∂yuΦt sin 2Θt

)
dt.

(3.7)

Applying Ito’s formula to Φ2
t and integrating over y gives

‖Φt‖2
L2

y(L2
ω) ≤ ‖Φ0‖2

L2
y(L2

ω) + 4
∫ t

0

(
(1 + ‖∂yu‖L∞

y
) ‖Φs‖2

L2
y(L2

ω) + ‖∂yyu‖2
L2

y

)
ds. (3.8)

The Gronwall’s inequality leads to

‖Φt‖2
L2

y(L2
ω) ≤

(
‖Φ0‖2

L2
y(L2

ω) + 4
∫ t

0

‖∂yyu‖2
L2

y
ds

)
exp

(
4

∫ t

0

(1 + ‖∂yu‖L∞
y

) ds

)
.

(3.9)
It follows from (3.3), (3.6) and (3.9) that

‖∂yu‖2
L2

y
(t) +

1
2

∫ t

0

‖∂yyu‖2
L2

y
(s)ds ≤ ‖∂yu0‖2

L2
y

+ c2t (3.10)

+C1

∫ t

0

(1 + ‖∂yu‖2
L2

y
)
(

1 +
∫ s

0

‖∂yyu‖2
L2

y
dr)

)2

exp
(

8
∫ s

0

(1 + ‖∂yu‖L∞
y

) dr

)
ds,

where C1 depends on ‖Φ0‖2
L2

y(L2
ω). Let f1(t) = ‖∂yu‖2

L2
y
(t), f2(t) =

∫ t

0
‖∂yyu‖2

L2
y
(s) ds,

and A = ‖∂yu0‖2
L2

y
+ c2T . Then we have

f1(t) +
1
2
f2(t) ≤ A + C1

∫ t

0

(
1 + f1(s)

)(
1 + f2(s)

)2

exp
(
C2(1 + f2(s))

)
ds. (3.11)

Here the first energy estimate is used for
∫ t

0 f1(s) ds, thus C2 may depend on ‖u0‖2
L2

y
, c

and T . Denoting by R(t) the right hand side of (3.11) and noticing that R(t) is an
increasing function, we have

R(t) ≤ A + C1

∫ t

0

(
R(s) + 1

)3

exp
(
C2(R(s) + 1)

)
ds. (3.12)

For any given T > 0, there exist two positive constants γ and C, such that

R(t) ≤ A +
∫ t

0

C exp
(
γR(s)

)
ds.
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Therefore, if t ≤ e−γA/γC, then

R(t) ≤ 1
γ

ln
( 1

e−γA − γCt

)
.

If we let

T ′ =
(
e−γA − e−2γA

/
(γC) ≤ e−γA/(γC), (3.13)

then ∀t ∈ (0, T ′)

R(t) ≤ 1
γ

ln
( 1

e−γA − γCt

)
≤ 2A.

We have for any t ∈ (0, T ′), ‖∂yu‖2
L2

y
(t) + 1

2

∫ t

0 ‖∂yyu‖2
L2

y
≤ 2‖∂yu0‖2

L2
y

+ 2c2T . This
fact, together with (3.1), gives

‖u‖L∞
t ([0,T ′],H1

y) + ‖u‖L2
t([0,T ′],H2

y) ≤ C, (3.14)

from which it is also easy to obtain that Φt ∈ L∞
t (L2

y(L2
ω)). We now estimate ∂tu.

Observe that ∂tu = ∂yyu + ∂yτ − c. Thus (3.5) implies

‖∂yτ‖L2
t ([0,T ′],L2

y) ≤ ‖K11 + K12 + K2‖L2
t ([0,T ′],L2

y) + ‖∂yyu‖L2
t ([0,T ′],L2

y) .

Only the term K12 needs to be considered. We have

‖K12‖2
L2

t ([0,T ′],L2
y) ≤

∫ t

0

‖∂yu‖2
L∞

y
‖Φs‖2

L2
y(L2

ω) ds

≤ ‖Φt‖L∞
t (L2

y(L2
ω))

∫ t

0

‖∂yu‖2
L∞

y
ds, (3.15)

which implies that K12∈L2
t ([0, T ′], L2

y). Similarly, we can show that ∂yτ∈L2
t ([0, T ′], L2

y)
and therefore ∂tu ∈ L2

t ([0, T ′], L2
y). This completes the proof of this lemma. �

3.2. Existence and uniqueness. We first prove the uniqueness part in
Theorem 3.1. Suppose we have two solutions (u, Θ) and (ũ, Θ̃) defined in Theorem
3.1, whose differences are denoted by w = u − ũ and Γ = Θ − Θ̃, respectively. Then
one can easily have for any t ∈ [0, T ′]

1
2

∫
�

w2(t) +
∫ t

0

∫
�

(∂yw)2 = −
∫ t

0

∫
�

∂yw(τ − τ̃), (3.16)

where

τ̃ = E

[
sin 2Θ̃t + cos2 Θ̃t

∫
Ω

sin 2(Θ̃t − Θ̃t(ω′)) dP(ω′) + ∂yũ sin2 2Θ̃t

]
.

By writing τ − τ̃ = E [z] + ∂yw sin2 2Θt, we have

−
∫ t

0

∫
�

∂yw(τ − τ̃) ≤ −
∫ t

0

∫
�

∂ywE [z] ≤ 1
2

∫ t

0

∫
�

|∂yw|2 +
1
2

∫ t

0

∫
�

‖z‖2
L2

ω
, (3.17)
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where

z =(sin 2Θt − sin 2Θ̃t) + ∂yũ(sin2 2Θt − sin2 2Θ̃t)

+ (cos2 Θt − cos2 Θ̃t)
∫

Ω

(sin 2(Θt − Θt(ω′))) dP(ω′)

+ cos2 Θ̃t

∫
Ω

sin 2(Θt − Θt(ω′)) − sin 2(Θ̃t − Θ̃t(ω′)) dP(ω′).

By this, we have

‖z‖2
L2

y(L2
ω) ≤ C(1 + ‖∂yũ‖2

L∞
y

)‖Γt‖2
L2

y(L2
ω). (3.18)

Subtracting the stochastic differential equations of Θ and Θ̃, we find that

dΓt =

(
−
∫

Ω

(
sin 2(Θt − Θt(ω′)) − sin 2(Θ̃t − Θ̃t(ω′))

)
dP(ω′)

−∂yw sin2 Θt − ∂yũ(sin2 Θt − sin2 Θ̃t)

)
dt. (3.19)

Applying Ito’s formula to Γ2
t and integrating over y leads to

‖Γt‖2
L2

y(L2
ω) ≤

∫ t

0

‖∂yw‖2
L2

y
ds + C

∫ t

0

(1 + ‖∂yũ‖L∞
y

) ‖Γs‖2
L2

y(L2
ω) ds, (3.20)

which, together with the Gronwall’s lemma gives

‖Γt‖2
L2

y(L2
ω) ≤ C exp

(∫ t

0

‖∂yũ‖L∞
y

ds

) ∫ t

0

‖∂yw‖2
L2

y
ds. (3.21)

Combing (3.16), (3.17), (3.18) and (3.21) yields∫
�

w2(t) +
∫ t

0

∫
�

(∂yw)2

≤
∫ t

0

C

(
(1 + ‖∂yũ‖2

L∞
y

) exp
(∫ s

0

‖∂yũ‖L∞
y

dr

) ∫ s

0

‖∂yw‖2
L2

y
dr

)
ds. (3.22)

Since ũ ∈ L∞
t (H1

0,y) ∩ L2
t (H

2
y ), the Gronwall’s lemma shows that w = 0, from which

the uniqueness of Θ follows.
Let us show now the existence part of Theorem 3.1 by a Galerkin method. Let

{vi}1≤i≤+∞ ∈ C∞(�)∩H1
0 (�) is basis in H1

0 (�). Denote V m = Vect{vj , 1 ≤ j ≤ m}.
Then our space Galerkin method reads: Find Um ∈ L∞

t (Rm) such that um(t, y) =
m∑

i=1

Um
i (t)vi(y) satisfies, ∀t ∈ [0, T ]

d
dt

∫
�

umv = −
∫

�

∂yum∂yv −
∫

�

τm∂yv − c

∫
�

v, ∀v ∈ V m (3.23)

with initial condition Um(t = 0) = U0 (the vector with components of um
0 = Πmu0 ∈

H1
y , here Πm is the projection operator ), and

∂yτm = Km
11 + Km

12 + Km
2 + ∂yyum

E
[
sin2 2Θm

t

]
, (3.24)
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where

Km
11 = 2E [Φm

t cos 2Θm
t ] − E

[
Φm

t sin 2Θt

∫
Ω

sin 2(Θm − Θm(ω′))P( dω′)
]

,

Km
12 = 2∂yum

E [Φm
t sin 4Θm

t ] ,

Km
2 = 2E

[
cos2 Θm

t

∫
Ω

(Φm
t − Φm

t (ω′)) cos 2(Θm
t − Θm

t (ω′))P( dω′)
]

,

Θm is the solution of

Θm
t = Θ0 −

∫ t

0

(
a(Θm

s ,L(Θm
s ) + ∂yum sin2 Θm

s

)
ds + Wt (3.25)

and Φm = ∂yΘm.

Lemma 3.4. For any fixed positive integer m, and any T > 0, the finite dimensional
approximation (3.23) has a unique solution um.

The proof of this lemma is given in Appendix A. Now, the formal a priori es-
timates of (3.1) and (3.3) can be rigorous on the discretized problem. Therefore,
we know that there exists T ′ > 0 such that there exists an uniform bound (inde-
pendent of m) on um in norm L∞

t ([0, T ′], H1
y ) ∩ L2

t ([0, T ′], H2
y ) and on ∂tu

m in norm
L2

t ([0, T ′], L2
y).

Up to the extraction of a subsequence, we obtain a function u ∈ L∞
t ([0, T ′], H1

y )∩
L2

t ([0, T ′], H2
y ) such that um converges towards u weakly in L2

t ([0, T ′], H2
y ), weak-* in

L∞
t ([0, T ′], H1

y ), ∂tu
m converges towards ∂tu weakly in L2

t ([0, T ′], L2
y), and um strongly

converges towards u in L2
t ([0, T ′], H1

y ). Also one can define Θ for any y ∈ � by

Θt = Θ0 −
∫ t

0

(
a(Θs,L(Θs) + ∂yu sin2 Θs

)
ds + Wt,

whose existence is guaranteed by the regularity of u ∈ L2
t ([0, T ′], H2

y ).
We next verify that (u, Θ) defined above is indeed the solution of the coupled

system satisfied by (um, Θm). The only non-trivial term is
∫ T ′

0

∫
�

τm∂yv w, where
w ∈ C∞

0 ([0, T ′]). From the estimates (3.18), (3.21), and the strong convergence of um

in L2
t ([0, T ′], H1

y ), one can show that

∫ T ′

0

∫
�

τm∂yv w →
∫ T ′

0

∫
�

τ∂yv w (3.26)

is valid. This concludes the proof of the well-posedness of the system (1.7)-(1.9).

4. Numerical scheme and convergence analysis
This section is concerned with the convergence of a finite difference-Monte Carlo

hybrid numerical scheme for the coupled system (1.7)-(1.9). We choose a finite dif-
ference discretization in space of the velocity and apply the Monte Carlo method to
approximate the probabilistic expectation in the expression of stress τ by the statisti-
cal average. A key issue in our case is how to numerically treat the nonlinearity term
a(Θt,L(Θt) in the SDE (1.7) arising from the mean field potential. Based on the law
of large numbers for the interacting diffusions[33], we introduce M weakly interacting
processes (Θ̄j)j≤M [27] and show their asymptotic behavior is an approximation to
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the nonlinear diffusion processes Θ at the convergence rate of O(M−1/2). We begin by
stating our numerical scheme and the main convergence result about its convergence.
The rigorous proofs will be in the second subsection.

4.1. The full discretization and our main result. We use a staggered
grid in the velocity field. The interval [0, 1] is divided into a uniform mesh with the
grid size h = 1/N . Denote the numerical solution by ūn

i+ 1
2

at the position yi+ 1
2

=

(i+ 1
2 )h, and the discrete weakly interacting processes Θ̄n

i,j at the position yi = ih, for
j = 1, 2, · · · , M . n is the time step number and tn = nδt. We use the finite difference
method and the backward Euler scheme:

ūn+1
i+ 1

2
− ūn

i+ 1
2

δt
=

(Dhū)n+1
i+1 − (Dhū)n+1

i

h
+

(τ̄α)n
i+1 − (τ̄α)n

i

h
+

+
(Dhū)n+1

i+1 (τ̄β)n
i+1 − (Dhū)n+1

i (τ̄β)n
i

h
− c

(4.1)

with

(Dhū)n
j =

ūn
j+ 1

2
− ūn

j− 1
2

h
, (τ̄β)n

i =
1
M

M∑
j=1

sin2 2Θ̄n
i,j ,

(τ̄α)n
i =

1
M

M∑
j=1

sin 2Θ̄n
i,j +

1
M2

M∑
j=1

cos2 Θ̄n
i,j

M∑
k=1

sin 2(Θ̄n
i,j − Θ̄n

i,k).

Then, one computes Θ̄n+1
i,j (j = 1, 2, · · · , M) using

Θ̄n+1
i,j − Θ̄n

i,j (4.2)

= −
( 1

M

M∑
k=1

sin 2(Θ̄n
i,j − Θ̄n

i,k) + (Dhū)n+1
i sin2 Θ̄n

i,j

)
δt + W j

tn+1
− W j

tn
.

The initial condition and boundary condition are

ū0
i+ 1

2
= u0(yi+ 1

2
), Θ̄0

i,j = Θ0(yj), i = 0, · · · , N ; j = 1, · · · , M (4.3)

ūn
− 1

2
= −ūn

1
2
, ūn

N+ 1
2

= −ūn
N− 1

2
, n ≥ 1. (4.4)

Define the discrete norm,

‖ui+ 1
2
‖2

L2
h(L2

ω) = h

N−1∑
i=0

E|ui+ 1
2
|2, ‖Θi‖2

L2
h(L2

ω) = h

N∑
i=0

E|Θi|2.

We can prove the following convergence result for the full discretization scheme.

Theorem 4.1 (Convergence analysis). Given u(t, y)∈L∞
t (H2

y )∩L2
t (H

3
y ), ut(t, y)∈

L2
t (H

2
y ) and Θy

t ∈ Ct(H1
y (L2

ω)). If the coupled system is discretized by (4.1)-(4.4), then
the following error estimate for u and Θ holds:

‖u(tn, yi+ 1
2
) − ūn

i+ 1
2
‖2

L2
h(L2

ω) +
1
M

M∑
j=1

‖Θtn(yi) − Θ̄n
i,j‖2

L2
h(L2

ω)

≤ C

(
1
M

+ δt2 + h4

)
. (4.5)
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Remark 3. Assume that u(t, y) ∈ L∞
t (H2

y ) ∩ L2
t (H

3
y ), ut(t, y) ∈ L2

t (H
2
y ) and

Θy
t ∈ Ct(H1

y (L2
ω)) in Theorem 3, which is a stronger assumption on u than that in

well-posedness analysis. It can be obtained by taking higher order differential to the
equation of u, and a similar analysis gives the result. The readers may be referred to
[9] for details.

4.2. Numerical analysis of the full discretization scheme. It is easy to
verify that u(tn, yj+ 1

2
) satisfies the difference equation (4.1) with the truncation error

O(δt + h2). Let en
j+ 1

2
= ūn

j+ 1
2
− u(tn, yj+ 1

2
). Then we have

en+1
i+ 1

2
− en

i+ 1
2

δt
=

(Dhe)n+1
i+1 − (Dhe)n+1

i

h
+

(τ̄α − τα)n
i+1 − (τ̄α − τα)n

i

h

+
(Dhe)n+1

i+1 (τ̄β)n
i+1 − (Dhe)n+1

i (τ̄β)n
i

h

+
(Dhu)n+1

i+1 (τ̄β − τβ)n
i+1 − (Dhu)n+1

i (τ̄β − τβ)n
i

h

+ C(δt + h2),

(4.6)

where

(Dhu)n
i =

u(tn, yi+ 1
2
) − u(tn, yi− 1

2
)

h

and (τα)n
i and (τβ)n

i are defined in a similar manner. Multiplying (4.6) by en+1
i+ 1

2
,

summing over i and using summation by parts, yield

h

2δt

N∑
i=0

|en+1
i+ 1

2
|2 +

h

2

N∑
i=0

|(Dhe)n+1
i |2 ≤ h

2δt

N∑
i=0

|en
i+ 1

2
|2

+ Ch

N∑
i=0

|(τ̄α)n
i − (τα)n

i |2 + Ch

N∑
i=0

|(τ̄β)n
i − (τβ)n

i |2 + C(δt + h2)2,

(4.7)

where the positivity of the term (τ̄β)n
i and the bound of Dhun

i are used. Note that
(the computation for |(τ̄α)n

i − (τα)n
i | is similar ) for i = 1, · · · , N
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E|(τ̄β)n
i − (τβ)n

i |2

=

∥∥∥∥∥∥E [sin 2Θtn(yi)] −
1
M

M∑
j=1

sin 2Θ̄n
i,j

∥∥∥∥∥∥
2

L2
ω

≤ 4

∥∥∥∥∥∥E [sin 2Θtn(yi)] −
1
M

M∑
j=1

sin 2Θ̃j
tn

(yi)

∥∥∥∥∥∥
2

L2
ω

+4

∥∥∥∥∥∥
1
M

M∑
j=1

(sin 2Θ̃j
tn

(yi) − sin 2Θj
tn

(yi))

∥∥∥∥∥∥
2

L2
ω

+4

∥∥∥∥∥∥
1
M

M∑
j=1

(sin 2Θj
tn

(yi) − sin 2Θn
i,j)

∥∥∥∥∥∥
2

L2
ω

+ 4

∥∥∥∥∥∥
1
M

M∑
j=1

(sin 2Θn
i,j − sin 2Θ̄n

i,j)

∥∥∥∥∥∥
2

L2
ω

≤ 4

∥∥∥∥∥∥E [sin 2Θtn(yi)] −
1
M

M∑
j=1

sin 2Θ̃j
tn

(yi)

∥∥∥∥∥∥
2

L2
ω

+
C

M

M∑
j=1

‖Θ̃j
tn

(yi) − Θj
tn

(yi)‖2
L2

ω

+
C

M

M∑
j=1

‖Θj
tn

(yi) − Θn
i,j‖2

L2
ω

+
C

M

M∑
j=1

‖Θn
i,j − Θ̄n

i,j‖2
L2

ω
, (4.8)

where M i.i.d. processes Θ̃j
t (copies of Θt) and M weakly interacting processes Θj

t

for the nonlinear diffusion processes Θt are introduced:

Θ̃j
t = Θ0 −

∫ t

0

(
a(Θ̃j

s,L(Θ̃j
s)) + ∂yu sin2 Θ̃j

s

)
ds + W j

t , j = 1, · · · , M, (4.9)

Θj
t=Θ0−

∫ t

0

( 1
M

M∑
k=1

sin 2(Θj
s−Θk

s)+∂yu sin2 Θj
s

)
ds + W j

t , j=1, · · · , M. (4.10)

And Θn
i,j is the time-discretized solution of Θj

t at the time tn and the spatial position
yi:

Θn+1
i,j − Θn

i,j = −
( 1

M

M∑
k=1

sin 2(Θn
i,j − Θn

i,k) + ∂yu(tn, yi) sin2 Θn
i,j

)
δt

+ W j
tn+1

− W j
tn

, j = 1, · · · , M.

(4.11)

We are about to treat the four terms one by one on the right hand side of (4.8). For
the first term, the classical Law of Large Numbers[3] shows∥∥∥∥∥∥E [sin 2Θtn(yi)] −

1
M

M∑
j=1

sin 2Θ̃j
tn

(yi)

∥∥∥∥∥∥
2

L2
ω

≤ C

M
. (4.12)

By the analysis of the numerical scheme of (4.11), we prove the convergence of the
third term when δt tends to zero in Appendix B:

‖Θj
tn

(yi) − Θn
i,j‖2

L2
ω
≤ Cδt2. (4.13)
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The asymptotic behavior of the weak interaction processes Θj
tn

in the second term of
(4.8) is summarized as the following lemma.

Lemma 4.2.

1
M

M∑
j=1

‖Θj
t − Θ̃j

t‖2
L2

ω
≤ C

M
, for any y ∈ � (4.14)

where C only depends on T , u0, Θ0 and c.

Proof : Observe

|Θj
t − Θ̃j

t |2

=
∣∣∣ ∫ t

0

1
M

M∑
k=1

sin 2(Θj
s − Θk

s) − a(Θ̃j
s,L(Θ̃j

s)) + ∂yu(sin2 Θj
s − sin2 Θ̃j

s) ds
∣∣∣2

≤ 2t

∫ t

0

∣∣∣ 1
M

M∑
k=1

sin 2(Θj
s − Θk

s) − a(Θ̃j
s,L(Θj

s))
∣∣∣2+8t

∫ t

0

|∂yu|2|Θj
s − Θ̃j

s|2. (4.15)

Now look at the first term of the right hand side. We find:

sin 2(Θj
t − Θk

t ) − a(Θ̃j
t ,L(Θ̃j

t ))

=
(

sin 2(Θj
t − Θk

t ) − sin 2(Θ̃j
t − Θk

t )
)

+
(

sin 2(Θ̃j
t − Θk

t ) − sin 2(Θ̃j
t − Θ̃k

t )
)

+ bjk,

where bjk = sin 2(Θ̃j
t − Θ̃k

t ) − a(Θ̃j
t ,L(Θ̃j

t )). Insert this equality into (4.15), use
Lipschitz property of sine function, perform summations over j and take expectation,
then we have

1
M

M∑
j=1

‖Θj
t − Θ̃j

t‖2
L2

ω

≤ 24t

∫ t

0

1
M

M∑
j=1

(
‖Θj

s − Θ̃j
s‖2

L2
ω

+
1
M

M∑
k=1

‖Θk
s − Θ̃k

s‖2
L2

ω
+ ‖ 1

M

M∑
k=1

bjk‖2
L2

ω

)

+ 8t

∫ t

0

1
M

M∑
j=1

|∂yu|2‖Θj
s − Θ̃j

s‖2
L2

ω

≤ 48t

∫ t

0

(1 + |∂yu|2) 1
M

M∑
j=1

‖Θj
s − Θ̃j

s‖2
L2

ω
+ 24t

∫ t

0

1
M3

M∑
j=1

‖
M∑

k=1

bjk‖2
L2

ω
.

Applying Gronwall’s lemma and taking advantage of u ∈ L2
t H

2
y , we find

1
M

M∑
j=1

‖Θj
t − Θ̃j

t‖2
L2

ω
≤ C

∫ t

0

1
M3

M∑
j=1

‖
M∑

k=1

bjk‖2
L2

ω

= C

∫ t

0

1
M3

M∑
j=1

E[
M∑

k,l=1

bjkbjl].
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But when k �= l, using Fubini theorem, noticing that L(Θ̃j
t ) = L(Θ̃k

t ) = L(Θ̃l
t)

E[bjkbjl]

= E(Θ̃j
t ,Θ̃k

t ,Θ̃l
t)

[(
sin 2(Θ̃j

t−Θ̃k
t )−a(Θ̃j

t ,L(Θ̃j
t ))

)(
sin 2(Θ̃j

t − Θ̃l
t)−a(Θ̃j

t ,L(Θ̃j
t ))

)]
= EΘ̃j

t

[
EΘ̃k

t

(
sin 2(Θ̃j

t − Θ̃k
t )−a(Θ̃j

t ,L(Θ̃j
t ))

)
EΘ̃l

t

(
sin 2(Θ̃j

t−Θ̃l
t) − a(Θ̃j

t ,L(Θ̃j
t ))

)]
= EΘ̃j

t

[(
a(Θ̃j

t ,L(Θ̃k
t ))−a(Θ̃j

t ,L(Θ̃j
t ))

)(
a(Θ̃j

t ,L(Θ̃l
t))−a(Θ̃j

t ,L(Θ̃j
t ))

)]
= EΘ̃j

t
[0] = 0.

Using this result and the boundedness of bjk, we have

1
M

M∑
j=1

‖Θj
t − Θ̃j

t‖2
L2

ω
≤ C

M
.

This completes the proof of Lemma 4.2. �
Finally, we consider the last term on the right hand side of (4.8). We define

fn
i,j = Θ̄n

i,j − Θn
i,j and |Fn

i |2 = 1
M

∑M
j=1 E

[
|fn

i,j |2
]
. By (4.6), (4.8), (4.12), (4.13) and

(4.14) we have

‖en+1
i+ 1

2
‖2

L2
h(L2

ω) + δt‖(Dhe)n+1
i ‖2

L2
h(L2

ω)

≤‖en
i+ 1

2
‖2

L2
h
(L2

ω) +
C

M
δt + Chδt

N∑
i=0

|Fn
i |2 + Cδt3 + Ch4δt.

(4.16)

What remains is to estimate the error Fn
i that arises from the difference between the

continuous term ∂yu in (4.11) and its numerical discretization Dhū in (4.2). We easily
have by subtracting (4.11) from (4.2) to obtain

|fn+1
i,j | ≤ (1 + 2C1δt)|fn

i,j | + 2δt

(
1
M

M∑
k=1

|fn
i,k| + gn

i

)
, (4.17)

where C1 = ‖∂yu‖L∞
t (L∞

y ) + 1. It can be verified that

gn
i = |∂yu(tn, yi) − (Dhu)n+1

i |

≤ |(Dhe)n+1
i | +

∫ tn+1

tn

|∂t∂yu| dt + |∂yu(tn+1, yi) − (Dhu)n+1
i |

≤ |(Dhe)n+1
i | + C(δt + h2),

) (4.18)

where ∂t∂yu ∈ L2
t L

∞
y is applied. Squaring the both sides of (4.17) yields

|fn+1
i,j |2 ≤ (1 + Cδt)|fn

i,j |2 + Cδt2

(
|gn

i |2 +
1
M

M∑
k=1

|fn
i,k|2

)
+ Cδt|fn

i,j |
(

gn
i +

1
M

M∑
k=1

|fn
i,k|

)

≤ |fn
i,j |2 (1 + Cεδt) + εδt|gn

i |2 + Cδt

(
1
M

M∑
k=1

|fn
i,k|2

)

≤ |fn
i,j |2(1 + Cεδt) + εδt|(Dhe)n+1

i |2 + εCδt3 + εh4δt + Cδt

(
1
M

M∑
k=1

|fn
i,k|2

)
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where Cε = C + C/ε and ε is a sufficiently small positive number. Summing over
j = 1, · · · , M and i = 0, · · · , N leads to

h

N∑
i=0

|Fn+1
i |2

≤ (1 + Cεδt)h
N∑

i=0

|Fn
i |2 + εδt‖(Dhe)n+1

i ‖2
L2

h(L2
ω) + εCδt3 + εh4δt. (4.19)

Choose the positive number ε < 1. Adding (4.16) and (4.19) gives

‖en+1
i+ 1

2
‖2

L2
h(L2

ω) + h
N∑

i=0

|Fn+1
i |2

≤‖en
i+ 1

2
‖2

L2
h
(L2

ω) + (1 + Cεδt)h
N∑

i=0

|Fn
i |2 +

C

M
δt + Cδt3 + Ch4δt,

(4.20)

from which our main result follows

‖u(tn, yi+ 1
2
) − ūn

i+ 1
2
‖2

L2
h(L2

ω) +
1
M

M∑
j=1

‖Θtn(yi) − Θ̄n
i,j‖2

L2
hL2

ω

≤ C

(
1
M

+ δt2 + h4

)
. (4.21)

5. Conclusion
In this paper, the 1D stochastic model of LCPs with Maier-Saupe potential is

investigated. The local time well-posedness is studied, and a numerical scheme is pro-
posed and analyzed. The existence of the solution to the nonlinear SDE is established
by using a contraction argument. The well-posedness of the solution to the coupled
system is obtained under suitable a priori estimates for the velocity u and the stress
τ . In our finite difference-Monte Carlo numerical scheme, a staggered grid in space
for u and τ is applied. The novelty of the numerical approximation is the convergence
of the weakly interacting processes to the nonlinear process by the asymptotic theory
of the weakly interacting particle system in stochastic analysis. In particular, the
optimal convergence rate O(δt + h2 + 1√

M
) is derived.

Appendix A. The proof of Lemma 3.4.
We first construct a fixed point U of the following mapping F (X), F :C([0, T ], Rm)

→ C([0, T ], Rm)

F (X)(t) = U0 − A−1

∫ t

0

(
BX(s) +

∫
�

T (X)s∂yΞ + c

∫
�

Ξ
)
ds, (A.1)

where X ∈ C([0, T ], Rm), matrices Ai,j =
∫

�
vivj , Bi,j =

∫
�

∂yvi∂yvj , and Ξ =
(v1, v2, · · · , vm). The map T (X) is defined by

T (X)s = E

[
sin 2Θs +

m∑
i=1

Xi(s)∂yvi sin2 2Θs

+ cos2 Θs

∫
Ω

sin 2(Θs − Θs(ω′)) dP(ω′)
]

(A.2)



312 LIQUIDS CRYSTAL POLYMER FLOWS

where Θ associates to X by the following SDE :

dΘs = −a(Θs,L(Θs)) ds −
m∑

i=1

Xi(s)∂yvi sin2 2Θs ds + dWs (A.3)

with the same initial condition as before.
Proof : We are going to show by the Picard fixed point theorem that the function

F in (A.1) has a fixed point when restricted on C([0, α0], B(U0, 1)) endowed with the
uniform convergence topology, for some small α0 ∈ [0, T ], and continue to construct
the solution up to time T . These two parts will complete our proof.

A.1. Fixed point result at local time. First, we show that for any X ∈
C([0, α], B(U0, 1)),we have F (X) ∈ C([0, α], B(U0, 1)) provided that α is small enough.
The ball B(U0, 1) is defined by

B(U0, 1) = {K ∈ R
m : ‖K − U0‖ ≤ 1}.

Since X ∈ C([0, α], B(U0, 1)), it follows from (A.2) that

‖T (X)‖L∞([0,α],L∞
y ) ≤ C′(1 + ‖X‖L∞

t [0,α]‖∂yΞ‖L∞
y

) ≤ C,

for any α > 0. This, together with (A.1), gives

‖F (X)− U0‖L∞
t [0,α]

≤ |||A−1|||α
(
|||B|||(1 + ‖U0‖) + ‖T (X)‖L∞

t ([0,α],L∞
y )‖∂yΞ‖L∞

y
+ c‖Ξ‖L∞

y

)
,

which yields

‖F (X) − U0‖L∞
t [0,α] ≤ Cα ≤ 1, (if we take α ≤ 1/C.) (A.4)

provided that α is sufficiently small, where C depends only c, V m, ‖u0‖L2
y
, T .

We next show that the function F restricted on C([0, α], B(U0, 1)) is contracting
as long as α is sufficiently small. Let X1, X2 ∈ C([0, α], B(U0, 1)). Then Θ1 and Θ2

are given by (A.3). It follows from (A.1) that

‖F (X1) − F (X2)‖L∞
t [0,α]

≤ αC(‖X1 − X2‖L∞
t [0,α] + ‖T (X1) − T (X2)‖L∞

t ([0,α],L∞
y )). (A.5)

Moreover, by the definition (A.2) of T (X), one can easily obtain for any time t ≤ T

and y ∈ �

|T (X1)t − T (X2)t|

≤ E
[
|Θ1

t − Θ2
t |

] (
1 +

m∑
i=1

|X1
i (t)||∂yvi|

)
+

m∑
i=1

|X1
i (t) − X2

i (t)||∂yvi|. (A.6)

Using (A.3) and the same argument as that in deriving (3.21), we obtain

E
[
|Θ1

t − Θ2
t |

]
≤ C exp

(∫ t

0

m∑
i=1

|X1
i (s)||∂yvi| ds

)∫ t

0

m∑
i=1

|X1
i (s) − X2

i (s)||∂yvi| ds. (A.7)
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Using the above two results gives

‖T (X1) − T (X2)‖L∞
t ([0,α],L∞

y ) ≤ C‖X1 − X2‖L∞
t [0,α], (A.8)

which, together with (A.5), yields

‖F (X1) − F (X2)‖L∞
t [0,α] ≤ αC‖X1 − X2‖L∞

t [0,α]. (A.9)

The above result indicates that if αC < 1, then the function F is contracting on
C([0, α], B(U0, 1)). If we choose α0 ≤ 1/C in both (A.9) and (A.4), then for any
initial condition U0 the discrete problem has a solution U ∈ C([0, α0], Rm) on the
time interval [0, α0].

A.2. Construct the solution at global time. We can now start again the
construction of a solution to (3.23) from the final point U(α0) at the time interval
t ∈ [α0, α0 +α1] with α1 small enough and only dependent on T, V m, c. Furthermore,
using the same argument as before, we consider the mapping Fα0 : C([α0, T ], Rm)
→ C([α0, T ], Rm)

Fα0(X)(t) = U(α0) − A−1

∫ t

α0

(
BX(s) +

∫
�

T (X)s∂yΞ + cΞ
)
ds. (A.10)

Going through the same argument as before, we can choose α1 only dependent on
V m, T, �, c, such that Fα0(X) has a fixed point on C([α0, α0 + α1], Rm). That means
that we can extend the solution to the time interval [0, α0 + α1]. By a continuation
argument, we can build a solution of the discrete problem (3.23) up to any finite time
T . �

Appendix B. The proof of
∥∥∥Θj

tn
(yi) − Θn

i,j

∥∥∥
L2

ω

≤ Cδt .

We now consider the SDE (4.10) and its numerical scheme (4.11). Our aim is to
prove the estimate of

∥∥∥Θj
tn

− Θn
i,j

∥∥∥
L2

ω

≤ Cδt under the condition ∂yu ∈ L∞
t (L∞

y ) and

∂t∂yu ∈ L2
t (L∞

y ). Let us consider a more general setting of our problem. The basic
framework may be refered to [18].

Let T > 0. Assume b1(x), b2(x) ∈ C∞(Rd) which have bounded derivatives up
to the second order and assume g(t, y) : [0, T ] × R → R satisfies g ∈ L∞

t (L∞
y ) and

∂tg ∈ L2
t (L

∞
y ). We consider the SDE

dXt =
(
b1(Xt) + g(t, y)b2(Xt)

)
dt + dWt (B.1)

where y ∈ R is a fixed parameter and g(t, y) is a known function. Wt is the d-
dimensional Wiener process. We use Euler method to approximate (B.1)

X̄n+1 = X̄n +
(
b1(X̄n) + g(tn, y)b2(X̄n)

)
δt + ∆Wn (B.2)

with tn = nδt and X̄0 = X0, ∆Wn = Wtn+1 − Wtn . The Ito-Taylor expansion gives
that

Xtn+1 = Xtn+
(
b1(Xtn)+g(tn, y)b2(Xtn)

)
δt+∆Wn+R11+R12+R2+R31+R32, (B.3)
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where

R11 =
∫ tn+1

tn

∫ t

tn

∇b1(Xs) ·
(
b1(Xs) + g(s, y)b2(Xs)

)
+

1
2
�b1(Xs) ds dt,

R12 =
∫ tn+1

tn

∫ t

tn

∇b1(Xs) dWs dt, R2 =
∫ tn+1

tn

∫ t

tn

∂tg(s, y)b2(Xs) ds dt,

R31 =
∫ tn+1

tn

∫ t

tn

g(s, y)
(
∇b2(Xs) ·

(
b1(Xs) + g(s, y)b2(Xs)

)
+

1
2
�b2(Xs)

)
ds dt,

R32 =
∫ tn+1

tn

∫ t

tn

g(s, y)∇b2(Xs) dWs dt.

We set En = Xtn − X̄n. Subtracting (B.2) from (B.3) and noticing the Lipschitz
property of b1, b2 and the facts E [EnR12] = E [EnR32] = 0, we can obtain

E

[
|En+1|2

]
≤ E

[
|En|2

] (
1 + Cδt

(
1 + ‖g‖L∞

t (L∞
y ))|

)
+ Cδt2

(
1 + ‖g‖2

L∞
t (L∞

y )

))
+C

1
δt

(
E

[
|R11|2 + |R2|2 + |R31|2

] )
+ CE

[
|R12|2 + |R32|2

]
(B.4)

where |x| =
√∑d

i=1 x2
i for x ∈ R

d. It can be verified that

E
[
|R12|2

]
≤ Cδt3, E

[
|R32|2

]
≤ Cδt

∫ tn+1

tn

∫ t

tn

|g(s, y)|2 ds dt,

E
[
|R11|2

]
+ E

[
|R2|2

]
+ E

[
|R31|2

]
≤ Cδt4 + Cδt2

∫ tn+1

tn

∫ t

tn

|g(s, y)|2 + |∂tg(s, y)|2 + |g(s, y)|4 ds dt.

These results, together with (B.4) and the fact that ‖g‖L∞
t (L∞

y ) ≤ C, give

E
[
|En|2

]
≤ Cδt2 + Cδt2

∫ T

0

‖∂tg(t, y)‖2
L∞

y
dt. (B.5)

Thus, we obtain

d∑
j=1

∥∥∥Xj
tn

− X̄j
n

∥∥∥2

L2
ω

≤ Cδt2

where C depends only on T , ‖g‖L∞
t (L∞

y ), ‖∂tg‖L2
t (L∞

y ) and ‖bi‖L∞ , ‖∇bi‖L∞ , ‖�bi‖L∞

(i = 1, 2).
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